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Abstract— This study presents a new scheme for the synthesis
of reduced order nonlinear state observer. It is based on the
centre manifold and the sliding mode theories. The first one is
well known as being very useful for the generating of reduced
order models at the neighborhood of the Hopf bifurcation point
while the sliding-mode theory is widely used for the synthesis
of nonlinear state observers. Hence , this study investigates the
opportunity to derive reduced order state observers from both
theories. This way of proceeding obeys to a different spirit
regarding that of the Luenberger observer which is based on
the estimating of the only states that are not available from
measurements while the proposed scheme gives a method to
synthesize a reduced order observer from a reduced order
model the output of which is forced to be convergent to
the measured system output according to the sliding-modes
principle. This permits the obtaining of an estimation of the
centre variables based on which the estimation of the full order
system state is determined.

I. INTRODUCTION

The importance of sate observers for controlling and
monitoring of dynamical systems is well established. They
are more specifically required when system states are not
accessible to measurement for technological and/or cost
considerations, in order to estimate the system internal states.
The literature about this topic refers to numerous techniques
for the synthesis of linear and nonlinear state observers [15]–
[17]. However, as a state observer is a copy of the dynamical
system with an output gap term injected at its entrance,
it generally exhibits the same complexity features as the
system to observe more specifically its dimension. Thus for
efficient practical use and for high dimension systems, one
searches for the synthesize of reduced order state observers.
The most common used way in this perspective is the one
based on the considering of the number of state variables that
are available from measurements. In this case, the resulting
state observer dimension is decreased by the number of
measurable outputs. This is the spirit of the Luenberger
state observer which was defined for linear systems [3]
and then subsequently extended to nonlinear systems [4]–
[6] by defining suitable linear and nonlinear coordinate
transformations, respectively. In this same framework, recent
studies have proposed the synthesis of convergent reduced
order state observers for nonlinear dynamical systems by
using the contraction analysis and convex optimization [18],
[19]. The concept of invariant manifolds was also recently
proposed for the same objective [7], [20]. In these studies,
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asymptotic estimates of reduced order unknown state vectors
were obtained by rendering attractive prior selected invariant
manifolds. In [21], a different use of invariant manifolds was
proposed for the synthesis of reduced order state observers.
It consisted in the considering of the centre manifold to
determine the nonlinear transformation mapping the system
to be observed to a canonical form according to the Kazantzis
and Kravaris condition [22], and based on which a reduced
Luenberger-like observer is determined.

The present paper deals with the synthesis of reduced order
state observers by using another paradigm. It proposes to
build a reduced order state observer for a given nonlinear
system by using its reduced order model instead of the
full order version. More accurately, this study proposes the
estimation of a full order system state by using a reduced
state estimator which is obtained not by considering the
availability of some states from the output measure as defined
within Luenberger spirit, but by using a reduced order model
determined by the centre manifold theorem [1], [2]. A copy
of this reduced model is exploited together with the sliding
mode theory in order to synthesize a sliding-mode observer
[8]. The particular point is then to define a sliding surface
as the gap between the measured output and the output of
the reduced observer. The dual issue which consists in the
defining of reduced order controllers from centre manifold
based reduced models was recently considered and dealt with
in [9].

According to the centre manifold theorem, a system mo-
tion takes place on an invariant manifold that is tangent to
the centre linear sub-spaces at the Hopf bifurcation point,
the centre sub-spaces being spanned by the eigenvectors
corresponding to the pure imaginary eigenvalues. In the other
hand, the sliding-mode theory is widely used to build conver-
gent state observers as shown in numerous previous works
[8], [10]–[13]. Then, this study investigates the opportunity
to use the centre manifold based reduced order models in
order to efficiently design convergent reduced order sliding
mode state observers. In this framework, a convergence
condition is derived for the proposed reduced observers.
The associated performances are assessed by considering the
problem of estimating friction-induced vibrations.

This paper is organized as follows. First, the considered
problem is formulated in Section II. Then, the main princi-
ples of the centre manifold method for model order reduction
are recalled in Section III. After that, the centre manifold
based reduced order sliding-mode state observer is described
in Section IV. Its efficiency and convergence are analyzed
in Section V by considering the friction-induced vibrations
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(FIV) estimation problem. Conclusion is given at the end of
the paper.

II. PROBLEM FORMULATION

Let,
ẋ(t) = Ax(µ)x(t) + fx(x(t), µ) (1)

be a dynamical system with a linear part modeled by the
state matrix Ax ∈ Rn×n and a nonlinear part fx which is
assumed to be smooth and supposed to be locally Lipchitz
so that for each initial state x(0) at t = 0 the System (1)
has the unique solution x(t, µ). Otherwise fx is considered
as a polynomial vector field and the system output y(t) is
supposed to be given by a linear combination of the state
variables that is y(t) = Cxx(t), Cx being a row observation
matrix. Furthermore, the origin xe = 0 is assumed to be
the equilibrium of System (1) and is not influenced by the
parameter µ.

Let,
ẋr(t) = Ar(µ)xr(t) + fr(xr(t), µ) (2)

a reduced order model which is supposed to be an enough
accurate representation of the dynamical behavior of the full
order version (1) where Ar ∈ Rr×r, fr is a reduced nonlin-
ear vector field. The associated output yr(t) = Crxr(t) is
required to be an approximation of y with a suitable accuracy.
Then, the main issue the present study addresses can be
formulated in a more general form which consists in the
starting from the reduced order model (2) to define a reduced
order state observer given as:{

˙̂xr(t) = Ar(µ)x̂r(t) + fr(x̂r(t), µ) + χ(ŷr(t)− y(t))
ŷr(t) = Crx̂r(t), x̂r(0) = x

0
r

(3)
such that x̂(t) = ψ(x̂r(t)) → x(t) as t → ∞ with ψ
is a smooth coordinate transformation mapping the reduced
state estimation x̂r(t) to the full order state vector estimation
x̂(t) which is then required to converge to the real full order
system state x(t).

III. CENTRE MANIFOLD

The centre manifold theory is here considered to derive the
reduced order model (2). More specifically, this study focuses
on a particular region near the Hopf bifurcation points µc

of System (1), [2]. At this point and near the equilibrium,
System (1) loses its asymptotic stability property and may
converge to a stationary regime of oscillation named limit
cycle. It can be put into a canonical form by using a linear
basis transformation x(t) = Tz(t) where T is the matrix of
the generalized eigenvectors associated to the eigenvalues of
the state matrix Ax at µ = µc. This canonical form is given
by: {

żc(t) = Ac(µc)zc(t) + f c(zc(t), zs(t), µc)
żs(t) = As(µc)zs(t) + fs(zc(t), zs(t), µc)

(4)

where the new state vector z(t) is partitioned into two state
sub-vectors namely zc(t) ∈ Rnc and zs(t) ∈ Rns such
that nc + ns = n, which refer to the centre and stable
manifolds characterized by the system’ modes with zero

real parts and strictly negative real parts, respectively. The
diagonal matrix A is defined by the mentioned eigenvalues

that is, A(µc) = [
Ac 0
0 As

] = diag(λc,λs) where λc =

[ λ1 . . . λnc ]T is the vector of the imaginary eigenvalues
while λs = [ λnc+1 . . . λnc+ns ]T is the vector of the
stable eigenvalues. Moreover, the polynomial vector field
fz = [ f c fs ] is also partitioned according to the two
distinguished sets of the state variables with f c(0,0, µc) =
0, fs(0,0, µc) = 0 and the associated jacobian matrices
Jfc

and Jfs
are null at the equilibrium point. Otherwise,

the system output is also rewritten and given in the new
coordinates:

y(t) = [ Cc Cs ][
zc(t)
zs(t)

] (5)

Then,it is also possible to define, in some neighborhood of
the Hopf bifurcation point given by µ̃ = (1 + ϵ)µc with
ϵ << 1, the following augmented dynamics:

żc = Ac(µ̃)zc(t) + f c(zc(t), zs(t), µ̃)
żs(t) = As(µ̃)zs(t) + fs(zc, zs(t), µ̃)
˙̃µ = 0

(6)

Hence, the centre manifold theorem stated that there exist
a local centre manifold within some neighborhood such that
∥zc(t)∥ < δ and small ∥µ̃∥, by means of which the stable
variable zs(t) can be determined by some nonlinear function
ϕ in the centre variables (zc(t), µ̃) as: zs(t) = ϕ(zc(t), µ̃)
where ϕ verifies ϕ(0, 0) = 0 and the associated Jacobian
Jϕ(0, 0) is a null matrix [1], [2].
Consequently, a reduced order model can be simply obtained
by suppressing the stable dynamics in System (6). The
resulting reduced dynamics and the corresponding output are
then determined by the following equations, respectively.{

żc(t) = Ac(µ̃)zc(t) + f c(zc(t),ϕ(zc(t), µ̃), µ̃)
˙̃µ = 0

(7)

yr(t) = Cczc(t) (8)

The main step is then to calculate the centre manifold ϕ. This
is carried out from the solution of the following algebraic
equation:

(Jϕ(zc(t), µ̃)) {Ac(µ̃)zc(t) + f c(zc(t),ϕ(zc(t), µ̃), µ̃)}
= {As(µ̃)ϕ(zc(t), µ̃) + fs(zc,ϕ(zc, µ̃), µ̃)}

(9)

A simple way to determine an approximation of the centre
manifold ϕ is to choose it as a polynomial function with a
fixed degree. The associated coefficients are then identified
by using equation (9). The reduced model is required to be
enough accurately representative of the dynamical behaviour
described by the original model, which involves that yr ≈ y
for a given perturbation of the equilibrium system state.
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IV. REDUCED ORDER SLIDING MODE OBSERVER

For sake of clarity, the following formulation is considered
by using the z(t) state variable. The formulation in the
original coordinates can be written by introducing the inverse
basis transformation of T . Then, the full order sliding mode
observer of the full order system is defined by considering
the sliding surface S as the gap between the system and
observer outputs, namely :

˙̂z(t) = A(µ̃)ẑ(t) + f(ẑ(t), µ̃)−∆Sign (ŷ(t)− y(t))
ẑ(0) = ẑ0
ŷ(t) = Cẑ(t)

(10)
where ∆ ∈ R(n×1) is a gain vector weighting the sign
function of the difference between the output of the system
and that of the observer given by:

Sign (ŷ − y) =

{
1 If ŷ − y > 0
−1 If ŷ − y < 0

(11)

As previously mentioned, the main idea that the present
study develops is to determine a reduced order sliding-mode
state observer for the system (6) by using the corresponding
reduced order representation given by the centre manifold
formulation (7). It is also worth-mentioned that the reduced
observer is forced with a function in the gap between the
output of the reduced order observer and that of the full
order model, which is supposed to represent the measured
output of the real system. This idea is formulated by the
following proposition.

Proposition 1: Under the asymptotic stability of the zs-
dynamics according to the centre manifold, the reduced order
dynamical system given by

˙̂zc(t) = Ac(µ̃)ẑc(t) + f c(ẑc(t),ϕ(ẑc(t), µ̃), µ̃)−
∆csign(ŷr(t)− y(t)), ẑc(0) = ẑc0
˙̃µ = 0
ŷr(t) = Cc(t)ẑc(t)

(12)

is a convergent state observer of the full order system (6)
that is ẑc(t) → zc(t) as t→ ∞ and ẑs(t) = ϕ(ẑc(t), µ̃) →
zs(t) = ϕ(zc(t), µ̃), where ∆c ∈ R(nc×1) is a gain vector
and ŷr(t) is the output of the reduced order observer.
Proof of Proposition 1: Let

Sor = ŷr − y = Ccẑc −Cz (13)

be the sliding surface based on which we would like to
make convergent the dynamics of the reduced order observer,
where ŷr is the output of the reduced observer. The latter is
required to well approximate the measured system output
which is modeled by Cz = Cczc +Cszs.
The method is then used for the analysis of the attractiveness
of the defined sliding surface by considering the Lyapunov
function candidate Vob = 1

2S
T
orSor. Then, the surface Sor = 0

will be attractive if the time derivative of the Lyapunov
function is negative definite that is:

ST
or Ṡor < 0 (14)

If so, then Sor = Cc (ẑc − zc) − Cszs = 0 which will
involve the convergence of ẑc to zc starting from the
considered asymptotic stability of zs in accordance to the
centre manifold assumptions.
The time derivative of the considered Lyapunov function can
be expressed as follows:

V̇ob = ẑT
cC

T
cCc

˙̂zc − ẑT
cC

T
cCż − zTCTCc

˙̂zc + z
TCTCż

(15)
After the substitution of ż and ˙̂zc by their expressions in (15)
and by considering the asymptotically stable behaviour of
the zs dynamics, the previous Lyapunov function derivative
becomes as follows:

V̇ob = z̃c
TCT

cCc
˙̃zc (16)

where z̃c = ẑc − zc is the estimation error the dynamics of
which is given by:

˙̃zc = Ac(µ̃)z̃c + f̃ c −∆cSign (Sor) (17)

with f̃ c = f c (ẑc,ϕ(ẑc, µ̃))− f c (zc,ϕ(zc, µ̃)).
Thus it follows that ẑc(t) is guaranteed to be convergent to
zc for t→ ∞ by fixing the matrix gain ∆c such that:

∆csign (Sor) >

Ac(µ̃)z̃c + f c (ẑc,ϕ(ẑc, µ̃)− f c (zc,ϕ(zc, µ̃))
(18)

which completes the proof of Proposition 1.
It worth-mentioned that in addition to the fact that the

defined state observer is of reduced dimension nc < n, its
dynamics is further reduced by the number of system outputs
during the sliding step to reach the sliding surface Sor = 0.
In this study, only the single output case is considered so the
dynamics of the state observer is reduced to nc − 1.
Otherwise, the error dynamics of the state observer can be
obtained by using the control equivalent method as described
in [8] and by considering the asymptotic stability of the zs-
dynamics, as follows:{

˙̃zc =
(
I −∆c (Cc∆c)

−1
Cc

)
f̃ c

Ccz̃c = Cszs = 0
(19)

V. APPLICATION TO ESTIMATING FRICTION-INDUCED
VIBRATION

In order to analyse the feasibility and the efficiency of
the proposed reduced order sliding-mode observer, it is
considered in the sequel for the estimation of friction-induced
vibrations in a simplified drum brake defined by Hultèn
in [14]. The system is shown in FIG.1. It consists of a
mass which is assumed in a permanent contact with a band
supposed to be in move with a constant velocity. The contact
between the mass and the moving band is modeled by
springs with linear and nonlinear stiffness’s. The relative
velocity between the band and the velocities Ẋ1 and Ẋ2 is
assumed positive which makes the direction of the friction
force constant. Its tangential component is supposed to be
proportional to the normal force according to the Coulomb
law Ft = µFn, µ being the friction coefficient assumed to
be constant.
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Fig. 1: Hultèn System

The state space representation like-(1) of the Hultèn system
is obtained by considering the state vector

x =


x1
x2
x3
x4

 =


X1

Ẋ1

X2

Ẋ2


which yields:

Ax =


0 1 0 0

−w2
1 −η1w1 +µw2

2 0
0 0 0 1

−µw2
1 0 −w2

2 −η2w2

 (20)

f(x, µ) =


0

−ψNL
1 x31 + µψNL

2 x33
0

−µψNL
1 x31 − ψNL

2 x33

 (21)

where wi =
√
ki/m are the natural pulsations, ηi =

ci/
√
mki are the relative damping and ψNL

i = kNL
i , for

i = 1, 2.
Let y = x1 be the measurable output.
Otherwise, for numerical simulations, all magnitudes are
given in SI by: w1 = 2π × 100 rad/s, w2 = 2π × 75 rad/s
η1 = η2 = 0.02, ψNL

1 = w2
1 , ψNL

2 = 0, m = 1 Kg.
It can be verified that (xe, ue) = (0, 0) is the equilibrium
of System (21). Then the next step is to determine the Hopf
bifurcation point µc at which the linear basis transformation
T putting System (21) into the canonical form (4), will
be calculated. As the equilibrium point is not influenced
by the µ parameter, the Hopf bifurcation point µc can be
determined by carrying out a parametric stability analysis
which consists in the calculation of the eigenvalues of the
linearized system for a set of values of the friction coefficient
µ. Hence, the Hopf bifurcation point µc is obtained when the
following conditions are fulfilled [2].The obtained value is
µc = 0.2893.

Real (λcentre(A(µ)) |µ=µc
= 0

Real (λno-centre(A(µ)) |µ=µc ̸= 0
dλ(A(µ))

dµ |µ=µc
̸= 0

(22)

A. Centre Manifold based Reduced Model of the Hultèn
System

The centre manifold defined by the nonlinear coordinate
transformation mapping the stable manifold to the centre
manifold according to the relation zs = ϕ(zc, µ̃) is ap-
proximated by considering a third order polynomial form for
ϕ, then by solving the corresponding algebraic equation (9).
The reduced order model is finally generated by replacing the
stable manifold by the centre manifold in the canonical form
associated to the system (21). The reduced model is expected
to exhibit the same dynamical behaviour as the original one
in some neighborhood of the Hopf bifurcation point. Two
limit cycles (the velocity Ẋ1 against the displacement X1)
are predicted from the reduced order model and plotted in
FIG. 2 together with the ones determined from the original
full order model. They correspond to two different values of
the friction coefficient which are taken at different distances ϵ
from the Hopf bifurcation point such that µ = (1+ϵ)µc. The
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Fig. 2: The limit cycle (x1, x2) in the phase plan for different
value of the friction coefficient µ̃ = (1 + ϵ)µc. (a):ϵ =
10−4, (b):ϵ = 10−2. Solid line: original model, dashed line:
reduced model.

reduced order model presents a similar oscillatory dynamical
behaviour as the original model but, as expected, with an
accuracy depending on the distance ϵ of the considered value
from the Hopf bifurcation point. Indeed, the relative errors
between the amplitude of predicted oscillations given by both
reduced and original models increase while going far from
the Hopf bifurcation point. It passes from 8 per cent for
ϵ = 10−4 to almost 30 per cent for ϵ = 10−2. Augmenting
the order of the center manifold can enhance the accuracy of
the reduced order model. This point is not considered in this
study since the main aim is to determine a state observer
having some robustness with respect to model inaccuracy
and/or parameter dispersion.
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B. Reduced order sliding mode observer

The obtained reduced model corresponding to µ̃ = (1 +
ϵ)µc with ϵ = 10−4 is now used for the synthesis of a
reduced order state observer (12) for the full order Hultèn
system.
The corresponding estimations are plotted in FIG. 3 and the
associated estimation errors are shown in FIG. 4. It can be
observed that the estimated states exhibit the same oscillatory
behaviours as the system real states. The involved estimation
errors present transients with oscillations the amplitudes
of which are decaying to reach the origin. The carried
simulations point out the stability of the dynamics of the
defined reduced order state observer. This stability is in
fact strongly influenced by the gain ∆c of the observer
as shown by the convergence condition (18) and the error
dynamics (19). Furthermore, this gain tunes the speed of
the convergence of the state observer and thus the damping
property of the error dynamics of the state observer. It also
contributes to define the robustness level of the observer.

C. Robustness Analysis of the reduced state observer

First of all, it worth-mentioned that the obtained reduced
order observer was calculated by using a reduced order
model which is basically an approximation of the full order
system. So, the previous reduced observer already presented
a robustness with respect to the gap between the used reduced
model (the one calculated with µ̃ = (1 + ϵ), ϵ = 10−4)
and the full order model. In the sequel, the main aim is to
further analyze via numerical simulations the robustness of
the reduced state observer. For this goal, the performance of
the latter is assessed when the friction coefficient is further
from the Hopf bifurcation point, which involves a higher gap
between the reduced and full order models. The reduced state
observer parameters are kept unchanged while the system
output is submitted to variations induced by changes in
the friction coefficient value. Otherwise, the state observer
gain is taken higher than the previously considered values
in order to start from a reduced order state observer with
faster convergence properties. So a higher observer gain is
considered for this analysis.
Based on the simulation results plotted in FIG. 5, it can be

observed that the state observer dynamics is influenced by
the considered dispersion. The estimation error grows with
ϵ. More robustness involves higher values for the gain ∆c

of the state observer.

VI. CONCLUSION

A new paradigm for reduced nonlinear state observer
design was proposed in this study. This paradigm proposes
the construction of a reduced order state observer of a
nonlinear dynamical system by using its reduced order model
derived from the centre manifold theorem. The sliding-mode
approach is then applied in order to define the reduced
order state observer. A convergence condition was stated
for the defined reduced order sliding mode observer and
verified through numerical simulations within the estimation
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Fig. 3: The system states corresponding to µ̃ = (1 + ϵ)µc.
with ϵ = 10−4 and to ∆1

c = [2, 100] and ∆2
c = [5, 500] ;

Solid blue line: real state, dashed red line: estimated states
with ∆1

c , dashed-dot black line: estimated states with ∆2
c .

(a,c,e,g): Zoom on the transient of the estimations; (b,d,f,h):
zoom on reached stationary behaviour.

of friction-induced vibration framework. Optimal charac-
terization of the state observer parameters require more
investigations. More particularly, the determination of the
observer gain ensuring optimal convergence properties with
optimal robustness characteristics is a work in progress.
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