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Abstract— For the recently introduced deep learning-
powered approach to PDE backstepping control, we present an
advancement applicable across all the results developed thus
far: approximating the control gain function only (a function
of one variable), rather than the entire kernel function of
the backstepping transformation (a function of two variables).
We introduce this idea on a couple benchmark (unstable)
PDEs, hyperbolic and parabolic. We alter the approach of
quantifying the effect of the approximation error by replacing
a backstepping transformation that employs the approximated
kernel (suitable for adaptive control) by a transformation that
employs the exact kernel (suitable for gain scheduling). A major
simplification in the target system arises, with the perturbation
due to the approximation shifting from the domain to the
boundary condition. This results in a significant difference in
the Lyapunov analysis, which nevertheless results in a guarantee
of the stability being retained with the simplified approximation
approach. The approach of approximating only the control
gain function simplifies the operator being approximated and
the training of its neural approximation, with an expected
reduction in the neural network size. The price for the savings
in approximation is paid through a somewhat more intricate
Lyapunov analysis, in higher Sobolev spaces for some PDEs,
as well as some restrictions on initial conditions that result
from higher Sobolev spaces. It is essential to carefully consider
the specific requirements and constraints of each problem to
determine the most appropriate approach; indeed, recent works
have demonstrated the successful application of both full-kernel
and gain-only approaches in both adaptive control and gain
scheduling contexts.

I. INTRODUCTION

A. Deep learning-powered PDE backstepping

In the field of control of partial differential equations
(PDEs), recent advancements have emerged in harnessing
deep learning to expedite the computation of gains for model-
driven control laws using the backstepping method [4], [19],
[29], [40]. These advancements are grounded on a novel
neural network breakthrough and its underlying mathemat-
ical foundation, termed as DeepONet [27]. This approach
can generate close approximations of nonlinear operators,
capturing solutions that arise from PDEs defining the gains of
controllers. The DeepONet paradigm extends the "universal
approximation theorem" for functions [8], [14] to offer a
universal approximation for nonlinear operators [6], [23],
[24], [26], [27]. For specific PDEs associated with the com-
putation of stabilizing control laws, as the kernel equations
arising in the backstepping method, any alteration in the
plant parameter functions necessitates finding a new solution.
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With the deep learning approach, one requires merely a re-
computation of the backstepping kernels via a pre-learned
DeepONet map, which are then evaluated at certain values to
obtain the gain kernels. Thus, this neural architecture embeds
the transformation from the plant’s functional coefficients
to the controller gain kernels, facilitating gain computation
as a mere function evaluation, circumventing the need of
numerically solving the kernel equations. This methodology
for PDE control retains the theoretical assurances of a
nominal closed-loop system in its approximate form, and so
far it has been developed for both delay-absent hyperbolic
[4] and parabolic [19] PDEs, as well as delay-compensating
control of hyperbolic partial integro-differential equations
(PIDEs) [29] and reaction-diffusion PDEs [40].

B. Contribution of this work

The novelty of this work is proposing a methodology
to directly approximate backstepping gains by using neural
operators, skipping the need of approximating the full kernels
as in the previous results. This approach is illustrated with
several simple cases: two parabolic cases (respectively, with
Dirichlet and Neumann boundary conditions) and a 1-D
hyperbolic PIDE equation.

The basic idea is to use the exact, rather than the ap-
proximated, kernel in the backstepping transformation and,
as a result, to express the discrepancy due to the approx-
imation as a perturbation on the boundary of the target
system (produced using the unknown exact backstepping
transformation), rather than as a perturbation in the domain
of the target system. Our alternative approach leads to a
more “unforgiving” perturbation, and induces some addi-
tional challenge in the stability analysis, but, as a reward
for paying this analytical price, the approximation burden,
measured in the training set computation and the size of the
neural network, plausibly follows, due to the removal of the
key previous restrictions on the approximate kernel.

The size of the perturbation at the target system’s boundary
is directly controlled by the quality of the approximation,
which is in turn enforced by the universal approximation
theorem. The requirements that suffice for the approximation
to satisfy are established using a robust exponential stability
analysis in functional norms that are appropriate for a non-
local perturbation that acts at a boundary condition. In the
examples tackled in the paper, it is sufficient to use the L2

norm except in the reaction-diffusion equation with Dirichlet
boundary conditions, which requires the use of the H1 norm.

The results obtained in this work allow for arbitrary decay
rates. Interestingly, while in the parabolic case increasing the
rates requires both a different gain and a higher approxima-
tion quality, in the hyperbolic case the same gain results in an
increased decay rate if it is better approximated, due to the
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finite-time decay of the target system with an exact kernel.
Given that the backstepping approach has become an

ubiquitous technique in PDE control, advances in approx-
imation of gains with learning approaches, such as the one
we propose, can potentially be extended to many families
of systems. Indeed, backstepping was originally introduced
for feedback controls in one-dimensional reaction-diffusion
PDEs [18], but it has since expanded to multi-dimensional
applications [37] and has been employed in diverse systems
like flow control [35], [38], heat loops [36], and more [1],
[5], [7], [12], [17], [20], [28], [30], [34]. Since the approach
presented in this paper is based on reusing both the target
system and Lyapunov function used in the original design,
the promise for extension of the method is remarkable, with
some caveats, as explained next.

C. Comparison of approaches

The methodology of this paper contrasts with the full-
kernel approximation strategies delineated in [4], [19], [29],
[40] in several key aspects, each approach presenting unique
advantages and challenges. In what follows the approach
in the present paper will be referred to as the “gain-only
approach”, whereas the later will be referred to as the “full-
kernel approach”.

A salient advantage of the gain-only approach lies in its
focus on approximating an inherently 1-dimensional gain
kernel. This specificity paves the way for a more tractable
loss function during training, streamlining the neural network
design by reducing the number of hyperparameters. Such an
approach not only necessitates a diminished training set size,
attributed to the output function’s singular argument, but also
should lead to a marked reduction in the required training
duration. Additionally, the analytical calculations needed
to be performed to derive the "perturbed" target system
are more straightforward, as backstepping transformation
that employs the exact kernel circumvents the intricacies
of derivatives or traces of the approximated kernels. The
gain-only methodology also accommodates a broader range
of coefficient smoothness, facilitating the inclusion of non-
differentiable functions, even though functions should be at
least Lipschitz continous for the universal approximation the-
orem to hold. In comparison, the full-kernel method entails
more demanding requirements for the plant coefficients.

However, the simplicity of the gain-only approach is not
without its drawbacks. The Dirichlet parabolic scenarios
under this approach demand an H1 analysis, inherently more
challenging than the L2 analysis, and calls for smoother ini-
tial conditions alongside compatibility conditions. Moreover,
in all cases the need of bounds for inverse kernels may pose
a challenge. Although they can be surmised indirectly from
the direct kernel’s bounds, the results are often conservatively
skewed.

In instances where kernel approximation is crucial to
design considerations, such as in adaptive control [31], one
might expect that only the full-kernel approach would be
applicable. However, recent works have successfully applied
both full-kernel and gain-only approaches in this context.
In [21], the authors first demonstrate the applicability of the
full-kernel approach in adaptive control, where the design
of the update law requires a target system based on the
known approximate kernel. Additionally, they present an

alternative approach using a passive identifier, which allows
the gain-only approach to be used in adaptive control without
requiring the approximation of the kernel’s derivative.

Gain scheduling (GS) is another control technique that can
benefit from kernel approximation. GS adapts the controller
gains based on the current operating conditions of the system,
allowing for improved performance over a wide range of
operating points. In the context of PDEs, GS involves treating
the plant coefficients as quasi-constant and updating the
controller gains accordingly. The gain-only approach has
been successfully applied to PDE GS in [22]. In this work,
the target system under GS involves nonlinear perturbations
resulting from both the quasi-constant treatment of plant
coefficients and the approximation of the kernel. The gain-
only approach simplifies the GS design by removing the per-
turbations due to kernel approximation while still handling
the perturbations arising from the quasi-constant treatment
of plant coefficients, demonstrating its effectiveness in GS
applications.

While the gain-only approach provides several substantial
improvements, it remains crucial to fully understand the
trade-offs in specific contexts, as demonstrated by these
recent works [21], [22]. The choice between full-kernel and
gain-only approaches depends on the specific requirements
and constraints of the problem at hand, and researchers
should carefully consider the implications of each approach
when designing their control strategies.

D. Generating the training set
It must be noted that both methods face an equal challenge

in the generation of the training set, given that the controller
gains (functions of a single argument, or as we may call
them, “1D functions”) are always produced as traces of the
full backstepping kernels. Thus the numerical computation
of the full 2D backstepping kernel cannot be skipped in the
training of the 1D control gain functions.

The backstepping kernel equations are (typically) linear
hyperbolic PDEs on a specific triangular domain, described
by Goursat [13], with unique boundary conditions. The topic
of numerical solution of Goursat PDEs for PDE backstepping
has not been extensively addressed in the literature. Hints on
numerical algorithms are scattered across various sources [2],
[3], [11], [15], [16], [18], [36]. Advanced methods for
Goursat problems [9], however, have not been utilized for
backstepping kernel equations, and adapting these techniques
can be complex, especially when dealing with discontinu-
ities. A new rather general method based on power series
approximations has been recently developed [33], and its
extension to MATLAB [25] looks promising as a tool to
generate training sets.

E. Structure of this paper
The gain approximation approach proposed in this paper is

introduced through several examples, each of which finishes
with a Theorem giving the conditions under which the feed-
back law using the gain approximated by a neural operator
can provide exponential stability. We start with Section II
with the easiest possible example, a 1-D hyperbolic PIDE
plant. Next, in Section III, two reaction-diffusion cases are
considered, namely the Dirichlet case and the Neumann case,
which are treated in parallel. We then finish in Section IV
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with some concluding remarks. Note that proofs are skipped
due to page limitation; they can be consulted in the ArXiv
preprint of this paper [39].

II. 1-D HYPERBOLIC PIDE
Consider the plant

ut = ux + g(x)u(0, t) +

∫ x

0

f(x, y)u(y)dy, (1)

u(1, t) = U(t). (2)

where u(x, t) is the state, U(t) the actuation, x ∈ [0, 1],
t > 0, for f ∈ C 0 (T ) and g ∈ C 0 ([0, 1]), where T =
{(x, y) : 0 ≤ y ≤ x ≤ 1}.

A. Backstepping feedback law design for 1-D hyperbolic
PDEs

The backstepping method is based on the use of a di-
rect/inverse backstepping transformation pair

w(x, t) = u(x, t)−
∫ x

0

K(x, ξ)u(ξ, t)dξ, (3)

u(x, t) = w(x, t) +

∫ x

0

L(x, ξ)w(ξ, t)dξ, (4)

where K(x, ξ) and L(x, ξ), are, respectively, the direct and
inverse backstepping kernels, that verify hyperbolic PDEs
(the kernel equations) [20] involving the coefficients f and
g of the system, namely

Kx +Kξ =

∫ x

ξ

K(x, s)f(s, ξ)ds− f(x, ξ), (5)

K(x, 0) =

∫ x

0

K(x, s)g(s)ds− g(x), (6)

in the domain T , and a very similar equation for L(x, ξ).
Applying (3) to (1)–(2), with the kernel satisfying (5)–

(6), one can find that the PDE verified by the new w(x, t)
variable, the target system, is

wt = wx, (7)

w(1, t) = U(t)−
∫ 1

0

K(1, ξ)u(ξ, t)dξ. (8)

Thus, defining the feedback gain in terms of the backstepping
kernel as

K1(ξ) = K(1, ξ) , (9)

and using the control law

U(t) =

∫ 1

0

K1(ξ)u(ξ, t)dξ , (10)

one achieves a homogeneous boundary condition w(1, t) = 0
in (8) and, consequently, the target system becomes expo-
nentially stable (in fact convergent to zero in finite time 1
due to the unity transport speed). Since the backstepping
transformation is invertible, this implies exponential stability
in the original plant coordinates u(x, t), see [20] for details,
where the following result, later important to our work, is
stated and proven.

Theorem 1: Consider the equations verified by K(x, ξ)
(given by (5)–(6)) and L(x, ξ) (given in [20]) in the domain
T with f ∈ C 0 (T ) and g ∈ C 0 ([0, 1]). Then, there exists a

unique solution K,L ∈ C 1 (T ), and denoting ḡ = ∥g∥∞ =
maxx∈[0,1] |g(x)|, f̄ = ∥f∥∞ = max(x,y)∈T |f(x, y)| and
∥K∥∞ = max(x,ξ)∈T |K(x, ξ)| (and similarly for L), one
has

∥L∥∞, ∥K∥∞ ≤
(
f̄ + ḡ

)
ef̄+ḡ (11)

B. Accuracy of approximation of backstepping 1-D hyper-
bolic gain operators with DeepONet

The main idea of this work (compared with the previous
results [4], [19], [29], [40]) is to directly approximate the
gain operator K1(ξ) by DeepONet as K̂1(ξ) and thus apply
an approximate feedback law U(t) =

∫ 1

0
K̂1(ξ)u(ξ, t)dξ.

Let the operator K1 : C 0 (T )× C 0 ([0, 1]) → C 1 ([0, 1])
be given by

K1(x) =: K1(f, g)(x) (12)

By applying the DeepONet universal approximation The-
orem (see [10, Theorem 2.1]), we get the following key
result for the approximation of the backstepping kernel gain
(the K1 operator) by a DeepONet (see [4] for the exact
definition of a neural operator). The proof of continuity
and Lipschitzness is obtained by mimicking the successive
approximation calculation in the proof of Theorem 1.

Theorem 2: For all Bf , Bg > 0 and ϵ > 0, there exists a
continuous and Lispschitz neural operator K̂1 such that, for
all x ∈ [0, 1],∣∣∣K1(f, g)(x)− K̂1(f, g)(x)

∣∣∣ < ϵ (13)

holds for all Lipschitz f and g with the properties that
∥f∥∞ ≤ Bf and ∥g∥∞ ≤ Bg .

C. Stabilization of 1-D hyperbolic equations under Deep-
ONet gain feedback

The following theorem states our main results regarding
the stabilization properties of the backstepping design when
the feedback gain is approximated by a DeepONet.

Theorem 3: Let Bf > 0, Bg > 0 and c > 0 be arbitrarily
large and consider the system (1)–(2) for any f ∈ C 0 (T )
and g ∈ C 0 ([0, 1]), both Lipschitz functions, which satisfy
∥g∥∞ ≤ Bg and ∥f∥∞ ≤ Bf . The feedback

U(t) =

∫ 1

0

K̂1(ξ)u(ξ, t)dξ (14)

with all NO gain kernels K̂1 = K̂1(f, g) of any approxima-
tion accuracy

0 < ϵ < ϵ∗(Bf , Bg, c) :=

√
c

2ec

1 + (Bf +Bg) eBf+Bg
(15)

in relation to the exact backstepping kernel gain K1 =
K1(f, g) ensures that the closed-loop system satisfies the
following L2 exponential stability bound for some M > 0
with decay rate given by c/8:

∥u(·, t)∥L2 ≤ Me−
c
8 (t−t0)∥u(·, t0)∥L2 (16)

Proof: Let Bf > 0, Bg > 0 and c > 0 be arbitrarily
large. Considering the use of the feedback law U(t) =∫ 1

0
K̂1(ξ)u(ξ, t)dξ in (8) we reach

wt = wx, (17)

w(1, t) =

∫ 1

0

(
K̂1(ξ)−K1(ξ)

)
u(ξ, t)dξ, (18)
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Now, using the exact inverse backstepping transformation,

wt = wx, (19)

w(1, t) =

∫ 1

0

(
K̂1(ξ)−K1(ξ)

)[
w(ξ, t) +

∫ ξ

0

L(ξ, s)w(s, t)ds

]
dξ, (20)

and switching the order of integration in the second part of
the integral, and calling

G(ξ) = −K̃1(ξ)−
∫ 1

ξ

L(s, ξ)K̃1(s)ds , (21)

where K̃1(ξ) := K1(ξ)− K̂1(ξ). We reach:

wt = wx, (22)

w(1, t) =

∫ 1

0

G(ξ)w(ξ, t), (23)

From Theorem 2, given Bg and Bf , and for any ϵ > 0
such that ϵ < ϵ∗ with ϵ∗ given in the Theorem statement,
there exists a neural operator that ensures that

|K̃1(ξ)| < ϵ , ∀ξ ∈ [0, 1] (24)

and therefore |G(ξ)| ≤ ϵ(1+∥L∥∞)∀ξ ∈ [0, 1] where ∥L∥∞
also depends on Bf and Bg as stated in Theorem 1. Now
define

V =

∫ 1

0

ecxw2(x, t)dx (25)

One then obtains

V̇ = 2

∫ 1

0

ecxw(x, t)wx(x, t)dx (26)

Note that∫ 1

0

ecxw(x, t)wx(x, t)dx = − c

2

∫ 1

0

ecxw2(x, t)

+
ec

2
w2(1, t)− 1

2
w2(0, t)

Thus, defining ∥G∥∞ = maxξ∈[0,1] |G(ξ)|,

V̇ ≤ − c

2

∫ 1

0

ecxw2(x, t) +
ec

2

(∫ 1

0

G(ξ)w(ξ, t)dξ

)2

≤ − c

2

∫ 1

0

ecxw2(x, t) +
ec∥G∥2∞

2

∫ 1

0

w2(ξ, t)dξ

≤ −
(
c

2
− ec∥G∥2∞

2

)
V (27)

and since

∥G∥∞ ≤ ϵ(1 + ∥L∥∞)

< ϵ∗
(
1 + (Bf +Bg)e

Bf+Bg
)

(28)

≤
√

ce−c

2
(29)

and thus we reach V̇ ≤ − c
4V and the proof follows by the

equivalence of V to the square of the L2 norm of w and the
use of the direct and inverse backstepping transformations,
and their bounds, to express the obtained result in terms of
the L2 of u using the bounds of Theorem 1, see e.g. [4].

III. REACTION-DIFFUSION EQUATION

Consider the plant

ut = uxx + λ(x)u, (30)

where u(x, t) is the state, x ∈ (0, 1), t > 0, for λ ∈
C 0 ([0, 1]), with two possible boundary conditions (Dirichlet
and Neumann cases). In the Dirichlet case we have

u(0, t) = 0, u(1, t) = U(t), (31)

with U(t) being the actuation, whereas in the Neumann case
we have

ux(0, t) = 0, ux(1, t) = U(t). (32)

A. Backstepping feedback law design for reaction-diffusion
equations

As in the hyperbolic 1-D case, we employ a direct/inverse
backstepping transformation pair defined exactly as (3)–(4).
In this case, choosing some value of c ≥ 0, the kernel
equations verified by the direct transformation kernel [32]
involving the coefficient λ of the system is as follows

Kxx(x, ξ)−Kξξ(x, ξ) = (λ(ξ) + c)K(x, ξ), (33)

K(x, x) = −1

2

∫ x

0

(λ(s) + c) ds,(34)

in the domain T , with the additional boundary condition
K(x, 0) = 0 in the Dirichlet case and Kξ(x, 0) = 0 in
the Neumann case. A very similar equation is satisfied by
L(x, ξ).

1) Dirichlet case: Applying (3) to (30), (31), with the
kernel satisfying (33)–(34) and K(x, 0) = 0 condition, one
can find that the PDE verified by the new w(x, t) variable,
the target system, is

wt = wxx − cw, (35)
w(0, t) = 0, (36)

w(1, t) = U(t)−
∫ 1

0

K(1, ξ)u(ξ, t)dξ, (37)

Thus, defining the feedback gain in terms of the backstepping
kernel as in the hyperbolic 1-D case, KD

1 (ξ) = K(1, ξ), and
using the control law

U(t) =

∫ 1

0

KD
1 (ξ)u(ξ, t)dξ , (38)

one achieves a homogeneous boundary condition w(1, t) =
0 in (37) and, consequently, the target system becomes
exponentially stable. Since the backstepping transformation
is invertible, this implies exponential stability in the original
plant coordinates u(x, t), see [32] for details.

2) Neumann case: As in the Dirichlet case, applying
(3) to (30), (32), with the kernel satisfying (33)–(34) and
Kξ(x, 0) = 0 condition, one can find that the PDE verified
by the new w(x, t) variable, the target system, is

wt = wxx − cw, (39)
wx(0, t) = 0, (40)
wx(1, t) = −qw(1, t) + U(t)− (K(1, 1) + q)u(1, t)

−
∫ 1

0

(Kx(1, ξ)− qK(1, ξ))u(ξ, t)dξ, (41)

357



where the term −qw(1, t), where q > 0 can take any value,
adds some slight extra complications compared with the
Dirichlet case. It has been added due to the reaction-diffusion
equation with Neumann boundary conditions possessing a
zero eigenvalue. By using U(t) = (K(1, 1) + q)u(1, t) +∫ 1

0
(Kx(1, ξ)− qK(1, ξ))u(ξ, t)dξ, the target system be-

comes a stable reaction-diffusion equation if q > 0.
Noting that K(1, 1) is directly obtained from (34), denote

then the gain as KN
1 (ξ) = Kx(1, ξ) − qK(1, ξ), and using

the control law

U(t) = (K(1, 1) + q)u(1, t) +

∫ 1

0

KN
1 (ξ)u(ξ, t)dξ, (42)

one achieves a boundary condition w(1, t) = −qw(1, t) in
(41) and, consequently, the target system becomes exponen-
tially stable, see [32].

3) Kernel bounds for Dirichlet and Neumann cases:
In both the Dirichlet and Neumann cases, the next result
follows [32]

Theorem 4: Consider the equations verified by K(x, ξ)
(given by (33)–(34) and K(x, 0) = 0 in the Dirichlet case
or Kξ(x, 0) = 0 in the Neumann case) and L(x, ξ) (given
in [32]) in the domain T with λ ∈ C 0 ([0, 1]) and c > 0.
Then, there exists a unique solution K,L ∈ C 1 (T ), and
denoting λ̄ = ∥λ∥∞ = maxx∈[0,1] |λ(x)|, one has

∥L∥∞, ∥K∥∞ ≤
(
c+ λ̄

)
e2(c+λ̄) (Dirichlet) (43)

∥L∥∞, ∥K∥∞ ≤ 2
(
c+ λ̄

)
e4(c+λ̄) (Neumann) (44)

B. Accuracy of approximation of backstepping reaction-
diffusion gain operators with DeepONet

As in Section II-B, we approximate (for both Dirichlet
and Neumann cases) the gain operator K1(ξ) by DeepONet
as K̂1(ξ) as defined for each case. Let the operators K D

1 :
C 0 ([0, 1])×R+ → C 1 ([0, 1]) and K N

1 : C 0 ([0, 1])×R+×
R+ → C 1 ([0, 1]) be given by

KD
1 (x) =: K D

1 (λ, c)(x), KN
1 (x) =: K N

1 (λ, c, q)(x)
(45)

As in Theorem 2 for the hyperbolic case, we get the
following key result for the approximation of the reaction-
diffusion backstepping kernel gains by a DeepONet, which
we state simultaneously both for the K D

1 and K N
1 operators

(Dirichlet and Neumann cases).
Theorem 5: For all Bλ, c > 0 and ϵ > 0 (and q > 0 in

the Neumann case), there exists a continuous and Lispschitz
neural operator K̂ D

1 (resp. K̂ N
1 in the Neumann case) such

that, for all x ∈ [0, 1], the following holds for all Lipschitz
λ with the property that ∥λ∥∞ ≤ Bλ:∣∣∣K D

1 (λ, c)(x)− K̂ D
1 (λ, c)(x)

∣∣∣ < ϵ (46)

in the Dirichlet case or∣∣∣K N
1 (λ, c, q)(x)− K̂ N

1 (λ, c, q)(x)
∣∣∣ < ϵ (47)

in the Neumann case.

C. Stabilization of reaction-difussion equations under Deep-
ONet gain feedback

Next, we state our main stability results when the back-
stepping feedback gain is approximated by a DeepONet,
both in the Dirichlet and Neumann cases, which are given
separately due to substantial differences.

1) Dirichlet case: In the Dirichlet case, one obtains an
H1 stabilization result, as given next.

Theorem 6: Let Bλ > 0 and c ≥ 0 be arbitrarily large
and consider the system (30)–(31) for any λ ∈ C 0([0, 1]) a
Lipschitz function which satisfies ∥λ∥∞ ≤ Bλ. The feedback

U(t) =

∫ 1

0

K̂1(ξ)u(ξ, t)dξ (48)

with all NO gain kernels K̂D
1 = K̂ D

1 (c, λ) of any approxi-
mation accuracy

0 < ϵ < ϵ∗(Bλ, c) :=
1√

20
(
1 + (c+Bλ) e2(c+Bλ)

) (49)

in relation to the exact backstepping kernel gain KD
1 =

K D
1 (c, λ) ensures that the closed-loop system satisfies the

following H1 exponential stability bound with arbitrary
decay rate:

∥u(·, t)∥H1 ≤ Me−(c+
1
12 )(t−t0)∥u(·, t0)∥H1 (50)

See the ArXiv preprint of this paper [39] for the proof.
2) Neumann case: In the Neumann case, one obtains an

L2 stabilization result, as given next.
Theorem 7: Let Bλ > 0, q > 1 and c ≥ 0 be arbitrar-

ily large and consider the system (30)–(32) for any λ ∈
C 0([0, 1]) a Lipschitz function which satisfies ∥λ∥∞ ≤ Bλ.
The feedback

U(t) = (K(1, 1) + q)u(1, t) +

∫ 1

0

K̂N
1 (ξ)u(ξ, t)dξ (51)

with all NO gain kernels K̂N
1 = K̂ N

1 (c, λ, q) of any
approximation accuracy

0 < ϵ < ϵ∗(Bλ, c, q) :=

√
q − 1

2

1(
1 + 2 (c+Bλ) e4(c+Bλ)

)
(52)

in relation to the exact backstepping kernel gain KN
1 =

K N
1 (c, λ, q) ensures the closed-loop system satisfies the fol-

lowing L2 exponential stability bound with arbitrary decay:

∥u(·, t)∥L2 ≤ Me−(c+
1
8 )(t−t0)∥u(·, t0)∥L2 (53)

See the ArXiv preprint of this paper [39] for the proof.

IV. CONCLUSION

This work delved into the use of the DeepONet frame-
work for computing gain kernels arising in the backstepping
method for control of partial differential equations. A novel
methodology to directly approximate backstepping gains
using neural operators was introduced and validated across
multiple case studies, including hyperbolic and parabolic
plants. The efficacy of this method was critically examined in
comparison to the previous approach fully approximating the
backstepping kernel, highlighting advantages, disadvantages
and inherent challenges.

A natural progression for this research is to extend the
methodology to encompass other system configurations, such
as hyperbolic coupled n+m, or parabolic coupled systems,
or higher-dimensional geometries like the n-dimensional
ball. Although foundational challenges presented by discon-
tinuous kernels in hyperbolic and parabolic designs, as well
as the complexities of hyperspherical harmonics in the n-
dimensional ball setting should be tackled, the groundwork
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established in this study suggests that these extensions can
be addressed methodically. The potential adaptability to
coupled designs is particularly interesting. Managing the
discontinuities in the gains that stem from the piecewise-
only continuous kernels will be crucial. This may necessitate
segmenting the kernels into multiple partitions for individual
approximation, but does not preclude the application of the
method.

Another interesting extension lies in the realm of develop-
ing observer gains. In this context, in-domain perturbations
show up, as opposed to the boundary perturbations that
appeared in thiw work. Nevertheless, one can expect similar
complexities to those addressed herein, having to use similar
Sobolev spaces and Lyapunov functionals and thus obtaining
similar results regarding observer convergence.
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