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Abstract— The differentiation of noisy signals using the
family of homogeneous differentiators is considered. It includes
the high-gain (linear) as well as robust exact (discontinuous)
differentiator. To characterize the effect of noise and distur-
bance on the differentiation estimation error, the generalized,
homogeneous L2-gain is utilized. Analog to the classical Lp-
gain, it is not defined for the discontinuous case w.r.t. dis-
turbances acting on the last channel. Thus, only continuous
differentiators are addressed. The gain is estimated using a
differential dissipation inequality, where a scaled Lyapunov
function acts as storage function for the homogeneous L2

supply rate. The fixed differentiator gains are scaled with a
gain-scaling parameter similar to the high-gain differentiator.
This paper shows the existence of an optimal scaling which
(locally) minimizes the homogeneous L2-gain estimate and
provides a procedure to obtain it. Differentiators of dimension
two are considered and the results are illustrated via numerical
evaluation and a simulation example.

I. INTRODUCTION

Differentiation of noisy signals remains a challenging
task, where mainly two approaches stand out to tackle the
problem: the linear high-gain observer acting as a differen-
tiator on the one hand [1]–[3] and the discontinuous robust
exact differentiator on the other hand [4]–[6]. Both these
approaches are special cases of the generalized family of
homogeneous differentiators of degree d (see e.g. [7], [8]),
where d = 0 corresponds to the linear case and d = −1 to
the discontinuous case.

It is of natural interest to characterize the influence of noise
and disturbances on the differentiation estimation error, e.g.
for appropriate parameter tuning or robust stability of the
closed loop. Vasiljevic and Khalil [3] make use of the L∞-
gain and derive an optimal choice of the high-gain parameter.
This minimizes an upper bound of the L∞-gain, given the
knowledge of the respective noise and disturbance bounds.
For the discontinuous, second-order case, i.e. the super-
twisting differentiator, Seeber [9] just recently published non-
conservative error bounds in a similar setting. Furthermore,
a trade-off between speed of convergence and differentiation
error are discussed to ease adequate tuning.

The goal of this article is to find an optimal gain-
scaling L (similar to the high-gain setup) for the homoge-
neous differentiator [7]. For this purpose, we need to consider
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weighted homogeneous systems with inputs and outputs,
i.e. homogeneous input-output mappings. When introducing
weights not only to the state, input and output but also
to the time variable, applying a dilated input (also w.r.t.
time) can lead to a dilated output. This yields the concept
of homogeneous input-output maps recently introduced by
Zhang [10]. It turns out that the classical Lp-gain [11] is
only a local property for these systems, i.e. it is not dilation-
invariant (apart from special cases). Thus, Zhang proposes
a generalized, homogeneous Lp-gain [10] (Lph-gain) with
homogeneity degree zero and therefore global validity. Being
a generalization, the classical Lp-gain is recovered for linear
systems (i.e. d = 0).

Therefore, we consider optimality with respect to the Lph-
gain of the homogeneous continuous differentiation error
dynamics of degree d ∈ (−1, 1). The discontinuous case
(d = −1) is explicitly excluded here, since the Lph-gain
is not defined for disturbances acting on the last channel,
i.e. signals with non-vanishing n-th derivative in this case.
Similar to the high-gain setup [3], we consider scaled gains
ki = αiL

i, i = 1, . . . , n, where the values of αi are fixed
and gain-scaling L > 0 is the optimization variable. In the
present paper, we restrict ourselves to the homogeneous L2-
gain with a clear physical interpretation of the input-output
ratio in terms of energy (for the linear case). Further, we
choose n = 2 for illustration purposes. We show that the
L2h-gain estimate grows linearly with gain-scaling L if noise
is present and is inversely proportional to a power of L
regarding the disturbance. Thus, we prove the existence of a
global optimum and propose a procedure to find an optimal
scaling L that minimizes the effect of bounded noise and
disturbance on the differentiation estimation error in terms
of the estimated L2h-gain.

The calculation of the L2-gain for linear systems, where
it coincides with the H∞-norm of the corresponding transfer
function, can be done in the frequency domain (see e.g. [12]).
The more general nonlinear case is extensively studied e.g.
by v. d. Schaft [11], and generalized to the homogeneous
case by Zhang [10], where the gain is calculated based
on the solution to a homogeneous (differential) dissipation
inequality (DI). This defines a partial differential inequality
(PDI) and is hard to solve in general (apart from the
linear case, where it reduces to a Riccati inequality [12]).
From asymptotic stability of the error dynamics and the
converse Lyapunov theorem, however, the existence of a
(homogeneous) Lyapunov function is guaranteed [13], [14].
Knowing that the DI needs to hold for all permissible
inputs u (including u ≡ 0), any Lyapunov function qualifies
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as a candidate storage function, i.e. a solution to the PDI.
Thus, we utilize the homogeneous Lyapunov function of
Cruz-Zavala and Moreno [7] at the expense of estimating
only an upper bound of the L2h-gain.

In terms of a specific parameter set, we calculate the L2h-
gain estimates for various homogeneity degrees and relate the
estimate to the actual L2-gain for the linear case. Focusing
on a specific homogeneity degree, we provide a simulation
example and observe that optimal gain-scaling L∗ yields a
reasonable trade-off between noise and disturbance affecting
the differentiation estimation error.

Since the concept of homogeneous input-output maps as
well as the homogeneous Lp-gain have been introduced
just recently, we elaborate on that in Sections II and III.
Furthermore, we recall necessary definitions of weighted
homogeneous systems and classical Lp-gain and show, by
means of a simple example, that the latter is not suitable
for homogeneous systems. Then, the problem statement is
presented in Section IV together with the Lyapunov and
storage function. Section V covers the L2h-gain estimation
for the homogeneous differentiator and its minimization w.r.t.
gain-scaling L. Moreover, a numerical evaluation for an
exemplary parameter set and the simulation example are part
of the section. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES

In this article, we consider systems

Σ :

{
ẋ(t) = f(x(t), u(t)), x(t0) = x0,

y(t) = h(x(t), u(t))
(1)

with input u(t) ∈ Rnu , state x(t) ∈ Rn and output y(t) ∈
Rny vectors of dimensions nu, n, ny ∈ N. Both the vector
field f(x, u) and function h(x, u) are continuous in x and u
with u being measurable and essentially bounded. Thus, a
solution to (1) exists [13] and Σ defines an input-output
mapping Gx0 for every x0. That is, solving (1) with a given
(admissible) input u(·) for the trajectory x(·) leads to the
corresponding output y(·).

We briefly recapitulate the main concepts used in the
article and show that their straight-forward conjunction is
questionable, since the classical Lp-gain is a local property
for nonlinear, homogeneous systems with inputs and outputs.

A. Classical Lp-Stability and Lp-Gain
We consider n-dimensional Lebesgue-measurable signals f :
[0,∞) → Rn with f ∈ Ln

p , i.e.
∫∞
0

∥f(t)∥pdt < ∞, p ≥
1 [11], where ∥ · ∥ is any norm in Rn. This leads us to the
definition of the Lp-norm as [11]

∥f∥Lp
=

(∫ ∞

0

∥f(t)∥pdt
) 1

p

, p ≥ 1.

In a similar manner, the extended Ln
p -space, i.e. Ln

pe, can
be defined for truncated signals fT with fT(t) = f(t), t ∈
[0, T ) and fT(t) = 0, t ≥ T .

An input-output mapping G : Lnu
pe → Lny

pe is called Lp-
stable, if [11]

u ∈ Lnu
p =⇒ y = G(u) ∈ Lny

p .

The mapping has finite Lp-gain, if there exist finite constants
γp and bp such that

∥G(u)∥Lp
≤ γp∥u∥Lp

+ bp, (2)

which implies Lp-stability of G [11]. The Lp-gain of G is
defined as γp(G) = inf{γp | ∃ bp s.t. (2) holds} [11].

Let us consider the Lp-gain of state-space representa-
tion Σ. For this purpose, we introduce the continuously
differentiable storage function V : Rn → [0,∞) and recall
the Lp supply rate sp : Rnu × Rny → R with

sp(u, y) = γp
p∥u∥p − ∥y∥p, γ ≥ 0. (3)

System (1) has Lp-gain ≤ γp if the differential dissipation
inequality (DDI) [11]

∂V (x)

∂x
f(x, u) ≤ sp(u, h(x, u)) ∀x, u (4)

holds. That is, Σ is dissipative w.r.t. supply rate sp.
The Lp-gain of system (1) is defined as γp(Σ) =
inf{γp | Σ has Lp-gain ≤ γp} [11].

These classical results can be extended to the well-known
case p = ∞. Another prominent case is p = 2, since the
physical meaning is obvious and the L2-gain represents the
input-output ratio in terms of energy.

After a short introduction into weighted homogeneity and
its expansion to systems with inputs and outputs, we consider
the homogeneous differentiator and come back to the Lp-gain
of the corresponding error dynamics.

B. Weighted Homogeneous Systems with Inputs and Outputs

Following Baciotti and Rosier, we define:
Definition 1 (Weighted Homogeneous System [13]):

The weight vector associated with the state vector
x = (x1, . . . , xn)

⊤ is denoted by r = (r1, . . . , rn)
⊤

with positive weights ri > 0. The respective
weight vectors for u and y are called ru and ry .
The corresponding dilation operator is defined as
∆r

κ(x) := (κr1x1, . . . , κ
rnxn)

⊤, κ > 0. The system (1) is
called homogeneous of degree d ∈ (−mini ri,∞) if there
exist positive weights ri, rui , ryi , i = 1, 2, . . . s.t. ∀u, x and
∀κ > 0 the following holds:

fi(∆
r
κ(x),∆

ru
κ (u)) = κd+rifi(x, u), ∀i =1, . . . , n,

hj(∆
r
κ(x),∆

ru
κ (u)) = κryj hj(x, u), ∀j =1, . . . , ny.

In order to describe homogeneity of an input-output map G,
e.g. Gx0

principally defined by (1), it is necessary to intro-
duce the weight rt = −d associated with time t. This yields

fi(∆
r
κ(x),∆

ru
κ (u)) = κd+rifi(x, u) =

κridxi

κrtdt

and means that the trajectory of (1) is homogeneous w.r.t.
input and time [10]. Thus, a dilated input leads to a dilated
state transition, which in turn implies a dilated output and
leads to the following definition.

Definition 2 (Homogeneous Input-Output Map [10]):
The causal and time-invariant input-output map G is termed
r-homogeneous of degree d = −rt ∈ R, if

G(∆ru
κ (u(κ−rt ·))) = ∆ry

κ (y(κ−rt ·)), ∀κ > 0
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holds for each admissible input u and output y = G(u).
This definition is essential to investigate the Lp-gain of
homogeneous systems.

Aside from that, we make use of the r-homogeneous q-
norm defined as [13]

∥x∥rx,q =

(
n∑

i=1

|xi|
q

rxi

) 1
q

, ∀x ∈ Rn, q ≥ 1 (5)

and unit sphere Srx,q =
{
x ∈ Rn | ∥x∥rx,q = 1

}
. Further-

more, consider the following essential property.
Lemma 1 (Dominating homogeneous function [14]–[16]):

Let µ : Rn → R≥0 (i.e. µ(x) ≥ 0 ∀x ∈ Rn) and η : Rn → R
be two continuous homogeneous functions with weights
r = (r1, . . . , rn) and degrees d, such that

{x ∈ Rn\{0} : µ(x) = 0} ⊆ {x ∈ Rn\{0} : η(x) < 0} .

Then, there exists λ∗ ∈ R such that

η(x)− λµ(x) < −c∥x∥dr,p ∀x ∈ Rn\{0}, ∀λ ≥ λ∗

holds for some c > 0.

C. Homogeneous Arbitrary Order Differentiator
We consider the homogeneous differentiator given by (1)

with [7]

fi(x, fn) = −ki ⌈x1 − fn⌋
ri+1
r1 + xi+1, i = 1, . . . , n− 1

fn(x, fn) = −kn ⌈x1 − fn⌋
rn+1
r1 , (6a)

h(x, fn) = xn − f
(n−1)
0 (6b)

where ⌈·⌋p = sign(·)| · |p, p ∈ R denotes the sign-preserving
power. The Lebesgue-measurable function fn(t) = f0(t) −
ν(t) consists of n-times differentiable base signal f0 to be
differentiated and bounded noise |ν| ≤ N with N ≥ 0.
The weights are assigned as ri = ri+1 − d = rn − (n− i)d,
i = 1, . . . , n+1, where we fix rn = 1 and allow d ∈ (−1, 1)
and the gains are ki > 0. We formally introduce the output
function h as (n − 1)-th error in the differentiation of base
signal f0.

In order to utilize the Lyapunov function of [7], [17],
consider the scaled error dynamics

żi = −k̃i

(
⌈z1 + ν⌋

ri+1
r1 − zi+1

)
, i = 1, . . . , n− 1

żn = −k̃n ⌈z1 + ν⌋
rn+1
r1 + δ̃, (7a)

y = k̃1zn, (7b)

where zi =
xi−f

(i−1)
0

ki−1
, k̃i = ki

ki−1
for i = 1, . . . , n and

k0 = 1. The disturbance δ = −f
(n)
0 is assumed to be

bounded by D ≥ 0, i.e. |δ| ≤ D, and scaled with δ̃ =
δ

kn−1
.

Although δ ∈ Lph (the homogeneous Lp-space, see Sec. III-
C) is sufficient for the calculations in this article, we require
boundedness of δ to ensure ultimate uniform boundedness
of the differentiation estimation error for d ∈ (−1, 0] [7].

Note that with weight rt = −d the error dynamics define
a homogeneous input-output map, where u = (ν, δ)⊤ with
weights ru = (rν , rδ) = (r1, rn+1).

III. CLASSICAL Lp-GAIN VERSUS HOMOGENEITY

For simplicity of exposition, we reduce the following
derivations to the two-dimensional case. By means of the ho-
mogeneous differentiator, we show that the classical Lp-gain
is a local property only, i.e. it lacks invariance with respect
to homogeneous dilation. This leads to the introduction of a
homogeneous Lp-gain.

A. Second-order Homogeneous Differentiator

The error dynamics (7) with n = 2 read

ż1 = −k̃1

(
⌈z1 + ν⌋

1
1−d − z2

)
, z1(0) = z1,0 (8a)

ż2 = −k̃2 ⌈z1 + ν⌋
1+d
1−d + δ̃, z2(0) = z2,0 (8b)

y = k̃1z2, (8c)

where the respective weights of inputs u = (ν, δ)⊤, output
and states are given by

ru = (rν , rδ) = (1− d, 1 + d), ry = 1,

rz = (r1, r2) = (1− d, 1).

B. Limitations of the Lp-Gain for Homogeneous Systems

To investigate the suitability of the classical Lp-gain for
homogeneous systems, consider the special case of (8) where
no noise is present, i.e. ν ≡ 0. For zero initial conditions,
the nonzero input u1 = (0, δ1) with δ1 ∈ Lp yields the
corresponding output y1. This results in the ratio

Γ(u1, y1) =
∥y1∥Lp

∥u1∥Lp

.

Recall that (8) defines a homogeneous input-output mapping,
i.e. applying the dilated input u2(·) = ∆ru

κ (u1(κ
−rt ·)) yields

the dilated output y2(·) = ∆
ry
κ (y(κ−rt ·)). The corresponding

Lp-norms read

∥u2∥Lp
=

(∫ ∞

0

|δ2(t)|pdt
) 1

p

=

(∫ ∞

0

|κr
δ δ1(κ

−rtt)|pdt
) 1

p

=κrδ+
rt
p

(∫ ∞

0

|δ1(t̃)|pdt̃
) 1

p

= κrδ+
rt
p ∥u1∥Lp ,

∥y2∥Lp
=κry+

rt
p ∥y1∥Lp

and lead to the ratio

Γ(u2, y2) =
∥y2∥Lp

∥u2∥Lp

= κry−rδΓ(u1, y1) = κ−dΓ(u1, y1).

This ratio directly relates to γp of (2) [10] and is only
constant for d = 0, i.e. the linear case. If d < 0, it grows
unbounded for κ → ∞ and if d > 0 this happens for κ → 0.
An illustration is depicted in Fig. 4 of Section V-C for an
exemplary parameter choice. We conclude that the classical
Lp-gain is not suitable for homogeneous systems.

3657



C. Homogeneous Lp-Gain

In order to define a dilation-invariant and global Lp-like
gain, we follow a similar path to Sec. II-A, where the
measurable signals f : [0,∞) → Rn exhibit the weight
vector rf . Using the homogeneous q-norm (5), define the
homogeneous Lp-norm (i.e. the Lph-norm) as [10]

∥f∥rf ,Lph
=

(∫ ∞

0

∥f(t)∥prf ,q dt
) 1

p

, q ≥ 1, p ≥ 1, (9)

provided the right-hand side exists, i.e. f ∈ Ln
ph (the

homogeneous Ln
p -space) [10]. Equipped with the Lph-norm

and Ln
ph-space, the concept of Lph-stability and Lph-gain

can be defined analogously to Sec. II-A for homogeneous
input-output maps Gh (see [10]). Similar to (2), Gh has finite
Lph-gain if there exist constants γhp ≥ 0, bhp ≥ 0

∥Gh(u)∥Lph
≤ γhp∥u∥Lph

+ bhp, p ≥ 1 (10)

for u ∈ Lph and the Lph-gain of Gh is defined as γhp(Gh) =
inf{γhp | ∃ bhp s.t. (10) holds} [10].

Let us consider the Lph-gain of the r-homogeneous state-
space representation Σ of degree d = −rt (see (1) and
Def. 1).

Given the r-homogeneous continuously differentiable stor-
age function Vh : Rn → [0,∞) of degree p − d > 0, the
system Σ has Lph-gain ≤ γhp if it is dissipative w.r.t. the
homogeneous Lp supply rate [10]

shp(u, y) = γp
hp ∥u∥

p
ru,q

− ∥y∥pry,q . (11)

That is, defining the r-homogeneous of degree p value-
function

J (x, u, y; γhp) =
∂Vh (x)

∂x
f(x, u) + ∥y∥pry,q − γp

hp ∥u∥
p
ru,q

,

(12)
the homogeneous DDI (hDDI) [10]

J (x, u, y; γhp) < 0 (13)

holds for all u ∈ Lnu

ph and y ∈ Lny

ph . Finally, the Lph-gain
of Σ is defined as γhp(Σ) = inf{γhp | Σ has Lph-gain ≤
γhp} [10].

D. Example Revisited

Consider the example discussed in Sec. III-B and denote
the ratio of homogeneous Lp-norms by

Γh(u1, y1) =
∥y1∥ry,Lph

∥u1∥ru,Lph

.

A straightforward calculation of the dilated in- and output’s
Lph-norms (analogous to the Lp-norms) yields

∥u2∥ru,Lph
= κ1+

rt
p ∥u1∥ru,Lph

,

∥y2∥ry,Lph
= κ1+

rt
p ∥y1∥ry,Lph

resulting in the ratio

Γh(u2, y2) =
∥y2∥ry,Lph

∥u2∥ru,Lph

= κ0 ∥y1∥ry,Lph

∥u1∥ru,Lph

= Γh(u1, y1),

which is constant ∀κ > 0 and thus dilation-invariant. We
conclude that the homogeneous Lp-gain is suitable for ho-
mogeneous systems and for more details refer the interested
reader to Zhang [10].

IV. PROBLEM STATEMENT

We try to minimize the homogeneous L2-gain from in-
put u to output y by appropriate choice of the gains k1, k2.
In the spirit of the high-gain observer (e.g. [2], [3]), we make
use of scaled gains

k1 = α1L and k2 = α2L
2 (14)

with fixed α = (α1, α2)
⊤ but variable gain scaling L > 0.

This reduces the degrees of freedom significantly, however,
simplifies a generalization to the arbitrary-order differentia-
tor.

In general DDI (4) and hDDI (13) are partial differential
inequalities and hard to solve. Only in the linear case, where
the storage function can be chosen as a quadratic form, they
boil down to a Riccati inequality [11]. Instead of searching
for a storage function Vh leading to the Lph-gain γhp, we pro-
ceed as follows. Since hDDI (13) needs to hold ∀u ∈ Lph, it
necessarily holds for u ≡ 0. Given the asymptotic stability of
(7), a natural candidate storage function is any homogeneous
Lyapunov function Vl of appropriate degree, who’s existence
is ensured by the converse Lyapunov theorem [13], [14].
Using Lemma 1, an appropriate scaling a > 0 can be found
that qualifies Vh = aVl as storage function. This makes it
possible to calculate an upper bound γ̂hp ≥ γhp.

A. Homogeneous Lyapunov and Storage Functions

Consider the scaled error dynamics (8) with zero input,
i.e. the noise- and disturbance-free case (ν ≡ 0 and δ ≡ 0).
A Lyapunov function of homogeneity degree dV = 2− d is
given by [7], [17]

Vl(z1, z2) =
1− d

2− d
|z1|

2−d
1−d − z1z2 +

1 + β

2− d
|z2|2−d, β > 0.

(15)
It is positive definite and continuously differentiable for d ∈
[−1, 1) with homogeneous derivative

V̇l(z1, z2) = −k̃1

∣∣∣⌈z1⌋ 1
1−d − z2

∣∣∣2︸ ︷︷ ︸
µ(z1,z2)

+ k̃2

[
(1 + β)

(
z1 − ⌈z2⌋1−d

)
⌈z1⌋

1+d
1−d − β|z1|

2
1−d

]
︸ ︷︷ ︸

η(z1,z2)

.

(16)

Note that for z2 = ⌈z1⌋
1

1−d it simplifies to V̇l =

−k̃2β|z1|
2

1−d which is negative. Thus, with the help of
Lemma 1, V̇l can be rendered negative definite by appropriate
choice of k̃1. From (16), we can derive the lower bound as

k̃1

k̃2
> max

z∈R2
g(z1, z2) with g(z1, z2) =

η(z1, z2)

µ(z1, z2)
. (17)

The function g is upper semicontinuous and homogeneous of
degree zero. Hence, it achieves a maximum and the search
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can be restricted to the homogeneous unit sphere, i.e. to Srz,q

with q ≥ 1. Choosing the gains conform with Condition (17)
ensures V̇l < 0 and implies stability of the error dynamics (8)
for ν ≡ 0 and δ ≡ 0. Since this is necessary for the following
derivations, we assume throughout the rest of the article:

Assumption 1 (Stabilizing Gains): The differentiator
gains k̃1 and k̃2 are chosen such that Vl is a Lyapunov
function for the error dynamics (8) with ν ≡ 0 and δ ≡ 0.
That is, Condition (17) is satisfied.

Remark 1 (Independence of L): Note that the require-
ment for stabilizing gains k̃1

k̃2
=

k2
1

k2
=

α2
1L

2

α2L2 =
α2

1

α2
is

scaling-invariant. Therefore, the scaling with L does not
affect stability of the error dynamics (8).

As pointed out by Zhang [10] and discussed earlier, a
scaled version of Lyapunov function Vl can be utilized
as a storage function V = aVl, a > 0 for dissipation
inequality (13). We adapt the ideas to the present case.

Theorem 1 (Storage function for differentiator (8)):
Under Assumption 1 and with scaled gains (14), the
function Vh(z1, z2) = aVl(z1, z2) serves as a storage
function for the error dynamics (8) w.r.t. the homogeneous
L2 supply rate (11), if we choose a = ãL with

ã > M = max
z∈Srz,2

m(z) and (18a)

m(z) =
α2
1|z2|2

α1µ(z1, z2)− α2

α1
η(z1, z2)

, (18b)

where µ and η are defined in (16) and M is independent of
gain scaling L.

Proof: We rewrite the dissipation inequality (13) and
make use of Lemma 1 twice. The derivative V̇ reads

V̇ (z)= a
∂Vl(z)

∂z
ż

= a
[
−k̃1

(
⌈z1⌋

1
1−d − z2

)(
⌈z1 + ν⌋

1
1−d − z2

)
+
(
−z1 + (1 + β) ⌈z2⌋1−d

)(
−k̃2 ⌈z1 + ν⌋

1+d
1−d + δ̃

)]
.

With homogeneous 2-norm ∥z∥2rz,2 = |z1|
2

1−d + |z2|
2
1 , the

respective output and input norms are

∥y∥2ry,2 = k̃21|z2|2, ∥u∥2ru,2 = |ν|
2

1−d + |δ|
2

1+d .

We substitute the scaled gains (14) and choose a = ãL. A
division by L2 > 0 yields the dissipation inequality

Ĵ (z, ν, δ) < 0,

where

Ĵ (z, ν, δ) = ã

[
−α1

(
⌈z1⌋

1
1−d − z2

)(
⌈z1 + ν⌋

1
1−d − z2

)
+
(
−z1 + (1 + β) ⌈z2⌋1−d

)(
−α2

α1
⌈z1 + ν⌋

1+d
1−d +

δ

L2α1

)]

+ α2
1|z2|2 −

(
γ̂

L

)2 (
|ν|

2
1−d + |δ|

2
1+d

)
. (19)

with a homogeneous of degree dJ = 2 left-hand side.
To apply Lemma 1, observe that the previous inequality
simplifies to

−ã

[
α1µ(z1, z2)−

α2

α1
η(z1, z2)

]
+ α2

1|z2|2 < 0

for u ≡ 0, where µ and η are defined in (16). It is satisfied
if we choose ã as proposed in (18). With Assumption 1,
we know that V̇l is negative definite leading to a positive
definite denominator of m in (18b). Thus, m is continuous
∀z ̸= 0. Since m is homogeneous of degree zero, it achieves
a maximum that can be found on the unit sphere.
Observe that ∥u∥2ru,2 is non-negative. Given a proper choice
of ã, we can thus use Lemma 1 to ensure the existence
of γ̂∗ such that dissipation inequality (13) holds for every
γ̂ ≥ γ̂∗. This qualifies V as a storage function for the error
dynamics (8) w.r.t. L2h supply rate (11) (p = 2).

This directly leads to the following assumption.
Assumption 2 (Storage function): The storage function V

for the differentiator’s error dynamics (8) reads

Vh(z1, z2) = ãLVl(z1, z2),

where the constant ã > 0 is chosen conform with Theorem 1.

V. HOMOGENEOUS L2-GAIN OF THE DIFFERENTIATOR

With the help of storage function Vh we estimate an upper
bound of the L2h-gain. Then, we show that there exists a
global minimum of the estimate w.r.t. gain-scaling L and
propose a procedure to obtain it.

A. Estimation with Fixed Parameters

We use Vh to estimate an upper bound γ̂ on the homo-
geneous L2-gain from input u to output y for fixed values
of the gains αi, i = 1, 2, gain scaling L, Lyapunov function
parameter β and Lyapunov function scaling ã.

Zhang [10] proposes two approaches for this purpose
depending on the system structure. For dynamics affine in
the input, the worst-case input u∗ can be calculated from
the partial derivative of value function J in (12) w.r.t u (in
line with the linear case and classical H∞-norm calculation).
Then, the minimum γ̂ is found such that J < 0 holds.
Otherwise, γ̂2 is obtained by maximizing the remainder of
dissipation inequality (13) solved for γ̂2.

In the present case (8), the error dynamics are only affine
in the disturbance δ. This does not apply to the measurement
noise ν (unless d = 0). Thus the result presented here adapts
the ideas of Zhang, where we introduce the parameter γ
as argument of the respective functions to highlight their
dependency.

Proposition 1 (Estimation of the L2h-gain): Under
Assumptions 1 and 2, an upper estimate γ̂h2 = γ̂(Vh)
on the homogeneous L2-gain of the differentiator’s error
dynamics (8) can be calculated as

γ̂(Vh) = argmin
γ≥0

{
max

∥(z, ν)∥(rz,rν ),2=1
J̃ (z, ν; γ) < 0

}
,
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where

J̃ (z, ν; γ) = Ĵ (z, ν, δ)
∣∣∣
δ=δ∗

see (19),

δ∗ =

⌈
ã(1 + d)

2α1γ2

(
−z1 + (1 + β) ⌈z2⌋1−d

)⌋ 1+d
1−d

.

Proof: In order to find the smallest γ such that dissipa-
tion inequality (13) holds for the given storage function Vh,
we observe that the variable δ can be eliminated from Ĵ by
finding the maximum of Ĵ w.r.t. δ. Since

∂Ĵ (z, ν, δ)

∂δ
=

ã

L2α1

(
−z1 + (1 + β) ⌈z2⌋1−d

)
−
( γ
L

)2 2

1 + d
⌈δ⌋

1−d
1+d

is continuously differentiable in δ for d < 1 and

∂2Ĵ (z, ν, δ)

∂δ2
= −

( γ
L

)2 2(1− d)

(1 + d)2
|δ|

−2d
1+d < 0 ∀δ ̸= 0,

it achieves a maximum w.r.t. δ at δ∗ given in Proposition 1.
Since J̃ is homogeneous, it is sufficient to restrict the

search on the homogeneous unit sphere.

In the two-dimensional case discussed here, finding a
maximum of J̃ is a problem in three variables z1, z2, ν.
By restricting us to the (homogeneous) unit sphere, we
gain the reduction of one dimension and a restricted search
area from an unbounded to a compact set. Still, we cannot
show convexity for d ̸= 0 and thus require conscientious
search on the entire sphere (see e.g. Fig. 2 for d = −0.5
and a specific parameter set). Analog to the calculation
of the L2-gain based on the Hamiltonian matrix in the
linear case, a sub-optimal γ̂(Vh) can be found using e.g. a
bisection algorithm. Instead of checking the location of the
Hamiltonian’s eigenvalues, we are interested in the sign of
max J̃ .

B. Minimization of the estimated homogeneous L2-Gain

Being able to calculate an estimate γ̂ of the homogeneous
L2-gain, we make use of gain scaling L to minimize γ̂.
That is, consider the scaled gains (14) with fixed α1, α2 but
variable scaling L.

Theorem 2 (Existence of optimal gain-scaling L∗):
Under Assumptions 1 and 2, there exists an optimal
scaling L∗ > 0 that (globally) minimizes the estimate
γ̂h2 = γ̂(Vh, L).

Proof: To analyze the effect of L on the homogeneous
L2-gain, i.e. the minimum value of γ̂ such that Ĵ < 0 holds,
consider the two limit cases δ ≡ 0 and ν ≡ 0, respectively.

In case of no disturbance, i.e. δ ≡ 0, the inequality with
Ĵ of (19) simplifies to

Ĵ (z, ν, 0) = ã
[
−α1

(
⌈z1⌋

1
1−d − z2

)(
⌈z1 + ν⌋

1
1−d − z2

)
+
(
−z1 + (1 + β) ⌈z2⌋1−d

)(
−α2

α1
⌈z1 + ν⌋

1+d
1−d

)]
+ α2

1|z2|2 −
(
γ̂

L

)2

|ν|
2

1−d < 0.

Observe that the L2h-gain estimate is γ̂ = γ̃L, where γ̃ is
independent of L.

In contrast, with zero noise ν ≡ 0, it reads

Ĵ (z, 0, δ) = ã
[
−α1

(
⌈z1⌋

1
1−d − z2

)(
⌈z1⌋

1
1−d − z2

)
+
(
−z1 + (1 + β) ⌈z2⌋1−d

)(
−α2

α1
⌈z1⌋

1+d
1−d +

1

α1
δ̄

)]
+ α2

1|z2|2 −
(
γ̂L

1−d
1+d

)2 ∣∣δ̄∣∣ 2
1+d < 0

with δ̄ = δ
L2 . Note that 1−d

1+d > 0 for d < 1. This yields
γ̂ = γ̃

L
1−d
1+d

with L-independent γ̃.

Thus, if noise ν is present, increasing L leads to a larger
estimate γ̂ of the L2h-gain and the contrary holds for a
nonzero disturbance δ.

We therefore try to find an optimal gain scaling L∗ that
minimizes the estimated L2h-gain from measurement noise
ν and disturbance δ to the differentiation error y of the
homogeneous differentiator. To find L∗, several strategies are
possible that all build upon Proposition 1. Implementation-
wise easily, a local optimum can be obtained with the bisec-
tion algorithm. However, more sophisticated search strategies
are possible to reduce the computational effort. Although we
show the existence of a global optimum, we do not show
uniqueness. Therefore, several local minima are possible in
principle. However, observing convexity in Fig. 1, we expect
the minimum to be global.

C. Numerical Evaluation

To illustrate the calculation and minimization of the L2h-
gain estimate γ̂ = γ̂h2 for error dynamics (8), we go through
the proposed procedure once and provide a simple, yet
illustrative simulation example.

Consider the values of α1, α2 and β in Table I and find that
Assumptions 1 and 2 are satisfied.1 For a variety of homo-
geneity degrees d ∈ (−1, 0] and gain-scalings L ∈ [0.3, 2],
a bisection algorithm is used to estimate the respective
values γ̂ of the upper bound on the homogeneous L2-gain
(see Proposition 1). The results are presented in Fig. 1, where
the continuous lines correspond to the estimated values and
the black dashed line represents the actual L2-gain for
the linear case (i.e. the H∞-norm). A comparison is only
possible for the linear case, since the exact L2h-gain cannot
be calculated for d ̸= 0, yet. We observe that the estimate γ̂
is of the same order and similar shape as the actual L2-gain,
i.e. there exists an optimal gain-scaling L∗ which minimizes
the effect of noise and disturbance on the differentiation
error. Thus, we expect to get reasonable results for d ̸= 0
as well. With decreasing homogeneity degree (given the
parameters of Table I), the estimated L2h-gain increases for
small values of L. This means, that the estimated effect of
disturbance δ becomes more severe if gains are small (see
proof of Theorem 1) and input-to-state stability would be lost

1Since the maximum of functions g and m depend on the homogeneity
degree d, their exact values are omitted here for the general case. However,
Table I holds explicit values for the simulation example.
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Fig. 1: Estimated homogeneous L2-gain with fixed param-
eters (Tab. I) for a variety of scalings L and homogeneity
degrees d, where d = 0 corresponds to the linear case.

considering the limit case d → −1. On the other hand, the
estimated effect of measurement noise does not necessarily
increase with decreasing degree d. In every case, a minimum
w.r.t. L can be observed.

Note that these results depend on Vh, i.e. on both β and
ã. Parameter variation results in a shifted optimum in terms
of L and γ̂. However, the overall shape is not affected.

TABLE I: Parameters used in the simulation example that
fulfill Assumptions 1 and 2 and yield reasonable results.

Parameter α1 α2 β d M ã

Value 3 1.5
√
3 1 −0.5 15.72 16.72

In order to illustrate the results of a L2h-gain minimization
with respect to L, we focus on one exemplary homogeneity
degree of d = −0.5 and the remaining parameters summa-
rized in Table I. Indeed, Assumption 1 is satisfied, since

(see (17)) max
∥z∥rz,2=1

g(z1, z2) = 1.389 <
α2
1

α2
= 3.464, i.e.

Vl is a Lyapunov function for (8) with u = (ν, δ)⊤ ≡ 0.
Furthermore, Assumption 2 holds with ã > M of (1).
Therefore, Vh = ãLVl is used to estimate γ̂. With a bisection
algorithm, the optimal gain-scaling of L∗ = 1.055 is found
which leads to the smallest L2h-gain estimate of γ̂∗ = 3.970.
The strictly negative value function J̃ (z, ν; γ̂∗, L∗) for (z, ν)
on the homogeneous unit sphere is provided in Fig. 2. It
shows to be non-convex and makes conscientious search
necessary in order to find γ̂. Note that, unfortunately, there is
no other gain suitable for homogeneous systems, yet, making
it hard to put the results in relation.

We investigate the actual effect of noise and disturbance on
the differentiation error by means of an illustrative simulation
example. For this purpose, the noisy signal

fn(t) = f0(t)− ν(t) = a0 sin(ω0t)− aν sin(ωνt),

is differentiated once, where a0 = 0.5, ω0 = 0.5 and

Fig. 2: On the homog. unit sphere evaluated value function
J̃ (ϕ1, ϕ2; γ̂

∗, L∗) = J̃ (z, ν; γ̂∗, L∗)
∣∣∣
∥(z, ν)∥(rz,rν ),2=1

with

the parameters of Table I shows to be strictly negative for
γ̂∗ and L∗ with a maximum marked by a red asterisk.

aν = 0.002, ων = 1000. From the error dynamics (8), it can
be seen that disturbance δ results in δ(t) = −a0ω

2
0 sin(ω0t).

To simulate measurement of the noisy signal, the initial
conditions of the error dynamics are chosen as z1(0) = 0
and z2(0) = 0.02 resulting in nonzero initial differentiation
error y(0) = α1Lz2(0). We simulate ten periods of the base
signal f0, i.e. t ∈ [0, T ] with T = 10 2π

ω0
≈ 125.7 s and fixed

sample-time of τs = 1 × 10−4 s using Euler’s method. For
clarity reasons, only two periods are depicted in Fig. 3.

Fig. 3: First two periods of differentiation error y(t) for gain-
scaling L ∈ {2L∗, 0.5L∗, L∗} when differentiating fn(t).

Apparently, L = L∗ yields a reasonable trade-off between
the effect of measurement noise ν and disturbance δ, which is
in accordance with the theoretical observations of Theorem 2.

Finally, let us illustrate the logics of the homogeneous L2-
gain compared to the standard (local) L2-gain discussed in
Section III with the present choice of parameters and signals.
Consider the specific quotients

ΓT(y, u)=
∥y∥L2,T

∥u∥L2,T

=0.16, Γh,T(y, u)=
∥y∥L2h,T

∥u∥L2h,T

=0.91
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for L = L∗, where u = (ν, δ)⊤ and L2,T and L2h,T are
the respective truncated norms (i.e. t ∈ [0, T ]). Applying
the dilated input ũ(t̃) = ∆ru

κ (u(κ−rtt)) leads to ỹ(t̃) =
∆

ry
κ (y(κ−rtt)) with κ = 2 and the weights defined in

Section III-A. The resulting quotients read

ΓT(ỹ, ũ) = 0.23 ̸= ΓT(y, u), Γh,T(ỹ, ũ) = 0.91 = Γh,T(y, u)

which exemplary shows that the standard L2-gain is not
invariant under homogeneous dilation.

As derived in the motivation example, considering δ ≡ 0
and ν ≡ 0 leads to the respective quotients

Γ(ỹ, ν̃)

Γ(y, ν)
= κd, κ > 0 and

Γ(ỹ, δ̃)

Γ(y, δ)
= κ−d.

With d = −0.5 and the parameters of the simulation
example, the corresponding graphs are presented in Fig. 4
and illustrate that only the homogeneous L2-gain is constant
under homogeneous dilation, since it is homogeneous of
degree zero. This underlines the purpose of utilizing the
homogeneous L2-gain for homogeneous systems.

Fig. 4: Quotients of the L2-norms of the dilated and original
input- and output-signals for the special cases δ ≡ 0 and
ν ≡ 0, respectively, and quotient of the L2h-norms. The
parameters are consistent with the preceding example.

VI. CONCLUSIONS

We have shown that there exists an optimal gain-scaling
L∗ which locally minimizes the homogeneous L2-gain es-
timate of the differentiation error dynamics of dimension
n = 2 and homogeneity degree d ∈ (−1, 1). The es-
timation is based on dissipativity of the error dynamics
with respect to the homogeneous L2 supply rate, where a
scaled Lyapunov function is utilized as storage function.
The numerical evaluation for an exemplary parameter set
underlines that reasonable results can be achieved with the
proposed approach. Furthermore, an optimization w.r.t. the
homogeneity degree d seems possible. Since the estimate
depends on the storage function, future work covers a larger
family of storage functions, where the parameters ã, β and
the remaining degree of freedom are utilized to render the
estimate less conservative. Moreover, the generalization to-
wards the arbitrary-order homogeneous differentiator will be
considered. Note that the theoretical framework introduced
is valid for the general case, but the numerical calculation

of the estimated homogeneous gain and the optimization are
more complex.
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