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Abstract— Rack-and-pinion drives are commonly used in
large machine tools to provide linear motion of heavy loads
over long travel distances. A key concern in this context is
the achievable path accuracy, which is limited by assembly
and manufacturing tolerances of the gearing components in
conjunction with load-dependent deformation and the inherent
backlash of the system. To address this issue, this paper presents
a method for robust modeling of the individual and state-
dependent transmission errors of a drive utilizing a two-stage
machine learning approach. Based on this, the position control
is extended to include an error compensation, which suppresses
the modeled deviations in the mechanical system including the
position-dependent backlash. The achievable increase in path
accuracy as well as the robustness of the approach are evaluated
and quantified by an experimental validation on a system with
industry standard components.

I. INTRODUCTION

The demands on modern production equipment are
steadily increasing, with machine tools being particularly im-
pacted by this. The minimization of cycle times necessitates
high dynamics with simultaneously increasing requirements
on manufacturing quality and accuracy. The installed drive
systems are of decisive importance in this context [1]. To pro-
vide linear motion of high loads over long travel distances,
rack-and-pinion drives (RPDs) are commonly utilized. These
have the distinct advantage over ball screw drives that
stiffness and moving inertia are independent of the travel
length [2]. This aspect, combined with high cost efficiency
and scalability, renders RPDs the preferred choice for large
and heavy machinery [3].

A major disadvantage, however, is the inferior positioning
and path accuracy compared to other drive systems. Inaccura-
cies in the mechanical drive train and the backlash immanent
in the system lead to deviations of the table position even
when a linear measuring system is utilized to close the
position control loop for improved accuracy [4]. To increase
the versatility of machines with RPDs and reduce rework
of parts, efforts are being made to reduce the influence of
these errors between the input and output of the drive train,
commonly referred to as transmission errors (TEs) [5].

Existing works on this subject mostly investigate gear
pairs and approach the problem primarily from a gear design
perspective [6]–[8]. In the context of RPDs, redundant elec-
trically preloaded drives with an adapted control structure
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Fig. 1: RPD test bench used for the measurements.

are often used to suppress backlash [9]. However, this is
associated with considerable additional costs and enlarged
installation space. Regarding the control-based compensation
of backlash in position-controlled drives, several approaches
exist that do not explicitly address RPDs and instead use sim-
plified test setups. However, these are often acknowledged by
the authors to lack robustness to parameter uncertainties con-
cerning the magnitude of backlash [10]–[12] which hinders
the industrial use on RPDs.

This paper aims to increase the accuracy of single drive
RPDs with linear measuring systems by comprehensive
compensation of the state-dependent TEs including backlash
for all operating conditions. In prior work, the composition
of TEs in RPDs and their impact on path accuracy have been
investigated through measurements [4] and a basic method-
ology for adaptive error compensation at constant travel
velocities has been presented [13]. Leveraging the knowledge
gained, this paper proposes a novel approach to a learning
model of the TEs of RPDs in order to achieve satisfactory
robustness and reliability. Furthermore, a compensation of
the modeled errors in the position control of the drive for
all operating conditions is presented. All measurement data
in this publication, including variables that are not displayed
and supplementary data, can be accessed in [14].

II. CHARACTERISTICS OF TRANSMISSION ERRORS IN
RACK-AND-PINION DRIVES

In the following, the transmission characteristics of RPDs
are explained based on measurements using a test bench
that is shown in Fig. 1 and the authors described in detail
in a previous publication [4]. The installed RPD has a
module m of 4mm with a number of teeth nt of 20 and
a pinion pitch diameter dp of 84.882mm. It is driven by a
servo motor via a high-precision two-stage planetary gearbox
with a transmission factor iPG of 16 and it moves a table
mass mT of 400 kg. For position measurement, the motor
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Fig. 2: TEs of the examined RPD in both directions under varying load.

encoder and a linear measuring system integrated in the
guideways are utilized. The mechanical components as well
as the drive components including the inverter are industry
standard components. A notable feature of the test bench
is a redundant linear direct drive (LDD), which is force-
controlled and allows the application of external disturbance
forces to the RPD. The test bench is operated through a
dedicated control computer, which is connected to the drives
via field bus and handles the position control and acquisition
of measurement data.

As previously mentioned, TEs in the context of RPDs
denote the difference

TE = xT − xM = xT − θM dp
2iPG

(1)

between the table position xT and the linear motor posi-
tion xM derived from the motor angle θM. To analyze them,
the drive is moved at a low velocity of 10mm/s to exclude
dynamic effects, while varying external forces against the
direction of motion are applied by the LDD. Fig. 2 shows
the acquired error curves with the positive direction of
motion in the lower part and the negative in the upper
part. A load dependency of the TEs is evident. The error
curves observed without external load neglecting friction
are commonly referred to as geometric errors TEgeo [15].
In the case of RPDs they are mainly composed of three
components. First, a superimposed drift is apparent, which is
primarily a result of manufacturing and assembly tolerances
of the rack elements. A low-frequency oscillation with a
period corresponding to the pinion circumference and an
amplitude of circa 25µm is superimposed to this, mainly
caused by runout errors of the pinion and in the gearbox [4].
The third component is a higher-frequency oscillation with
a lower amplitude between 4µm and 8µm whose period
corresponds to the tooth meshing. These errors result from
deviations of the tooth flank geometry from an ideal involute
due to manufacturing tolerances as well as intentionally
applied profile modifications, for example to increase the
load capacity [16]. Predominantly this last error component
exhibits a pronounced load-dependent alteration, with the

amplitude decreasing with increasing load. The reason for
this is the deformation of the tooth flanks and the resulting
change in the contact conditions in conjunction with the pro-
file modifications just mentioned. These deformations TEdef

that are added on the geometric errors are typically referred
to as static load-induced elastic errors [15]. It should be noted
that these errors can only be systematically examined on the
test setup using the LDD as a load. When commissioning an
actual machine, only the geometric errors can be measured
directly.

Considering the direction of travel, it is evident that while
the general pattern of the TEs is similar for both directions,
there are nevertheless significant discrepancies. This can
be explained by the individual manufacturing errors of the
tooth flanks for the respective direction of travel as well as
changed contact conditions in the pinion shaft bearings [8].
This is also evident when examining the geometric backlash,
which is characteristic for RPDs and cannot be completely
eliminated by design [5]. It is visualized in Fig. 2 through
the highlighted area between the two no-load error curves. It
is evident that the magnitude of the backlash is not constant
along the travel path, but varies in analogy to the previous
explanations due to manufacturing and assembly tolerances.
As mentioned in Sec. I, this variation poses a challenge for
the compensation of the backlash.

To summarize, the state-dependent TEs including the
backlash of RPDs are heavily influenced by manufacturing
and assembly tolerances and are thus highly individual to
each drive as well as to direction of travel.

III. NEGATIVE EFFECTS OF TRANSMISSION ERRORS ON
THE PATH ACCURACY

In the following, building on the findings presented in the
previous section, the influence of the TEs on the path accu-
racy of position-controlled RPDs with linear measuring sys-
tems is derived theoretically and validated by measurement.
The theoretical background does not aim at a comprehensive
modeling, but at a practical approach to estimate the expected
path errors utilizing typically known parameters. Since the
explanations refer to a single axis, the position control error
and path error or path tracking error are equivalent.

The position control of feed axes is generally implemented
by means of a cascade control [1]. A common simplification
is the modeling of the mechanical subsystem as a two-mass
oscillator [17]. Since it is primarily the position control
loop that is of interest when examining the impact of the
TEs, further simplifications can be made. As the bandwidth
of the current control loop is assumed to be substantially
higher than that of the superimposed control loops, the motor
torque TM is considered to equal the desired torque Td.
Adding to this, given a well-damped tuning of the velocity
controller and smooth trajectories, it can be assumed that the
elasticity of the system is not excited. Thus, the two inertias
of the two-mass oscillator can be aggregated to a combined
inertia Js as to their effect on the position control loop [2],
[18]. As a result, the equivalent schematic of the position-
controlled system shown in Fig. 3 is obtained.
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Fig. 3: Schematic of the position controlled RPD with TEs as output
disturbance.

The setpoint of the PI velocity controller vd is computed
by the P position controller combined with a commonly
added velocity feedforward. Due to the use of a linear
measuring system, the position controller and its output
refer to the linear axis position. Therefore, the linear set
velocity must be converted into the rotational desired motor
velocity θ̇d prior to the velocity controller. In the state
of the art, this is done using the nominal transmission
ratio in. The set torque computed by the velocity controller
accelerates the inertia of the system. When the rotational
motor velocity θ̇M is then reconverted into the linear table
velocity, again using in, the real system now deviates from
the idealized model shown. The mechanical inaccuracies
discussed in the previous section result in deviations from the
nominal transmission ratio and consequently in the measured
TEs. To account for this in the model, in accordance with
their definition (1), the TEs are incorporated as an output
disturbance, representing the difference between linear motor
position and the table position.

For the test bench, the velocity controller was set to a
gain Kp of 12.4Nms/rad and an integrator time constant Tn

of 3.05ms for maximum dynamics following the standard
procedure for Siemens drive controllers [19]. The position
controller was then set to be overshoot-free (aperiodic-
loop), resulting in a gain of Kv of 23 1/s [18]. Based on
the outlined control scheme, the open-loop position control
transfer function

Gpc,OL =
xT

xd

∣∣∣∣
TE=0

=
KvKp(Tns+ 1)

s(JsTns2 +KpTns+Kp)
(2)

from the desired position xd to the table position can be
derived. Subsequently, the disturbance transfer function

Gd,CL=
ex
TE

=−
JsTn

Kp
s3 + Tns

2 + s

JsTn

Kp
s3 + Tns2 + (1 +KvTn)s+Kv

(3)

from the TEs to the closed-loop position control error ex
is obtained. It is a third-order transfer function with high-
pass characteristics, which means high-frequency error com-
ponents are represented in the path error nearly unaltered.
For lower frequency components, the gain of the position
control loop Kv is decisive for the suppression of the errors.
The dynamics of the velocity control loop are of minor
significance under the assumptions made.

Using (3) and the measured TEs shown in Fig. 2, the
expected path errors are calculated for different velocities
with no external load and compared in Fig. 4 with respective
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Fig. 4: Comparison of calculated and measured path errors.

measurement data. This shows a high concordance between
the calculated and the measured path errors with a mean
absolute error (MAE) below 0.1µm for all cases. As was de-
rived from the transfer function, primarily the high-frequency
TEs with tooth meshing frequency appear in the path error.
The lower frequency oscillations are substantially reduced
and the position drift completely suppressed by the position
controller. Since the TEs depend on the position of the drive,
their temporal frequency is variable and depends on the
velocity. Higher velocities yield higher frequencies and thus
poorer suppression.

It can be stated, that while the negative influence of the
TEs of RPDs on the path accuracy can be significantly
reduced by feeding back the measured table position, it
cannot be completely negated. In particular, high-frequency
errors with tooth meshing frequency are present in the path
error, leading to unsatisfactory surface quality of workpieces
and, due to their periodicity, to vibration excitation of the
machine structure.

IV. MODELING THE TRANSMISSION ERRORS

To address this issue and develop an error compensation
for the position control, it is first necessary to represent the
state-dependent TEs in models. The geometric TEs can be
stored in lookup tables during commissioning of the drive
using the available measuring systems. However, compensa-
tion based only on this data is not sufficient and can even
worsen the path accuracy over a large part of the operating
range, as shown in previous works [13]. To prevent this, the
load-dependent deformation must also be taken into account.
But as mentioned in the previous sections, this poses a con-
siderable challenge. Lacking the ability to selectively apply
loads, the deformations cannot be systematically obtained
on a real machine. Analytical or numerical methods that
are commonly used to predict elastic deformations cannot
provide sufficient accuracy for this application due to the
high degree of individuality. Instead, the deviations that
actually occur can only be acquired during operation, for
example during commissioning and testing of the machine.
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However, the unstructured and incomplete composition of the
data is challenging due to the dependency on motion profiles
and process forces. Regression methods from the field of
machine learning (ML) can be applied to process this data
and generate models that can be used for compensation.

For this purpose, the required data processing is elaborated
to begin with. To eliminate the velocity dependent scaling of
the position-fixed TEs in the time domain and moreover to
reduce the amount of data, all measurements are interpolated
over the drive position with a fixed step size of 50µm. The
TEs are then calculated and, by comparison with the pre-
viously measured geometric errors, the deformations TEdef

under the momentary load in the form of the motor torque are
determined. After removing constant offsets, the curves are
then smoothed by low-pass filters with a cut-off frequency
three times higher than the tooth meshing frequency. An
efficient method to minimize the complexity of regression
models is the addition of indirect training data [20]. In the
case at hand, the gear meshing state between rack and pinion,
that indicates the expected periodicity of the deformations, is
a useful supplement. Therefore, for each tooth of the pinion j
a variable Mj is added, which reflects its meshing through
a bump function

Mj =

exp
(

η2
j

η2
j−1

)
ηj ∈ (−1, 1)

0 otherwise
(4)

with
ηj =

2

ε
mod

(
xT nt

πdp
− j, nt

)
− 1 (5)

based on the contact ratio of the gearing ε, with mod()
representing a modulo operation [13].

Regression models are then trained on the basis of the
processed input variables (xT, TM, Mj), with both directions
of travel being handled separately. A common difficulty with
ML-based approaches in the context of manufacturing is
the lack of comprehensive data [21]. To nonetheless ensure
robust performance, sufficient generalization of the relations
derived from the limited data to the state space is required.
At the same time, effective error compensation requires high
accuracy of the models. However, there is a conflict between
these two requirements in the optimization of regression
models, known as bias-variance tradeoff [22].

To overcome this problem, a modeling approach optimized
for the specific characteristics of TEs is introduced. As stated
before, the TEs and the load-dependent deformations are
inherently periodic, but in the presence of local variations due
to uncertainties. To effectively model these different aspects,
two stacked models are used, as shown in Fig. 5. In a first
modeling step, a neural network (NN) is trained only relying
on the load and the tooth meshing, but not the drive position.
This forces the regression to generalize over the travel range
and results in only periodic and recurring effects being
represented. Thus, only the general elasticities of components
and the tooth flanks are modeled, while localized effects are
neglected. In this case, back-propagation networks with two
layers and rectified linear activation functions (ReLU) trained

by the Adam algorithm are used [23], [24]. The performance
in form of the mean absolute error during training is continu-
ously monitored against a validation set previously randomly
extracted from the training data to ensure generalization
capabilities and to avoid overfitting. This is aided by the
implementation of dropout layers that randomly disable a
portion of each fully connected layer during each training
step and have a strong regularizing effect [23]. To minimize
the configuration effort, the dropout rate, the number of
nodes and the learning rate are determined using a hyperband
optimization [25].

After training the NN, its predictions are calculated for the
entire data set and the residual error to the measured defor-
mations is obtained. These residual errors, which correspond
to the localized non-periodic deviations, are then processed
by the second model, that receives the drive position instead
of the meshing information as an input. The basic principle of
this approach resembles that of gradient boosting, albeit only
involving two models [22]. Since the priority in this second
step is to represent errors that have already appeared with a
high degree of accuracy, while disregarding generalization,
bagged regression trees (BRT) based on the CART algorithm
are applied [26], [27]. They feature high accuracy with fast
training and reliable convergence, while coping well with
fragmented data. To minimize the configuration effort, the
relevant parameters in form of the number of trees, their
maximum depth and the minimum leaf size are determined
by a grid search using cross validation in this case [28].

Subsequently, the two models are combined as shown in
Fig. 5 and their predictions are summarized. The developed
approach has several advantages. First, the trade-off between
high accuracy and generalization can be largely resolved, as
will be validated in Sec. VI. The dedicated use of NNs to rep-
resent the general compliance offers further benefits. Trained
NNs can be updated with new data without needing to repeat
the entire training [23]. This way, models pre-trained on data
of other drives or simulation data, e.g. FEM, can be used
as the basis for new drives, thus potentially reducing the
amount of data and training time required. The approach is
also beneficial in terms of possible model degradation due
to alterations of the system, e.g. wear, which in practice is
one of the main reasons for insufficient performance of ML-
based solutions [29]. Since this primarily affects the local
deviations, while the general elasticity remains unchanged,
only the fast-trainable regression trees have to be updated.

To validate the capability of the developed approach, a

Deformation
Model

f(TM,Mj)

Localized Deviation
Model

f(TM, xT)

Eq.
(4)+(5)

Mj

TM

xT

Preprocessing

TEdef,pred

Fig. 5: Stacked architecture to model the state-dependent deformations.
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greatly reduced training data set, analogous to Fig. 2, but
including only loads up to 3000N is used in this paper. The
following results refer to the positive direction of travel, those
of the negative are comparable. Fig. 6 shows the predictions
over the training data set, illustrating the prediction accuracy
of the combination of both models with a MAE of 0.012µm
as well as the contribution of the NN deformation model,
which accounts for 42% of the total output in this case.
It should be noted that this ratio highly depends on the
properties of the examined system and the magnitude of local
deviations, that are represented by the BRT.

V. ERROR COMPENSATION

The approach developed in the previous section enables
the prediction of the state-dependent TEs. On this basis, an
error compensation is integrated into the existing cascade
control, as shown in Fig. 7, where the velocity controlled
motor is a simplified representation of the motor controlled
by a cascaded current and velocity control, as described in
Sec. III. The basic idea is to introduce a correction velocity vc
which offsets the deviations of the system from the nominal
transmission ratio caused by the TEs. For this purpose, the
error TEn given by the models for the current position xd,n

and motor torque is first obtained. Then, assuming the load
remains unchanged until the next time step, the error TEn+1

at the future position xd,n+1, which is obtained from the tra-
jectory planning look-ahead, is determined. The assumption
of a piece-wise constant load over the comparatively high
sampling rate is reasonable here since the low mechanical

eigenfrequencies of large machines and the resulting low-
pass characteristic strongly smooth the impact of process-
related load changes on the drives anyway [3]. By comparing
the momentary and future error and taking into account
the sample time of the compensation ts,c = 5ms the TE
correction velocity

vc,TE =
TEn+1 − TEn

ts,c
(6)

can be calculated.
The direction of travel respectively the tooth flank contact

is determined based on the motor torque and the associated
geometric error curve and deformation model are applied.
A change of tooth flanks and the resulting occurrence of
backlash is detected by a sign change of the motor torque
after deducting the friction and acceleration torque of the
drive train. The magnitude of the backlash b at the current
position can then be determined using the TE models. This
way, however, the backlash is represented as a discontin-
uous step. A compensation cannot completely offset this,
as saturation limitations must be taken into account and
an excitation of the system must be avoided [12]. For this
reason, the backlash is smoothed by a sigmoid like smooth
step function [30] and is then derived to obtain the correction
velocity

vc,BL =
∂

∂t
b ·


0 t ≤ 0

3(t/tss)
2 − 2(t/tss)

3 0 ≤ t ≤ tss

1 tss ≤ t

. (7)

This way, the compensation is spread over the time inter-
val tss, that was experimentally determined to 35ms. The
total correction velocity vc subsequently is the sum of the two
components for compensation of the TEs and the backlash.

The underlying principle of the compensation is imple-
mented as a feedforward path, which continuously computes
the correction velocity based on the planned trajectory. As
illustrated in Fig. 7, a feedback of the motor torque exists,
however, there is no direct feed-through to the output of
the compensation. Instead, the motor torque is used only
indirectly as a state variable for the error models and
backlash detection, with its range of effect on the correction
velocity strictly limited by the models. This ensures that the
parameters and stability characteristics of the position control
loop remain unchanged.

VI. EXPERIMENTAL VALIDATION

After the modeling of the TEs and the compensation have
been presented, their functionality is validated in the follow-
ing on the test bench introduced in Sec. II. For this purpose,
an exemplary trajectory in the form of a sinusoidal profile
including a change of direction is examined. Fig. 8 shows
the TEs, a comparison of the path errors and the correction
velocity vc calculated by the compensation. It is evident that
the path errors caused by the TEs are substantially reduced
over the entire velocity range for both directions. Moreover,
the path error during the change of direction due to the
backlash can be largely eliminated. The remaining sinusoidal
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Fig. 8: Compensation of the TEs and backlash for a sinusoidal trajectory.

error can mainly be attributed to the lack of an acceleration
feedforward, whose implementation is not trivial for RPDs
and is subject of other research.

In addition to the overall functionality, the robustness of
the approach is evaluated by validating the generalization
capabilities of the models trained with a very limited data
set in Sec. IV. This was done by repeatedly cycling the
travel range at constant velocity, increasing the load by 500N
in each pass up to a maximum of 5000N. Each pass was
performed once without and once with the compensation,
quantifying its performance by the percentage improvement
of the MAE of the path error in sections of 100mm.
The entire series of measurements was repeated for three
different velocities. Fig. 9 shows the results obtained for the
positive direction of travel, the negative is similar. Within the
known load range from the training data, the performance of
the compensation is reasonably consistent, even for loads
not included in the training data set, which validates the
generalization capabilities of the modeling approach. In this
area the compensation can achieve a satisfactory improve-
ment of the path accuracy between 50% and 75% for all
loads and velocities. For the loads above 3000N, which is
outside the training data, the performance deteriorates as
expected. However, due to the efforts to ensure sufficient
model generalization, an improvement of at least 25% can
still be achieved. The average of all measurement points
yields an improvement of 66%.

For the validation, reference measurements were per-
formed without compensation. However, it is also possi-
ble to estimate the path errors that would occur without
compensation while it is active by applying the transfer
function (3) on the measured TEs, as explained in Sec. III.
This allows a continuous monitoring of the performance of
the compensation during operation and the detection of states
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where the model quality is insufficient. This information can
then be used to trigger automated retraining of the models
with updated data sets or to diagnose changes in the system
behaviour as part of a condition monitoring.

VII. CONCLUSION

In this paper, a novel approach for a learning compensation
of transmission errors including backlash in rack-and-pinion-
drives using stacked machine learning models is presented.
Inaccuracies due to assembly and manufacturing tolerances,
elastic deformation of the tooth flanks and the inherent back-
lash in the drive train limit the achievable path accuracy of
rack-and-pinion-drives. Despite the use of linear measuring
systems, path errors remain due to the limited bandwidth of
the position control.

Modeling the transmission errors as an output disturbance,
a simple theoretic relationship is derived, that gives an
estimation of the path errors to be expected. The transmission
errors and backlash are highly individual as well as position-
and load-dependent, rendering identification and modeling
difficult. In the proposed approach, the transmission errors
are divided into geometric errors that are acquired during
commissioning and deformation errors, that can only be
observed during operation and are modeled by real-time
capable regression models. To be suitable for use in practice,
the models must provide reliable results given a limited
amount of training data. To ensure this, a two-stage training
process is developed utilizing a neural network to model the
general elasticity of the gearing and a regression tree ensem-
ble to account for localized deviations. Based on the error
models, a compensation is integrated into the established
cascade control, that compensates for the state-dependent
transmission errors by applying a correction velocity. The
occurrence of backlash is detected and also compensated for,
taking into account the limited system dynamics. A concept
for automated monitoring of the compensation performance
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and consequent updating of the regression models is pre-
sented.

The developed approach is experimentally validated on
a test bench. The performance of the compensation for
accelerated motion including backlash is investigated as well
as the robustness and generalization capabilities of the error
models. It is demonstrated that the specialized modeling
approach can achieve robust performance even for unknown
system states and the compensation reduces the path errors
by an average of 66% in the investigated scenarios.

Future work includes transferring the approach to com-
monly used electrically preloaded dual drive systems and val-
idating the compensation in actual manufacturing processes
and other motion profiles.
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