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Abstract— Graph-based state interpolation (GSI) is a state-
of-the-art state reconstruction technique that operates over
water distribution networks (WDN). This method retrieves the
complete hydraulic state (nodal heads) of the network based
on its topology and limited pressure measurements. To perform
leak localization, GSI is coupled with a process that compares
interpolated leak and leak-free states. This article presents a
methodology to adapt GSI in order to learn from its off-line and
on-line operation (i.e., gain knowledge about historical located
leaks, as well as leaks appearing in the network) and using this
information to improve localization in future leak events. The
methodology is tested over a well-known case study (Modena),
showing promising results in terms of localization performance.

I. INTRODUCTION

One of the major challenges faced by water utilities is the
occurrence of bursts and leakage in water distribution net-
works (WDN). These faults cause high economical, social,
environmental and even sanitary costs, justifying the interest
in leak detection and localization techniques, which reduce
both the volume of water losses and their associated impacts.
When focusing on the leak localization problem, existing
literature shows three main categories within the steady-
state software-based methods: model-based, mixed model-
based/data-driven and data-driven.

Model-based techniques rely on a hydraulic model of
the WDN, which must be calibrated with respect to net-
work properties and nodal consumption, in order to perform
simulations to retrieve the network’s hydraulic state. Over
the years, this hydraulic model has been used for different
purposes, such as studying the pressure sensitivity to the leak
effects [1] and solving inverse network hydraulic problems
[2], among others. Model-based methods operate well under
ideal conditions, but their performance can be degraded
by modelling and calibration errors and the complexity of
WDNs and their associated mathematical models.

The advancement of machine learning and data analysis
algorithms has significantly expanded their application for
addressing the challenge of leak localization, leading to
the development of mixed model-based/data-driven methods.
They use the hydraulic model exclusively for training-sample
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generation, considerably mitigating their dependence on this
model. Techniques such as artificial neural networks [3]
or deep learning [4] have been successfully used to solve
the isolation problem. However, calibration and modelling
requirements still persist within these approaches.

Lately, data-driven approaches have emerged as a promis-
ing solution to address the aforementioned drawbacks, con-
sidering their independence from a hydraulic model. In this
category, interpolation-based approaches such as [5] and [8]
can be highlighted. They provide a satisfactory performance
indicating search areas for the leak, but the localization is
degraded when reducing those areas or even operating at
node-level precision.

The main contribution of this article consists of the
extension of the state reconstruction method presented in
[8], i.e., graph-based state interpolation (GSI), to learn from
real-time leak data. Data-driven leak localization methods
using GSI suffered from performance degradation in small
search areas, due to the approximations included within
the reconstruction method. The novel scheme presented in
this article uses the information from incoming leaks to
learn how to adapt the original GSI process to improve the
localization performance, thus minimizing the degradation
related to the approximations of GSI while maintaining the
data-driven philosophy. Other recent graph-based learning
techniques such as [6] leverage the hydraulic model during
training, thereby falling within the mixed model-based/data-
driven category. The performance of the new methodology
is evaluated in a realistic benchmark (Modena), showing
promising results.

II. METHODOLOGY

A. Preliminaries

GSI plays a central role in the methodology outlined in
this article. This interpolation algorithm models the WDN
as a connected graph G = (V, E), with V representing the
set of nodes (reservoirs and junctions) and E denoting the
set of edges (pipes). The i-th node is expressed as vi ∈
V , while the k-th edge is referred to as ek = (vi, vj) ∈
E , which connects the source vi with the sink vj . Each
node in the graph carries an attribute, which in this case is
linked to the steady-state hydraulic state of the network. The
hydraulic head (pressure plus elevation) at the nodes of the
network is considered as a representative of this state, due to
the pressure drops produced by leaks and the reduced cost
and easier installation of pressure sensors. The basic idea of
GSI is to locally approximate the non-linear equation relating
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the hydraulic heads of neighbouring nodes, e.g., the Hazen-
Williams formula [7], by a linear relation, namely:

ĥi =
1

di
wiĥ, (1)

where ĥ ∈ R|V| is the state vector that approximates the
hydraulic heads in the network. The terms wi and di come
from a pair of matrices encoding the topology of the network,
namely the weighted adjacency matrix W ∈ R|V|×|V|, which
weighs the connection between neighbouring nodes, and the
degree matrix D ∈ R|V|×|V| (with di =

∑|V|
j=1 wij denoting

the i-th element of the diagonal of the diagonal matrix D).
Let us remark that GSI weighs more the relation of closer
adjacent nodes, and hence the inverse of the pipe lengths is
selected to represent the graph weights, i.e., W .

Thus, the GSI process is defined by the following opti-
mization problem1:

min
ĥ,γ

1

2

[
ĥTLD−2Lĥ+ αγ2

]
, (2a)

s.t. Bĥ ≤ γ · 1|V|×1, (2b)
γ > 0, (2c)

Sĥ = ĥs, (2d)

where L = D − W is the Laplacian of G. The edge-node
incidence matrix is B ∈ R|E|×|V|, which assigns a value of 1
to its entry bkj if ek = (vi, vj) ∈ E , -1 if ek = (vj , vi) ∈ E
and 0 otherwise2. The optimization variable γ is a positive
slack value that constrains the sign of the difference in heads
between adjacent nodes. The measured heads through the
ns installed sensors are stored in ĥs, whereas matrix S ∈
Rns×|V| is defined so that sgj = 1 only if the g-th sensor is
located in node vj , and 0 otherwise.

In this way, the solution of (2) pursues two goals. The
main aim is the harmonization of the nodal states. To this
end, the difference between the state of each node, and the
approximation denoted by (1) must be minimized, i.e.:

|V|∑
i=1

[
ĥi −

1

di
wiĥ

]2
=

(
ĥ−D−1Wĥ

)T (
ĥ−D−1Wĥ

)
=

ĥT
(
I |V| −D−1W

)T (
I |V| −D−1W

)
ĥ =

ĥT
(
D−1(D −W )

)T (
D−1(D −W )

)
ĥ = ĥTLD−2Lĥ,

(3)

where I |V| is the identity matrix of size |V|.
Additionally, a directionality-related goal is pursued

through the minimization of γ2 (2a) and the constraints

1Note that the notation xn×m denotes a matrix of size n×m with all
its elements having a value of x.

2GSI adopts a structural approach to construct an approximated incidence
matrix, considering for each pipe the most used direction when computing
all the shortest-path between the water inlets and all the junctions. This
is required due to the lack of flow data in water utilities, which would
indicate the actual water directionality. See [9] for a detailed description of
the algorithm to obtain the approximation of B

(2b, 2c), considering that the head of the source node of
a pipe should be higher than the head of the sink in WDNs.

Ultimately, the known hydraulic heads are used to feed
the optimization problem with actual hydraulic information
through (2d).

B. Generation of target states

GSI was originally conceived as the initial stage of an
integrated fully data-driven leak localization scheme. In [8],
a geometric-based comparative method, referred to as leak
candidate selection method or LCSM, is proposed to serve as
the secondary localization stage. Specifically, this process re-
quires two input vectors to operate: the interpolated hydraulic
state recovered from the measurements of the leak scenario
under analysis, i.e., ĥleak; and the interpolated state obtained
from measurements from a nominal (leak-free) scenario with
similar boundary conditions [1], i.e., ĥnom. Each pair of
analogue (in the same position) entries of the vectors are used
as representatives of the x-y coordinates of a cloud of 2-D
points. The best-fitting line to this cloud is computed, and
the network nodes related to the furthest points to the line
compose the set of candidates. A dynamic thresholding is
used to limit the set size, considering the standard deviation
of the point-to-line distance of the candidates. This process
takes into account all the head values and their interconnec-
tions in the candidate set decision. Nevertheless, the relation
between the leak and leak-free state of each node, that is,
the pressure residual r̂i = ĥleak

i − ĥnom
i , plays a major role

in the final decision.
Upon closer examination of the operational flow within

the GSI-LCSM framework, a notable feature is the uni-
directional flow of information from GSI to LCSM. Note
that the current absence of a feedback mechanism neglects
the potential of harnessing LCSM information to enhance
the GSI performance from a isolation point of view. An
advancement in GSI could be achieved by utilizing local-
ization data to produce solutions in which the maximum
pressure drop is close to the node where the leak occurs.
Note that this cannot be normally imposed to GSI during
real-time execution of the localization process, because the
leak location is not available information but the objective of
the localization process. However, once the leak is localized
and fixed, the corresponding hydraulic measurements, which
were used by GSI to retrieve the complete hydraulic state.
can be associated to the actual leak location. Moreover, this
association can be directly carried out if a historical dataset
of leaks (containing hydraulic measurements and leak that
caused them) is available.

Thus, the methodology proposed in this article includes a
process that estimates the desired solution of GSI, in terms of
maximum pressure drop location, when given the hydraulic
measurements caused by a specific leak. Then, we can feed
a learning process, trained to transform the solutions of
standard GSI into the solutions of this new process. This
would guarantee the maximum pressure drop resulting from
the comparison between leak and leak-free scenarios to be
located at the leak node. This maximum pressure drop would
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be represented by the minimum value in the residual vector r̂.
Thus, the objective of this process is to impose the following:

Cr̂ ≤ r̂, (4)

where C ∈ R|V|×|V| is a sparse matrix that encodes the leak
location as C = [0|V|×(f−1) 1|V|×1 0|V|×(|V|−f)], and f
indicates the index of the leaking node within the node set
|V|, i.e., the leaky node is vf .

Considering the presented constraint and the definition of
the residual vector, the expression in (4) can be manipulated
as follows:

Cr̂ ≤ r̂

C(ĥleak − ĥnom) ≤ (ĥleak − ĥnom)

Cĥleak − ĥleak ≤ Cĥnom − ĥnom

(C − I |V|)ĥleak ≤ ŷnom

(5)

where ŷnom = (C − I |V|)ĥnom. Note that ĥnom is known,
as the nominal interpolated vector can be retrieved from the
leak-free measurements. Thus, ŷnom is also known.

The final expression in (5) is added as a constraint to
the GSI formulation posed in (2), leading to the following
adapted optimization problem, whose associated operation
would be referred to as MPD/GSI (maximum pressure drop):

min
ĥ

1

2

[
ĥTLD−2Lĥ+ αγ2

]
, (6a)

s.t. Bĥ ≤ 1n · γ, (6b)

(C − I |V|)ĥ ≤ ŷnom, (6c)
γ > 0, (6d)

Sĥ = ĥs. (6e)

Remark 1. This problem would only be solved for the leaky
case, as the nominal case is solved through standard GSI.
Thus, the terms ĥleak in (5) and ĥ in (6c) are equivalent.♦

An important issue must be considered about MPD/GSI
and its associated optimization problem. GSI-LCSM operates
assuming that the maximum pressure drop occurs in the
leak node. This holds in an ideal situation, but in practice
there are sources of uncertainty that can alter this condition.
Specifically, the residuals can be affected by the differences
in boundary conditions between leak and leak-free scenarios
(e.g., nodal consumption). Thus, actual measurements from
the network, at specific time instants, might indicate larger
residuals at areas where these discrepancies between leak
and leak-free scenarios are occurring, instead of the leak
area. This can be almost completely avoided by considering
a time window of measurements and averaging over it.

Regarding (6), it is essential to avoid the introduced
problem if the leak appeared in one of the nodes with a
sensor. The solution may be not feasible if the maximum
drop we are trying to impose is located in a sensorized
nodes, due to a conflict between constraints (6c) and (6e).
By inspection of (5), it can be appreciated that the constraint

does not tolerate another sensor to have a lower (negative)
residual than the sensorized leaky node. Thus, two possible
solutions can be considered to avoid this problem:

1) Filter the gathered measurements to remove harmful
time instants when the leak case occurred in a sen-
sorized node.

2) Associate the corresponding time instants to a leak
occurring in the nearest neighbouring node.

C. Knowledge integration

The exploitation of MPD/GSI lets us derive the required
target interpolated vectors that GSI would ideally generate
to optimize the leak localization performance. Then, the first
layer that GSI needs to acquire knowledge about both past
leaks, if historical data exist, and any future leak, has been
presented in the previous section. The second layer should
be constituted by a learning-based scheme, capable of using
off-line and on-line information of leaks to improve the leak
localization. Endless options can be proposed to play the role
of the learning algorithm. Let us remark that GSI has already
been successfully combined with learning stages in the past,
e.g., Dictionary Learning [9].

Besides, note that at least two ways of applying the
gathered leak knowledge can be devised:

1) On the one hand, a post-processing algorithm could
be trained to convert already generated GSI states into
MPD/GSI states. In this way, GSI would not be altered
in the on-line application, but its output would be
provided to the trained scheme, which would give a
solution as similar as possible to MPD/GSI.

2) On the other hand, the leak knowledge can be used to
alter one of the basis of GSI, that is the graph associated
to the network. In this way, the properties of this graph
and its associated structural matrices would be modified,
so that GSI (applied over this new graph) would yield
MPD/GSI solutions.

In this article, a first solution is proposed in the direction
of the first option, although some insights about the second
option are provided in the Conclusions section. The GSI-
to-MPD/GSI process consists of a simple linear operation
over the input GSI samples. If a target vector produced by
MPD/GSI is referred to as ĥ∗, then:

ĥ∗ ≈ Ωĥleak + β, (7)

where Ω ∈ R|V|×|V| and β ∈ R|V| are a diagonal matrix and
a bias vector respectively.

These matrix-vector duple is obtained through an opti-
mization process. In order to introduce the formulation of
this problem, let us define the characteristics of the training
dataset:

• First, we consider that leak information is only available
for a subset F ⊂ V of nodes. However, hydraulic data
from non-labelled cases is also useful, because while we
seek that the trained matrices transform known leak GSI
vectors into MPD/GSI vectors, these trained matrices
should minimize the degradation of GSI vectors from
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unknown leaks. Thus, we can define a target dataset
Ĥtarg, whose entries correspond to ĥ∗ for labelled leak
scenarios, and ĥ (i.e., from standard GSI) for the rest
(non-labelled leak scenarios, nominal scenarios).

• Besides, we may have available samples associated
with different time instants, obtained with the network
presenting different boundary conditions. Note that the
selection and availability of the elements in this set
depend on several factors: sampling time of the sensors,
the existence of a noise reduction pre-process that
operates over a time window, etc. In this case, the set
of time instants is represented as T , and we denote the
set of train samples representing a specific time instant
as Ĥtarg(t).

Then, the optimization problem can be posed as follows:

min
Ω,β

ntrain∑
k=1

∑
t∈T

[
δ̂(t)T δ̂(t)

]
+τ

(
∥Ω−I |V|∥F +βTβ

)
, (8)

where δ̂(t) = Ĥtarg
k (t)− (ΩĤGSI

k (t) +β), with Ĥtarg
k (t)

being the k-th entry (column) of the dataset Ĥtarg(t) at time
instant t ∈ T and ĤGSI

k (t) being the result of applying
GSI to the same measured hydraulic information used to
generate Ĥtarg

k (t). Note that the complete training dataset
has a length of ntrain samples.

Thus, the first term of of (8) seeks the minimization of the
difference between the target states from the dataset and the
states produced by (7). The second term pursues a solution
that is as similar as possible to Ω = I |V| and β = 0|V|×1,
because this would imply the minimum possible degradation
to the actual performance of GSI, protecting the solutions for
non-labelled samples. The weight τ is settled to a low value,
considering that this objective is also tackled by including
non-labelled data in Ĥtarg(t).

D. General overview

The previous stages complement GSI, leading to a learning
methodology that is able to gain knowledge from the existing
and past leaks affecting the network. This approach is
completed with a leak/leak-free comparison step, leading to a
new leak localization methodology, henceforth referred to as
Leak Learning GSI-LCSM (LL-GSI-LCSM). In this scheme,
we can distinguish between the training and application
processes. The operational flow of the training stage is
represented by Algorithm 1.

Algorithm 1 Training — LL-GSI-LCSM

Require: Ĥs,leak, Ĥs,nom,G = (V, E)
1: Compute ĤGSI,nom from Ĥs,nom and G solving (2)
2: Compute ĤGSI,leak from Ĥs,leak and G solving (2)
3: Compose ĤGSI from ĤGSI,leak and ĤGSI,nom

4: Divide ĤGSI,leak into ĤGSI,F and ĤGSI,FC

5: Compute Ĥ∗ from Ĥs,F , ĤGSI,nom and G solving (6)
6: Compose Ĥtarg from Ĥ∗, ĤGSI,FC

and ĤGSI,nom

7: Compute Ω and β from Ĥtarg and ĤGSI solving (8)
8: return Ω,β

In the presented algorithm, Ĥs,nom and Ĥs,leak denote
the measurements datasets for the nominal scenario and
all the recorded leak events (labelled and non-labelled)3.
Additionally, FC represents the complement set of F ,
i.e., ĤGSI,F stores the entries for the labelled leaks, and
ĤGSI,FC

stores the rest of leak cases. Finally, note that
the training process is performed considering several time
instants, so that Ω and β are not over-fitted for specific
network boundary conditions.

The application of the algorithm, presented in Algorithm
2, is simple and easy to implement.

Algorithm 2 Application — LL-GSI-LCSM

Require: ĥs,leak(t), ĥs,nom(t),G = (V, E)
1: Compute ĥGSI,nom(t) from ĥs,nom(t) and G solving (2)
2: Compute ĥGSI,leak(t) from ĥs,leak(t) and G solving (2)
3: Compute ĥLL-GSI(t) from ĥGSI,leak(t), Ω and β
4: Obtain C from ĥLL-GSI(t) and ĥGSI,nom(t) using

LCSM*
5: return C

During the on-line application, the leak localization al-
gorithm can be applied to the incoming measurements at
each time instant, i.e., ĥs,leak(t), considering the availability
of an entry in the historical nominal dataset with similar
boundary conditions, or the measurements of the previous
instants to the leak detection, i.e., ĥs,nom(t). The candidate
selection process, summarized in Section II-B, retrieves the
set of node candidates to be the leak location, i.e., C. This
LCSM* process is adapted from the original by adding the
normalized residuals to the distance-based metric computed
in LCSM, due to the importance that LL-GSI-LCSM gives
to the leak/leak-free residuals, considering that they mostly
constitute the learning objective of MPD/GSI.

III. CASE STUDY

In order to evaluate the performance of the methodology,
the benchmark of the network of Modena (Italy) has been
selected [10]. The benchmark was originally designed to cor-
respond to a problem of realistic dimensionality, considering
its physical size (268 nodes, 4 water inlets or reservoirs and
317 pipes, with a total pipe length around 72 km) and the
nodal demands, which add up to around 400 l/s in total. The
network topology is schematically represented in Fig. 1

The evaluation of the leak localization scheme requires the
selection of a set of nodes to represent the installed sensors
throughout the network. In this case, we have exploited
a recent fully data-driven sensor placement methodology,
which uses genetic algorithms to derive the sensors set that
minimizes a topological-based metric, related to the sensor-
to-node distance [11]. The cited research shows that the data-
driven placement result was competitive in comparison to a
sensitivity-based one, and thus we can derive a complete

3Note that detection algorithms can be applied over historical measure-
ments data to classify the dataset entries into nominal and non-labelled
leaks. This would not be required during the labelled leak scenarios.
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Fig. 1. Graph associated to the Modena WDN.

sensor placement + leak localization methodology which
would not require a hydraulic model.

A. Generation of the hydraulic datasets

To comprehensively evaluate the method’s performance
under realistic conditions, several factors have been consid-
ered to configure the EPANET simulations that produce the
evaluation hydraulic data:

i. A batch of simulations have been carried out to generate
leak data for all the possible leak scenarios, i.e., varying
the leak location among all the network junctions.

ii. Considering the average water inflow to the network
(∼400 l/s), a leak size of 2.5 l/s has been selected, as it
only represents a 0.63% of that inflow. Each leak was
simulated by configuring the emitter coefficient of the
corresponding node in EPANET.

iii. The benchmark’s demand patterns are adjusted for a
timestep of 1 hour, and hence simulations of 24 hours
have been performed.

iv. These demand patterns have been altered with a random
noise of 1% in comparison to the noise-free reference,
introducing uncertainty in the consumption of the users.

v. Extra random uncertainty of 1% have been considered
in the pipe diameters and roughness coefficients, con-
sidering the higher difficulty of obtaining exact values
(in comparison to pipe lengths).

vi. Finally, the pressure sensors are considered to provide a
precision of ±1 cm, mitigating the impact of leaks that
occurred below that precision in the sensor readings.

Similar settings have been used to assess methods within
the state-of-the-art, such as [8] and [9].

IV. RESULTS

Once the evaluation dataset was generated, the perfor-
mance of the leak localization method could be tested. To
this end, the dataset was divided into training and testing:

• For training, 10 hours out of 24 were selected, sampling
over different times of the day to learn the leak effects
while considering the variability of the demand patterns.

• For testing, a time instant that was not included among
the training ones was selected, so that the trained
method faces a data entry that has different boundary
conditions from those used during learning.

Furthermore, three different scenarios are considered re-
garding the amount of available labelled leaks: 10, 70 and
200, which represent a 3.7%, 26.1% and 74.6% of the
potential leaks. This selection allows us to explore scenar-
ios with low, medium and high density of labelled leaks,
enabling the analysis of their impact in the localization
performance. These labelled leaks were placed using the
sensor placement method in [11], ensuring that the leaks are
scattered throughout the WDN.

The localization results are presented using two types of
metrics:

• Accuracy-based: this metric evaluates the performance
in terms of classification accuracy. Standard GSI pro-
duces search areas because of the limited performance
at node-level. Thus, the accuracy has been measured
in this article by considering seven levels of successful-
localization area, starting at node-level and ranging from
1 to 6-degree-neighbours4. Note that the accuracy result
for k-degree-neighbours5 (henceforth referred to as k-
D-N) is computed as the proportion of leaks scenarios in
which the best candidate from the candidates set (com-
puted by the localization method) is included inside the
k-neighbourhood of the leak. The term ”best candidate”
stands for the node in the candidates set that is given
the highest probability of being the leak location by the
localization stage.

• Distance-based: they measure the performance in terms
of distance from the candidates set to the actual leak
location. In this case, four metrics are presented:

1) Best: Euclidean distance from the best candidate to
the leak location.

2) Min: Euclidean distance from the closest candidate
(within a set of the 5 best candidates) to the leak.

3) Mean: mean Euclidean distance from the set contain-
ing the 5 best candidates to the leak.

4) Max: Euclidean distance from the furthest candidate
(within a set of the 5 best candidates) to the leak.

The accuracy-based results are presented in Table I,
whereas the distance-based results are displayed in Table
II. In these tables, the first row displays the standard GSI
results (and hence it uses zero labeled leaks), whereas the
rest are obtained through LL-GSI. The displayed results
show how the learning of a batch of labelled leaks helps
in both increasing the accuracy and reducing the candidate-

4In Modena, the average 1 to 6-degree-neighbour areas represent respec-
tively a 1.25%, 2.55%, 4.36%, 6.74%, 9.75% and 13.32% of V .

5The set N (k, i) of k-degree-neighbours of a node vi is defined as
N (k, i) = {j | ψij > 1}, where Ψ = I|V| +

∑k
n=1

∏n
m=1 A, and A is

the combinatorial adjacency matrix of the graph.
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to-leak distance, confirming the promising performance of
the new methodology, and justifying the implementation of
the additional layers plugged into GSI.

TABLE I
ACCURACY-BASED LEAK LOCALIZATION PERFORMANCE.

Labeled
leaks

Degree-of-neighbours
0 1 2 3 4 5 6

0* 5.6 14.55 27.99 38.06 49.63 57.46 65.57
10 5.6 16.04 28.73 39.93 51.87 59.7 67.16
70 5.6 16.42 29.1 40.3 51.87 59.7 67.16

200 5.97 17.16 30.6 39.93 51.49 59.33 67.16

TABLE II
DISTANCE-BASED LEAK LOCALIZATION PERFORMANCE.

Labeled
leaks

Distance-to-leak (m)
Best Min Mean Max

0* 1081 745 1073 1426
10 1039 751 1062 1367
70 1035 747 1062 1357

200 1033 746 1064 1356

Additionally, regarding the number of labelled leaks, sev-
eral conclusions can be drawn:

• In the accuracy-based metric, two interesting effects
occur when increasing the labelled leaks. First, the com-
parison between 10 and 70 leaks show an improvement
in the 1/2/3-D-N cases, while the rest remain the same.
This is caused by non-successfully localized leaks in
the 10-learned-leak case being successfully classified in
the 70-learned-leak case, within those levels of degree-
of-neighbour areas. Then, the comparison between the
cases of 70 and 200 learned leaks cases show another
improvement of the previous D-N areas, including now
the node-level case, as well as a decrease in the 4/5-D-
N. This is produced by new non-localized leaks starting
to be correctly isolated, as well as leaks that were only
correctly localized at 4/5-D-N level upgrading to a 0/1/2
or 3 D-N level.

• In the case of the distance-based metrics, the Best and
Max cases continuously decrease, meaning that the most
likely leak location suggested by LL-GSI is closer to
the leak, and implying a reduction of outliers within
the 5 best candidates, which would increase the Max
metric. Note that the Min metric was deteriorated by
LL-GSI with respect to GSI. This is not desirable,
but it is an effect of LL-GSI effectively grouping the
best candidates, which is a consequence of learning
with the MPD/GSI targets (this is also the cause for
the improvement in Max). Nevertheless, the addition of
more labelled leaks helped reduce this degradation.

V. CONCLUSIONS

This article presents a leak localization methodology that
adapts GSI, a state-of-the-art data-driven method, to learn
from historical and future leak data. The proposed strategy
computes target states from GSI obtained ones, which locate
the maximum pressure drop at the known leaky node. Then,
a learning scheme can be trained using the generated targets
to convert GSI samples to MPD/GSI samples, which lead to
a better localization when compared to the nominal states.

The methodology was evaluated using the Modena bench-
mark. To this end, realistic conditions were imposed to
generate the evaluation data. The results showed how LL-
GSI improves GSI in terms of both localization accuracy
and candidate-to-leak distance. This confirms the promising
performance of the methodology.

Several improvements can be performed to the method-
ology in the future. First, MPD/GSI can still be enhanced
to produce state vectors which are not only better for
localization purposes, but also closer to the actual head
distribution in the network. Moreover, the learning stage can
be extensively improved, considering that this paper only
presents a simple approach to show the benefits of learning
labelled leaks, but a wide variety of learning schemes can be
plugged into this stage. Additionally, future work lines will
follow the second way of applying the gained knowledge,
introduced in Section II-C, by means of a matrix or set of
matrices that minimally alter the graph weighted adjacency
matrix to make GSI produce MPD/GSI solutions.
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