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Unified analysis of stochastic gradient projection methods for convex
optimization with functional constraints

Nitesh Kumar Singh! and Ion Necoara

Abstract— This paper addresses a unified convergence anal-
ysis for a large family of stochastic gradient projection algo-
rithms for dealing with constrained finite sum convex problems,
with a smooth objective function satisfying a strong convexity
condition and possibly nonsmooth functional constraints. At
each iteration, the algorithm takes an optimal gradient step
based on a stochastic unbiased estimate of the objective
function aiming to minimize it and then a feasibility step
reducing the infeasibility associated with randomly observed
constraints. OQur stochastic gradient estimate can take diverse
forms (e.g., Stochastic Gradient Descent (SGD), Stochastic
Average Gradient Acceleration (SAGA), Loopless-Stochastic
Variance Reduced Gradient (L-SVRG)). We conduct a con-
vergence analysis of the proposed unified stochastic gradient
projection algorithm under a diminishing stepsize, resulting in
sublinear convergence rates, which are optimal for stochastic
gradient methods within this problem class. Numerical evidence
supports the effectiveness of our approach.

I. INTRODUCTION

Optimization problems with functional constraints have wide
applications across various domains, ranging from machine
learning and signal processing to operations research and
optimal control. In this paper, we consider the problem:

[ =mingeycrn  f(z) (12 DA fi(ﬂ«”)) )
subject to  hj(z) <0 Vj=1:m,

where f is convex, smooth, and h;’s are assumed to
be convex (possibly nonsmooth). This problem is highly
versatile, encompassing a range of optimization applica-
tions, including optimal control [4], distributed control [18],
machine learning and statistics [3],[23], signal processing
[15],[22] and portfolio optimization [1]. The complexity
of these problems is increasing with the growing number
of variables and constraints. Consequently, (sub)gradient-
based methods are commonly employed to tackle these
optimization tasks. Notably, the projected gradient descent
algorithm proves effective for solving (1) when the feasible
set allows for straightforward projections [5]. However, this
method’s reliance on computing the full gradient of the
objective and working with the full feasible set at each
iteration can become computationally intensive, if not in-
feasible, in certain scenarios (see [18]). This motivates us
to consider the settings where we can project only on a
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single functional constraint while having access to stochastic
unbiased gradient estimates at each iteration [16], [8]. Such
settings are prevalent in machine learning, where one has the
minimization of expected objective functions including or ex-
cluding constraints [3], and in statistics, where the goal is to
minimize a finite sum objective while adhering to functional
constraints [22], [1]. Several previous works have explored
similar optimization problems, such as [8],[17], and [16].
Particularly, [16] and [17] consider a similar problem as in
(1) and propose (mini-batch) stochastic subgradient projec-
tion algorithms for solving it. For these stochastic methods,
the authors derive sublinear convergence rates under basic
properties of problem functions (convexity, bounded gradient
type conditions) and access to only stochastic (sub)gradients.
In [8] an (unconstrained) composite optimization problem is
considered and the authors derive a unifying convergence
framework for classical stochastic gradient descent (SGD)
[15], quantized stochastic gradient methods [2], variance
reduced methods [12], [9], and some randomized coordinate
descent methods [14]. Nevertheless, it’s important to note
that the optimization problem, the algorithm, and conse-
quently, the convergence analysis in [8], [17], and [16]
significantly differ from the focus of this paper.

Contributions: In [8], under a unified assumption on the
stochastic estimates of the gradients of the objective, it is
shown that a large family of stochastic gradient methods
converge (sub)linearly to a neighborhood of the minimizer
for convex, smooth and quasi-strongly convex functions. Our
contribution extends this line of inquiry to the settings where
the objective function is satisfying a strong convexity condi-
tion instead of a quasi-strongly convex condition (see [8]),
and, additionally, we consider explicit functional constraints,
see (1). To accomplish this, we extend into an unified variant
of the stochastic gradient projection algorithm from [16]
for solving (1). At each iteration, the algorithm performs
a gradient step based on a stochastic unbiased estimate,
which can take the form of SGD [19], [21], or variance
reduced type, e.g., SAGA [6] and L-SVRG [11], [13]. Then,
we perform a step dedicated to reducing the feasibility
violation associated with a randomly observed functional
constraint. To enhance the adaptability of our method, we
derive stepsize-switching rules that guide the transition from
constant to decreasing stepsizes. As a result of these de-
velopments, our work provides a rigorous foundation for
the sublinear convergence rates of the weighted averages of
iterates in terms of expected distance to the minimizer as
well as in terms of the distance to the feasible set. From our
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knowledge, this study is the first comprehensive convergence
analysis of a unified stochastic gradient projection method
for addressing the general problem (1).

Content: The structure of this paper is as follows: In Section
II, we detail the assumptions and algorithm. Section III
discusses the different forms of our algorithm, and Section
IV presents our convergence results. Finally, Section V
showcases numerical experiments to validate our findings.

II. PRELIMINARIES

In this section, we will introduce the notations, several
important inequalities, and the underlying assumptions. We
also present a unified stochastic gradient projection algo-
rithm, called (U-SGP). For given z,y € R", (z,y) de-
notes the standard Euclidean inner product, ||z|| denotes
its Euclidean norm, (x)y = max{0,z}. We also denote
IIy(x) as the projection of point z onto the set ) and
dist*(z,)) = ||z—Iy(x)||?. Let dom{ represent the domain
of a proper closed convex function f and Dy(x,y) denote
the Bregman divergence associated with f: Dy(x,y) =
f(@)—f(y)—(Vf(y),z—y). The following inequalities are
used throughout the paper in our analysis:

@+ ylI* < 2[lz)* + 2[|y)*. )
My (z) —yl* <z —yl|> Vo eR", yeX. @)

The feasible set of problem (1) is denoted by:
X={zxe)l: hj(r) <0 Vj=1:m}.

We assume that the optimal value f* > —oo. Let us also
denote by [N] ={1,..., N} and [m] = {1, ..., m}.

A. Assumptions

For the given problem (1), the set ) is assumed to be convex
and simple, i.e., it is easy to evaluate the projection onto ).
Furthermore, we assume that the interior of ) is contained in
the effective domains of the functions f; and h;. We make no
assumptions on the differentiability of h; and use the same
expression for the gradient or the subgradient of h; at x, that
is Vhj(z) € Ohj(z), where Oh;(x) is the subdifferential,
which has one element or is a nonempty set for any j =
1 : m. We consider additionally the following assumptions.
First, we assume that the objective function f satisfies the
convexity and smoothness condition.

Assumption 2.1: Each function f; is L-smooth and con-
vex, i.e., for any z,y € R™, the following hold:

Fil) < file) + (Vh@)y— ) + Sy -2l @

Jiy) = fil@) + (Vila),y — ). 5)
Note that inequality (4) yields that the objective f is also
L-smooth and (5) implies convexity of f. Next, we give
a unifying assumption on the stochastic gradients v(x), first
introduced in [8], which allows us to simultaneously analyze
the classical SGD and variance reduced methods such as
SAGA and L-SVRG.
Assumption 2.2: The gradient estimates are unbiased:

Elv(z)|z] = Vf(z). (6)

We also assume that there exists a random sequence {07 } ;>0

such that the following two relations hold for all z € Y:
Ellv(z) — Vf(2")|*|¢] < 2AD¢(w,2%) + Bog+D1, (7)
Elof,1]7] < (1 = p)og +2CDs(z,2*) + Do, €)

where A, B,C, Dy, Dy, p are non-negative constants.
Note that when we the objective function is L-smooth, then
Dy(z,2*) < Z[|z—2*||? and consequently the previous two
inequalities implies:
Ell|v(z) =V f(z")|*le] < AL||lz — 2*|*+ Bog+ D1, (9)
Elof,q|z] < (1= p)oj + CL||lx — 2*||* + Do. (10)

Though we consider the relations (7), (8) as an assumption
in our convergence analysis, in the next section we show that
for particular algorithms (e.g., SGD, SAGA, L-SVRG) these
inequalities hold with known constants. We also assume f
to satisfy the following strong convexity condition:

Assumption 2.3: The function f satisfies a strong convex-
ity condition, i.e., there exists non-negative constant p > 0
such that for any z,y € R™:

) 2 f@) + (Vf(@),y=x) + Sly=<>.

Note that one relation equivalent to (11) is the following
inequality (see Theorem 2.1.9 in[20]):

(V)= Viy),z—y) > plz—y|* Yo,y e R". (12)

Also, we assume the following boundedness on the subgra-
dient of the functional constraints:

Assumption 2.4: The functional constraints h; have
bounded subgradients on R", i.e., there exists By > 0 such
that for all Vh;(x) € Oh;(x), we have :

||Vh](l‘)H < By VxeR", j=1l:m.

This assumption implies that the functional constraints h;
are Lipschitz continuous functions. Finally, we assume some
regularity condition for the constraints.

Assumption 2.5: The functional constraints satisfy addi-
tionally the following Holderian growth condition for some
constants ¢ > 0:

dist*(z, X) < ¢ Ej[(hj(z))2] Vo € R,

where j is a random variable. Note that Assumption 2.5 has
been frequently used in the context of stochastic optimization
problems, see e.g., [16]. Particularly, it holds e.g., when the
feasible set X has a nonempty interior or is polyhedral (see
the discussion and references there in [16]). It also holds
for more general sets, e.g., when the collection of functional
constraints satisfies a strengthened Slater condition, such as
the generalized Robinson condition [16].

B. Unified stochastic gradient projection algorithm

In this section, we introduce a unified stochastic gradient
projection algorithm, called U-SGP. Given the iteration
counter k, we usually choose two indices i € {1,--- , N}
and ji € {1,--- ,m} uniformly at random. In this algorithm,
at each iteration, we perform a stochastic gradient step by
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sampling an unbiased estimate v(x)) based on i aimed
at minimizing the finite sum objective function and then
a subsequent subgradient step minimizing the feasibility
violation of the observed random j,ih constraint (we use the
convention 0/0 = 0).

Algorithm 1 U-SGP
Require: Choose xg € ), tol, and stepsizes aj > 0, 5 €
(0,2). Set k + 0
for £ > 0 do
Sample v(zy) according to alg. choice and compute:
v T — o (xg)
Sample ji € [ ] umformly at random and compute:
B Vhy, (v1)
Tt < 1y (zk).
end for

2k < Vg —

In the algorithm, a, > 0 and 8 > 0 are deterministic
stepsizes. Note that the unbiased estimate v(xj) can have
many forms depending on the algorithm of interest. Our
algorithm is different from [8] as we consider an additional
feasibility step and also differs from [16] as we consider a
general stochastic gradient step for optimality.

III. MANY FORMS OF U-SGP ALGORITHM

As discussed in the previous sections, the estimate v(zy) can
have many different forms. In this section, we give several
examples for the unbiased estimate v/(z)) and hence different
algorithms to solve problem (1). We also provide the explicit
expressions of the non-negative constants used in Assump-
tion 2.2 under the smoothness condition of function f.

A. U-SGP as SGD

In this section the proposed algorithm U-SGP becomes of
SGD type when the unbiased estimator v(xy) is sampled as
in SGD. This leads to the following algorithm: Under the

Algorithm 2 U-SGP as SGD
Require: Choose zg € ), tol, and stepsizes a, > 0, 8 €
(0,2). Set k 0
for £ > 0 do
Sample i, € [N] uniformly at random and compute:
v(zk) = Vi (zk)
v xp — o (xg)
Sample jj € [ ] un1formly at random and compute:
i (VE))+
B ot Vhi, (ve)
Th41 < Hy(zk)
end for

2k < Vg —

assumption that the functions f; are differentiable and L;-
smooth, the constants A, B, p,C, Dy, Dy from Assumption
2.2 have the following explicit expressions (the proof is given
in Lemma A.1, equation (16), in [8]):

A=2L,B=0,p=1,C=0,D; =20% Dy =0,

E[|IV fi(z

where 0% = *)||?] and o =0 a.s.

B. U-SGP as variance reduced type algorithms

Now, we also show that the algorithm U-SGP can take the
form of a variance reduced type algorithm. First, in this
section we consider that the unbiased estimator v(zy) to be
sampled as of SAGA type and hence we have the algorithm
U-SGP as SAGA. When we consider the functions f; to

Algorithm 3 U-SGP as SAGA
Require: Choose xg € ), tol, and stepsizes aj > 0, 5 €
(0,2). Set k <+ 0 and ¢} = xo foreach i =1: N
for £ >0 do
Sample i), € [N] uniformly at random
Set ¢2f"+1 =z, and ¢>Z+1 = ¢t for i # iy
v(ax) = Vi (D) = Vi (0 + & iy VSil#))
v < xp — opv(xg)
Sample j; € [ ] umformly at random
*BHV” Dt Vi (v1)

()l

2k < Vg —
T+ My (2x).
end for

be L-smooth, then the constants A, B, p,C, D1, Dy from
Assumption 2.2 have the following explicit expressions in
this case (the proof is given in Lemma A.6 in [8]):

A=2L,B=2,p=1/N,C =L/N,D; =0,D5 =0,

where we consider o7 = 4 SN IV fileh) = Vfi(a)])2

Second, we consider the unbiased estimator v(zj) to be
sampled as in L-SVRG and this will give us the algorithm
U-SGP as L-SVRG. When the functions f; are L-smooth,

Algorithm 4 U-SGP as L-SVRG
Require: Choose 29 €)Y, tol, p€ (0, 1] and stepsizes ay, >
0, B €(0,2). Set k + 0 and wy = xg
for £ >0 do
Sample i), € [N] uniformly at random and compute:
v(zk) = Vi (@r) = Vfi, (wr) + Vf(we)
Vg xp — apv(xg)
xy, with probability p

w =
e wy, with probability 1 — p

Sample jj, € [ ] umformly at random and compute:
d (V) +

BTt teagt Vi (0n)
Tp41 < Hy(zk)

end for

2k < Vg —

then the constants A, B, p, C, D1, Do from Assumption 2.2
have the following explicit expressions in this case (the proof
is given in Lemma A.11 in [8]):

A=2L,B=2p=p,C=pL,D; =0,Dy =0,
vV fi(z*)|%.

IV. UNIFIED CONVERGENCE ANALYSIS

where we consider 07 = L S ||V f;(wy,) —

In this section, we establish a unified convergence analysis
for the U-SGP algorithm assuming a strongly convex objec-
tive function. First, we establish a relation between x; and
vi—1 (the proof is similar to Lemma 4.3 in [17]):
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Lemma 4.1: Let h; be convex functions. Additionally,
Assumptions 2.4 and 2.5 hold. Then, we have the following
relation for the iterates of U-SGP:

Efl|lzy, — 2*|%] <E[flog—1 — *||*]
_F (2325 ) E [dist® vk, X)] .
Next, we prove a relation for the sequences vy and x; which
plays a key role in providing the rates later.

Lemma 4.2: Let f be L-smooth and Assumption 2.2, 2.3
be satisfied. Then, for all £ > 0 and stepsize oy > 0, we
have the following recursion for any 1 > 0:

Efflor — ™[] + 2;@@[05“]

13)

(14)

. B
< (1= pog) Efflag — 2*|%] + 2;6@1@[02]

B
—ay, (M—Q <A+ pC) Lak) |z —2*||2+nE [dist (2, X)]

B 1
+207 (D14 =Dy + (1+ % [V £(z*)?
Proof: Using the definition of vy, from U-SGP and the
inequality (3), we get:
loe = 2™ |1* = o — 2™ — agr ()|

@
< llze —2*|* - 2%( (zx), vp — )

+ 20 [v(@r) — VF(@)* + 205V £ ().
Now, taking the expectation conditioned on x; and using
strong convexity of f, we have:
Elllox — 2™ [lz] < 2k — 2*||* = 200 (V f (21), 2% — )
+ 203 E[||v(zx) = V(@) 2|2k + 203 [V f(27)]]?
= llox — 2" =200 (V f(zx) = Vf(2"),2p, — z7)

=20, ((Vf(x"), 2 =Ty (2)) +(V f(2"), [y (22) —27))
+ 202E[[v(zx) — V(") |2law] + 202V (z*)]2
Dl — 212 — 20l — 2| + lle — M) 2

* 1 *
+203E[||v(z) -V f(x )|2|wk]+2<1+2n>ai||vf(x )|I?
) * (12 2
< (1= poy) |z — 2|7 + nllzr — T (21) |

—ag (p—2ALay) ||z, — 9:*||2

#3- )IVIEOIR)

where the second inequality follows from the relation
2(a,b) < nllal? + > 0 and
the optimality condition (V f(z*), Ly (z)—2*) > 0. Now
adding Q%Ozi]E[a,% 41/7x] on both sides of the inequality and
using (10) on the right hand side of the inequality, we get:

+ 203 (Ba,i + Dy + (1

B
Bllon — o Plee] + 22 aZElo lo
B
< (1= pay) o — 2° [ + 22 (1~ p)ot + Do)
BC .
o (n=2(4+ Z5) Lo o= Pl - T ) P

IV

+ 203 (Ba,z + Dy + (1

After taking the full expectation and rearranging the terms,

we get the desired result. [ ]
Before providing the next result we introduce a switching
. 8L(A+ES) ~
stepsize strategy. Define kg = [T”] and oy = 2%,
where ~; is defined as:
2
P U — i
2 .
1 if k > kO-

Equivalently, one can easily see that our stepsize can be

written as <, = min . Note that since

)7 2
4L(A+BS)7 u(k+1)
. < M s implies:
our stepsize oy < (At EE) this implies

B
—2(A+C)L04kzu.
p

5 15)

BCH) - 0 and S =

For simplicity, we define Cg ., = oD

T
IL(AECY" Let us also introduce the fol]owmg Lyapunov
function: @

Vk = ||’Uk — £L'*||2 + H 0']%+1.

Next, we prove the following recurrence for U-SGP iterates.
Lemma 4.3: Let f and h; be convex functions, for all
7 =1 :m. Additionally, Assumptions 2.1-2.5 hold. Further,

b B e
4L(A+BTC) k+1 )
(0,2). Then, the iterates of U-SGP satisfy the recurrence:
VEk < ko, E[Vi,] <V (16)

B 1
Lo (D Bp +<1+>||Vf(w*)l2) ,
! 14 2 (17,“‘5‘) CﬁcBh

. 8B
1] + 7E[0k+1]

(k+1)2
6

< B*E[||vp_1 — x* + —Elo
[lvk—1 %] e [o7]

define the stepsizes o = min

Vk > ko, (k+ 1)?E[||vx —

+(k+DE[||zg —2* |2+ Cs,c,5,E [dist?(zy, X)]

(17)
8 B 3

2 (D Z0e+ (14 5 IV AR

Proof Combining the inequalities (14) and (13)

and using the inequality (15) together with n = (1 —
paw)Ca.e B, /2, We get:
. B e "
Elloe — o |°) +27 ofElof ] + “5 Ellek — 2
1-— Cs.c .
4 4= pan) G, Br g [dist® (., X)] (18)

2

. B
< (1~ pog) Effjog—1 — «*|*] + 2;@@[013]

B 1
202 ( D1+ =Dyt (14— 912) .
i ak( a 2+< +(1—uak)0ﬁ,c,3h)vf(x )”>

For k < kg, we have o, = S). Using the fact

u —
AL(A+EC) (=
that (1 — pay) < 1, from (18), we obtain:

E[Vko] < %

B 1
#2582 (D1 Zppt (14 IV P).
P s 0 s, ) YT
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This proves the first statement (16). Further, for & > kg we

have? a = L= ﬁ Note that here 7, = %ﬂ is a
nonincreasing sequence and thus we get:
k—1_1
l—yp=—— > VEk>2
T pr1=3 TES
so by relation (18), we have:
8B
E ¥ |2 E 2
[”Uk € || }—’_ p/lQ(k+1)2 [O'k—&-l}
1 " 1 .
+ mE[H.’Ek — X ||2] + 60ﬂ7C7Bh]E [dlStQ(fL’k, X):I
k—1 8B
<7]E - * (|2 7E 2
8 B 3
+———5 | D1+ —Do+ |1+ VIEH|?).
e (0P (g 1o

Now, multiply the whole inequality by (k + 1)2, and using
the fact k2 — 1 < k2, we also get (17). ]
Now, we are ready to prove the rates. Let us define for k >
ko+1 the sum S, = Y25, 1 (j+1)? ~ O(k*+k3k+kko),
and the corresponding average sequences:
1
&y = S, Z (7 +1)%z;,

j=ko+1
and

. 1 ) 9
=g > (G + 1) Ix(x;) € X.
Jj=ko+1

Theorem 4.4: Let f and h;(-) be convex functions,
for all j = 1 m. Additionally, Assumptions 2.1—
2.5 hold. Further, consider the stepsizes-switching rule

>, 8 € (0,2) and ky =

o = min

[ 1. Then, for & > ko we have the following
convergence rates for the average sequence Zj in terms of
optimality and feasibility violation for problem (1) (keeping
only the dominant terms):

W 2
4L(A+ES) u(k+1)
8L(A+ES)
)

E[|2, — 2*|%] "
(D1 + MD5)Cy s, (Dy + MDy)
wAR? - kko £ k5)  pA(k— ko) )
(D1 + MDQ)C_l B
Eldist2(7.. X)] < ) 2
[dist™(2g, X)] < O w2 (k? + kko + k3) 0

Proof: For k > ko, from Lemma 4.3, summing the
inequality from ko + 1 to k, we get:

8B

(k+ 1)*Elflox — 2*|°] + pTLQ]E[OiH]

k
+ > (+DE[lzk — "]

j=ko+1
Cs k
,c,Bp . .2
+ Th ' Z (j + 1)°E [dist*(z;, X)]
j=ko+1

8B

< (ko + 1)’E[||lvx, — =[] + W]E[UI%OH]

8 B 3

A D+ZD+(1 N ) (k — ko).
*m( 7 2+(+% h)IIVf(w)II)( )

Now, using relation (3), the convexity of the norm and the
linearity of the expectation operator, we obtain:

. 8B
(k + 1)*E[|lox, — =*|1*] + WE[UI%JA]
Sk . w21, kOB a2
2k _B[||iy — 2BEBu g [y — 24
+ E+ 1) [[[r — 2" [|7] + 6 [ln — & )?]

) 8B
< (ko + 1)°E[flok, —*[|*] + WE[O—IEO—H]

8

B 3
+— (D1+D2+ <1+
u p

Cﬂ#:th

NIZsEIE) (o)
After simple calculations (keeping only the dominant terms):

(D1 +£Dy + V5]

]E N *2<
iy — 2°P) < O ) ,

B, — &
(D1 + LD + IV £(@")?) C L,
w2 (k% + kko + k3)

<0

Since 1y, € X, using the relation E[dist* (2, X)] < E[|jiy —
#1|%] we get the required result (20). Furthermore, since x*
is the minimizer of problem (1) and using the inequality (2),
we further get convergence rate for the average sequence Iy
in terms of optimality:

(& — 2 |°] < 2E[lwy, — 2*(|] + 2E[||dx — &4]?].

This gives the required result (19) [ |

Our derived convergence rates are consistent with those in
[17] and [16], assuming the smoothness and strong convexity
of the objective function. To the best of our knowledge, this
is the first unified convergence analysis for a broad spectrum
of stochastic gradient projection algorithms, encompassing
variance reduced techniques, designed to tackle problem (1).
In the forthcoming section, we will explore the practical
benefits of variance reduced iterations, such as SAGA or
L-SVRG, over the standard SGD variant.

V. NUMERICAL EXPERIMENTS

In this section, we apply our proposed algorithm, U-SGP
(including its variants SGD, SAGA, L-SVRG), to address
the problem of finding the minimum distance to specified
points within the context of a finite number of half-space
constraints and box constraints (as detailed in Section 4 of
[7]). The problem can be framed as follows:

1 a1
. 2
nin ;:1 §||95 —cifl 2D

st. (aj,z) <b; Vje[m], zell, ul,

where ¢;,a; € R”, b € R™ and [,u € R" be the lower and
upper limits of vector x. Note that problem (21) aligns with
the assumptions outlined in our paper. In our experiments we
generate all the data from a normal distribution, choose 8 =
1.96, m = n = 102, tol = 1072, and consider N = 10%.
The algorithms are stopped when |max(0,h;(x))|| < tol
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and ||z — z*|] < tol (we consider CVX solution [10] for
computing z*). The codes are written in Matlab R2023b and
run on a PC with an i7 CPU at 2.1 GHz and 16 GB RAM
memory. In Figure 1, we present the convergence behavior
of all three variants of U-SGP algorithm, i.e., SGD, SAGA,
and L-SVRG along epochs, with N = 10%,m = n = 100 in
terms of optimality (left) and feasibility (right) for solving the
problem (21). One can easily see that the variance reduced
methods, i.e., SAGA and L-SVRG variants, outperform the
standard SGD variant in terms of the number of epochs
required for convergence.

—SGD
—SAGA
|—L-SVRG

—SGD
—SAGA
—L-SVRG

IIx x'Il, <= tol
||max (0, h(x))H2 <=tol
3

0 20 40 60 80 100 0 20 40 60 80 100
Number of Epochs Number of Epochs

Fig. 1. Behaviour of U-SGP algorithms (SGD, SAGA and L-SVRG):
optimality (left) and feasibility (right) for N = 10%, m = n = 102.

In Table I, we compare the three variants of algorithm
U-SGP (SGD, SAGA, and L-SVRG) with CVX in terms
of epochs and cpu time for N = 10* and m = n = 102,
From the table one can see that SAGA and L-SVRG methods
perform better than SGD in both number of epochs and cpu
time (seconds). Hence, variance reduced optimality steps in
U-SGP have a beneficial effect on the overall convergence
behavior of this algorithm. Moreover, all our stochastic
gradient projection methods are much faster than CVX.

Mot Characteristics #Tter | Cpu Time (s)
SGD 95 2.78
SAGA 24 1.66
L-SVRG 21 0.72
CVX ok 179.38
TABLE I

PERFORMANCE OF U-SGP (SGD, SAGA, AND L-SVRG) AND CVX IN
TERMS OF EPOCHS AND CPU TIME (SEC.) (N = 10%, m = n = 102).

VI. CONCLUSIONS

In this work, we have focused on a convex finite sum problem
with functional constraints. To solve this problem we have
proposed a large family of stochastic gradient projection
algorithms, called U-SGP, covering, in particular, SGD, but
also variance reduced schemes. We provide a unified conver-
gence analysis and derive sublinear convergence rates for the
weighted average of the iterates in terms of expected distance
to the constraint set, as well as for expected optimality of
the distance to the optimal point. The numerical tests also
prove the effectiveness of our algorithmic framework.
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