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Abstract— Wave energy, harnessed by wave energy converters
(WECs), has the potential to significantly contribute to the
renewable energy mix. To improve the commercial viability
of WECs, the design of control strategies for maximizing the
produced energy is vital. This work specifically focuses on
energy maximizing control for oscillating-water-column (OWC)
WECs, using a receding-horizon pseudospectral (RHPS) optimal
control method. With pseudospectral control, the continuous
time OWC energy maximizing optimal control problem is
directly transcribed, by discretizing both state, and control,
variables, into a finite-dimensional nonlinear program. Due to
the importance of turbine performance, OWC control typically
aims to maximize turbine efficiency, albeit ignoring the impact
of rotational speed on hydrodynamic performance. With the
RHPS optimal control approach developed in this paper, a bet-
ter trade-off between turbine and hydrodynamic performance
is achieved and, therefore, energy production is improved.

Index Terms— Optimal control, oscillating-water-column,
pseudospectral method, receding-horizon, wave energy.

I. INTRODUCTION

Wave energy converters (WECs) harness wave energy,
which is an almost untapped renewable energy resource
that can significantly reduce greenhouse gas emissions [1].
However, in comparison to other renewable resources, the
cost of producing energy using waves is relatively high. To
improve WECs commercial viability, it is essential to reduce
the levelized cost of energy (LCoE), defined as

LCoE =
Capital costs + Operational costs

Produced energy over theWEC lifetime
, (1)

associated with wave energy projects. To this end, the devel-
opment of energy maximising control strategies is vital [2].

The oscillating-water-column (OWC) system [3], schemat-
ically shown in Fig. 1, is one of the most promising WECs
due to its relative simplicity of operation, and the fact
that all the moving parts are above the water level. The
displacement of a water column, due to the excitation force
of the ocean waves, compresses/decompresses a volume of
air in a pneumatic chamber. The pressure difference, between
the pneumatic chamber and the atmosphere, consequently
generates a bidirectional air flow, which typically drives
a self-rectifying air turbine [4]. Finally, a suitable electric
generator converts the turbine mechanical power into electric
power.
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Fig. 1. Schematics of a fixed OWC WEC. Adapted from [5].

To date, since the air turbine is the most critical element
of the OWC, and since traditional WEC hydrodynamic
control [6] is difficult to apply on OWCs due to the absence
of suitable actuators [7], the vast majority of OWC control
strategies aim to maximize turbine efficiency [4]. However,
for some types of turbines, namely the Wells turbine, ro-
tational speed affects the hydrodynamic performance, par-
ticularly when medium-to-high levels of wave energy are
available [5]. Therefore, if a Wells turbine is employed, the
control strategy should consider also the OWC hydrody-
namic characteristics, and not exclusively focus on turbine
efficiency. Some works on overall efficiency maximisation
for OWCs equipped with a Wells turbine, using a relatively
simple and computationally efficient steady-state control ap-
proach, have recently emerged [5], [8]. Furthermore, energy
maximising control, using nonlinear model predictive control
(MPC) [9], [10] and inverse fuzzy model control [11], has
been considered for biradial turbines, although the impact of
the biradial turbine rotational speed on the OWC hydrody-
namic performance is (almost) negligible [5].

This paper develops a receding-horizon pseudospectral
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(RHPS) optimal control method for energy maximisation of
OWC WECs equipped with a Wells turbine (selected for
its capability of affecting hydrodynamic efficiency) and an
ideal electric generator. A study case, for which a Mutriku-
like OWC [12] is considered, shows that the proposed
RHPS control improves energy production, in comparison
to the traditional turbine efficiency maximising (TEM) con-
trol approach. Pseudospectral (PS), or collocation, methods
belong to a family of techniques, known as mean weighted
residuals [13], which are used to discretize integrals and
partial differential equations. In particular, PS methods are
a subset of the so-called spectral methods, in which state,
and control, variables are approximated via a basis function
expansion. Although early work on PS optimal control
emerged in the late 80s [14], PS control has only found
application in more recent years, mainly in flight control [15].
In the wave energy field, PS control has been used to tackle
the WEC optimal control problem (OCP) (e.g., [16]–[18]),
especially since the discretization in PS methods provides
a relatively fast convergence rate [16], resulting in a more
computationally efficient nonlinear program (in comparison
to MPC [19]), which is potentially suitable for real-time
applications. Furthermore, the PS representation allows an
analytic simplification of the radiation convolution integral,
which models the radiation force in the WEC hydrodynamic
model, as opposed to the somewhat classical approach of
using a model reduction technique to approximate the convo-
lution term with a suitable finite-order state space model [20].

The reminder of the paper is organized as follows. In
Section II, a complete model for a fixed OWC is provided. In
Section III, the proposed RHPS control approach is detailed
and the study case is presented. Section IV provides a
comprehensive discussion of the results, while conclusions
are given in Section V.

II. OSCILLATING-WATER-COLUMN MODELLING

This section provides the model of the fixed OWC consid-
ered in this paper, which is similar to that employed in [5].
For brevity of notation, the time dependence of variables is
omitted throughout the section.

A. Hydrodynamic modelling
A hydrodynamic model for a fixed OWC is specified,

under linear potential theory assumptions, as [21]

ż = v

mpv̇ = −ρwgSwz − Sw∆p− fr + fex,
(2)

where mp is the (neutrally buoyant) water piston mass,
Sw is the OWC water plane area, ρw is the water density,
g is the gravity acceleration constant, ∆p = pc − p0 is
the difference between the chamber pressure, pc, and the
atmospheric pressure, p0, z is the water column position, and
v is the water column velocity. The wave excitation force,
fex, is calculated as a sum of Nw frequency components,
ωn, [22] as

fex =

Nw∑
n=1

An cos(ωn t+ ϕn), (3)

where ϕn and An are the phase and amplitude of the n-th
component of the excitation force, respectively. Finally, the
force due to radiated waves, fr, is written [23] as

fr = A(∞)v̇ +

∫ t

−∞
kr(t− τ) v(τ) dτ, (4)

where the piston impulse response function, kr, is the inverse
Fourier transform of the OWC radiation damping, B(ω),
and the OWC added mass at infinite frequency, A(∞), is
computed as A(∞) = A(ω)|ω→∞. WAMIT software [24] is
used to solve the boundary element problem [25] and obtain
the frequency dependant functions, namely A(ω), B(ω),
An(ω), and ϕn(ω).

B. Pneumatic chamber modelling

The air pressure variation in the pneumatic chamber is
modelled [22] as

ṗc
pc

= − γ

Vc

(
V̇c

Vc
+

wturb

mc

)
, (5)

where γ is the air specific heat ratio, wturb indicates the
turbine air mass flow rate (positive for outward air flow),
mc = ρc Vc is the air chamber mass, ρc is the air chamber
density, Vc = V0 − Swz is the chamber air volume, and
V0 is the air volume in still water conditions. The air
compression/expansion is modelled as an isentropic process,

ρc = ρ0(
pc
p0

)1/γ , (6)

where ρ0 is standard atmosphere air density. Finally, the
available pneumatic power in the chamber is defined as

Ppneu = ∆pwturb/ρc. (7)

C. Power take-off system modelling

Under design operating conditions, i.e., large Reynolds
(Re > 106) and low Mach (Ma < 0.3) numbers at the
turbine blade tips, the air turbine can be modelled using the
following dimensionless description [26]:

Φ = fΦ(Ψ), Π = fΠ(Ψ), (8)

where

Φ =
wturb

ρair Ω d3r
, Π =

Pturb

ρair Ω3 d5r
, Ψ =

∆p

ρair Ω2 d2r
. (9)

In (8) and (9), Φ is the dimensionless air mass flow rate, Π
is the dimensionless turbine power, Ψ is the dimensionless
pressure head, Ω is the turbine rotational speed, dr is the
turbine rotor diameter, Pturb is the turbine power, and ρair =
min(ρc, ρ0) is the air density at the turbine inlet. Finally, the
turbine efficiency is defined as

ηturb(Ψ) =
Pturb

Ppneu
=

fΠ(Ψ)

Ψ fΦ(Ψ)
, (10)

The dimensionless functions fΦ(Ψ), fΠ(Ψ), and ηturb(Ψ),
for the Wells turbine considered in this paper, are shown in
Fig. 2.

1558



Fig. 2. Model of the Wells turbine considered in this work [5]. The
figure shows the turbine efficiency, ηturb, dimensionless flow rate, Φ, and
dimensionless power, Π, as functions of the dimensionless pressure head,
Ψ. Ψmep isΨ at the turbine maximum efficiency point (MEP).

If bearing friction losses are ignored, the PTO system
dynamic is modelled as

d

dt

(
1

2
IΩ2

)
= Pturb − Tctrl Ω, (11)

where I is the inertia moment of the rotating parts, Pturb is
the turbine mechanical power, computed using (8) and (9),
and Tctrl is the generator control torque.

Turbine damping, ζ, is defined as the ratio wturb/∆p. In
impulse-like turbines, ζ only marginally depends on Ω [27],
meaning that the OWC hydrodynamic performance is not
significantly affected by the rotational speed. However, the
Wells turbine damping is a function of Ω [28], as

ζ =
wturb

∆p
=

dr
κΩ

, (12)

where κ is a constant that depends on the turbine geometry.
With a Wells turbine, it is therefore possible to potentially
improve the OWC hydrodynamic performance by modulat-
ing Ω. Fig. 3 shows the relationship between wturb and ∆p,
as Ω varies, for a Wells turbine and a biradial turbine.

III. RECEDING HORIZON PSEUDOSPECTRAL CONTROL

With PS optimal control, the original infinite-dimensional
OWC OCP is directly transcribed (e.g., [29]), meaning
that the associated state, and input, variables are suitably
discretized, into a finite-dimensional nonlinear program.

A. Pseudospectral representation

To illustrate pseudospectral optimal control, consider the
generic dynamical system

ẋ = f(x(t),u(t), t) t ∈ [0, T ], (13)

with state vector x(t) ∈ Rn, control input vector u(t) ∈ Rm,
and f : Rn × Rm × R → Rn. Additionally, suppose that

Fig. 3. Relationship between the pressure difference, ∆p, and the air mass
flow rate, wturb, as Ω changes, for a Wells turbine and a biradial turbine.
Figure adapted from [5].

the OCP is to find the optimal control input, uopt, which
maximises (or minimises) the following cost functional:

J =

∫ T

0

h(x(t),u(t), t)dt, h : Rn × Rm × R → Rn (14)

subject to the system dynamic in (13).
The i-th component of x(t) (i = 1, . . . n) and the j-th

component of u(t) (j = 1, . . .m) are approximated via an
expansion of M basis functions, θq(t), as

xi(t) ≈ xM
i (t) :=

M∑
q=1

x̃iqθq(t) = Θ(t)x̂i, (15)

and

uj(t) ≈ uM
j (t) :=

M∑
q=1

ũjqθq(t) = Θ(t)ûj, (16)

respectively, where

Θ(t) = [θ1(t), . . . θq(t), . . . θM(t)] (17)

and

x̂i = [x̃i1, . . . x̃iq, . . . x̃iM]⊺,

ûj = [ũj1, . . . ũjq, . . . ũjM]⊺.
(18)

To simplify the notation, it is useful to introduce the matrices
X ∈ RM×n and U ∈ RM×m, respectively, as

X = [x̂1, . . . x̂i, . . . x̂n] and U = [û1, . . . ûj, . . . ûm]. (19)

Due to the approximations (15) and (16), since the cost
functional (14) solely depends on the M(n+m) parameters
of X and U, the OCP is now finite-dimensional.

If (15), (16), and

ẋi(t) ≈ ẋM
i (t) :=

M∑
q=1

x̃iqθ̇q(t) = Θ̇(t)x̂i, (20)

1559



are replaced in (13), the i-th dynamic equation in residual
form can be written, as

ri(t) = ẋM
i (t)− fi(xM(t),uM(t), t), (21)

where xM and uM are the vectors of the approximated n
state variables (in (15)) and m control inputs (in (16)),
respectively. To obtain the M(n + m) parameters (i.e., x̂i

and ûj in (18)), which minimise the n residuals in (21), a
pseudospectral, or collocation, method can be adopted. To
this end, a number, Nc, of collocation points (or nodes), tk,
upon which the system dynamic is ‘collocated’, are selected.
In other words, the system dynamic equation is satisfied at
the collocation points, meaning that the residuals are zero at
the Nc nodes:

ri(tk) = Θ̇(tk)x̂i − fi(X,U, tk) = 0. (22)

Finally, a suitable quadrature formula approximates the
functional in (14), as

J =

∫ T

0

h(X,U, t)dt ≈
Nc∑
k=0

h(X,U, tk). (23)

The original optimal control problem, namely find uopt that
minimises (or maximises) (14) subject to (13), is simplified
to the following finite dimensional optimisation problem:
Find X and U to minimise (or maximise) (23) subject to the
equality constraints due to the system dynamic (22), which
is a system of n × Nc equations (n state variables and Nc

nodes).

B. Pseudospectral optimal control for OWCs

For the OWC considered in this paper, the state vector and
control input are specified, respectively, as

x(t) = [z(t) v(t) ∆p(t) Ω(t)]⊺ and u(t) = Tctrl(t). (24)

Furthermore, the control objective is to maximise mechanical
energy

J =

∫ T

0

Tctrl(t) Ω(t) dt, t ∈ [0 T ] (25)

subject to the constraints given by the OWC system dynamic
in (2), (5), and (11). Given the oscillatory nature of the
problem, a somewhat natural choice of basis functions is
that of a truncated Fourier series (zero-mean trigonometric
polynomial), therefore

xi(t) ≈
M∑

q=1

xc
iqcos(qω0t) + xs

iqsin(qω0t) = Θ(t)x̂i

u(t) ≈
M∑

q=1

uc
qcos(qω0t) + us

qsin(qω0t) = Θ(t)û,

(26)

where ω0 = 2π/T is the fundamental frequency. By substi-
tuting (26) into (25), the cost function becomes

J =

∫ T

0

û⊺Θ(t)⊺Θ(t)x̂4 dt =
T

2
û⊺x̂4, (27)

due to the orthogonality of Θ, i.e., ⟨θq, θp⟩ = δqpT/2
(where δqp is the Kronecker delta). To investigate real-time

control possibilities, this paper considers a receding-horizon
approach to tackle the OWC OCP. Therefore, T in (27) is
replaced with the length of the prediction horizon, Th.

The derivative of the i-th approximated state variable is

ẋM
i = Θ̇(t)x̂i = Θ(t)Dθx̂i, (28)

where the q-th block of the block diagonal matrix, Dθ ∈
R2M×2M , is

Dq
θ =

[
0 qω0

−qω0 0

]
. (29)

By use of (26) and (29), the system dynamic equations (i.e.,
(2), (5), and (11)), in residual form, and collocated at Nc

uniformly spaced nodes tk (with Nc sufficiently large), are
expressed as

r1 = Dθx̂1 − x̂2,
r2(tk) = mpΘ(tk)Dθx̂2 + ρwgSwΘ(tk)x̂1

+ SwΘ(tk)x̂3 +Θ(tk)Gx̂2 − fex(tk),

r3(tk) = Θ(tk)Dθx̂3 + (Θ(tk)x̂3 + p0)
γ

V0 − SwΘ(tk)x̂1(
−SwΘ(tk)x̂2 +

dr
ρcκ

Θ(tk)x̂3

Θ(tk)x̂4

)
,

r4(tk) = Θ(tk)Dθx̂4 − (ρaird
5
rfΠΘ(tk)x̂3Θ(tk)x̂3

−Θ(tk)û)/I.
(30)

The matrix G ∈ R2M×2M , which results from the approx-
imation of the convolution integral in the PS formulation
(e.g., [16]), specified from∫ t

−∞
kr(tk − τ)xM

2 (τ)dτ = Θ(tk)(G−A(∞)Dθ)x̂2, (31)

is a block diagonal matrix, and the q-th block of G is

Gq =

[
B(qω0) qω0A(qω0)

−qω0A(qω0) B(qω0)

]
. (32)

C. Study case description

For the study case, the proposed RHPS control is numer-
ically tested on a Mutriku-like OWC WEC, whose design
parameters are reported in Table I, and compared to the
traditional TEM control approach [30]. A representative
irregular sea state [5], obtained from a JONSWAP spectral
density function [31], with peak shape parameter γJ = 3.3,
peak period, Tp = 10 s, and significant wave height, Hs =
1.08 m, is used in the simulation.

To explore real-time control possibilities, four different
prediction horizons are considered (namely, Th = 5, 10, 15,
and 20 seconds) and the receding-horizon time step, ∆rh, is
0.5 s. For each considered Th, 20 realisations of 300 s are run
with M = 20. In a receding-horizon framework, the use of
Fourier series to approximate non-periodic functions gives
a discontinuity problem at the boundary, known as Gibbs
phenomenon. In this paper, the solution proposed in [32],
which is based on the construction of a buffer zone using
a smooth polynomial function, is adopted to avoid such
discontinuities. Finally, the optimisation problem is solved
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TABLE I
OWC SYSTEM PARAMETERS

Parameter Value Unit Parameter Value Unit
mp 27748 kg I 3.06 kg m2

A(∞) 71618 kg κ 0.775 -
l 4.5 m V0 144 m3

dr 0.75 m Sw 19.35 m2

TABLE II
RESULTS FOR DIFFERENT PREDICTION HORIZONS

Prediction Turbine Hydro. Aero. Power Comp.
horizon efficiency CWR CWR increase time∗

(s) (%) (%) (%) (%) (s)
5 (0.5Tp) 35.9 53.5 19.2 5.7 0.17

10 (1.0Tp) 35.3 56.4 19.9 9.3 0.43
15 (1.5Tp) 36.2 56.5 20.5 11.7 0.89
20 (2.0Tp) 36.4 57.1 20.8 12.9 1.54
∗Using a PC with a core i7-12700 processor and a 32 GB RAM.

using an interior-point method [33], due to its capability of
dealing with large sparse matrices.

IV. RESULT AND DISCUSSION

A. Results

Table II reports the turbine efficiency, hydrodynamic cap-
ture width ratio (CWR), ξhydro, aerodynamic CWR, ξaero,
and mean computational time to solve the optimisation
problem, for four different prediction horizons. The hydro-
dynamic CWR and aerodynamic CWR are defined, respec-
tively, as

ξhydro =
P̄pneu

P̄wave l
, ξaero =

P̄turb

P̄wave l
, (33)

where l is the OWC width, P̄wave is the time-averaged
wave power per metre of wave crest, while P̄pneu and P̄turb

are, respectively, the time-averaged pneumatic and turbine
powers. Furthermore, Table II also shows the percentage
increase in mechanical power obtained using RHPS control,
in comparison to TEM control.

Figures 4 (a) and (b) show, respectively, the time traces of
the rotational speed and control torque, under TEM control
and RHPS control (with Th = 10 s). Finally, Fig. 5 shows
the computational time required to solve each optimisation
problem, for Th = 5 s and Th = 10 s, as a function of the
simulation time.

B. Discussion

For all the considered prediction horizons in Table II, the
power increase obtained with RHPS control, compared to
TEM control, is due to the fact that a better trade-off between
the hydrodynamic and aerodynamic performance is achieved,
meaning that a higher ξaero is attained. With TEM control,
the turbine efficiency, hydrodynamic CWR, and aerodynamic
CWR are 37.7%, 45.8%, and 17.3%, respectively. Therefore,
although η̄turb is higher with TEM control, RHPS control
better considers the impact of Ω on the OWC hydrodynamic
subsystem and, consequently, ξhydro is superior, particularly
since RHPS control generates larger pressure peaks (due to

Fig. 4. Time series of the (a) rotational speed, Ω, and (b) control torque,
Tctrl, with the traditional TEM control and RHPS optimal control.

Fig. 5. Time required to solve each optimisation problem, as a function of
the simulation time, for two different prediction horizons, namely Th = 5
s and Th = 10 s. The red line at 0.5 s indicates the computational time
limit for real-time control.

the pulses in T rhps
ctrl , and therefore in Ω) which, in turns, lead

to higher pneumatic power.
As reported in Table II, as Th increases, power production

improves at the cost of a higher computational burden.
For real-time control (considering the PC specified in the
footnote of Table II), only Th = 5 s and Th = 10 s can be
used, since each optimisation problem is consistently solved
in less than 0.5 s (as shown in Fig. 5), which is the limit for
real-time control (i.e., Tcomp < ∆rh).

It is important to note that, in contrast to TEM control,
RHPS control may require negative control torque values
(as shown in Fig. 4(b)), meaning that reactive power must
be provided to the OWC system to maximise energy. The
need for supplying reactive power to maximize wave energy
extraction is not unusual in traditional WEC (hydrodynamic)
control [6]; however, it remains significantly more chal-
lenging for OWCs, primarily due to the lack of suitable
actuators [7]. In light of Fig. 4(b), the reactive power required
on OWCs is significantly lower than the amount of reactive
power typically required in energy maximising control for
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other WEC types. This is arguably due to the presence of
a ‘soft connection’ (i.e., the air chamber) between the PTO
and the OWC hydrodynamic part, meaning that: (i) the OWC
PTO is not constrained to always move in concert with the
ocean waves [4], and (ii) the degree to which rotational speed
modulation affects hydrodynamic performance in OWCs is
limited, particularly in comparison to what traditional WEC
(hydrodynamic) control can do on other WEC types.

V. CONCLUSIONS

For Th = 10 s and Th = 5 s, the proposed RHPS control
offers a relatively computationally efficient solution to the
OWC OCP and, in comparison with the traditional TEM
control, improves energy production since the hydrodynamic
performance is better taken into account.

For real-time PS control, a receding-horizon approach is
essential, although the prediction horizon length is limited by
the available computational power, as well as by the errors in
the excitation force prediction which may deteriorate control
performance [34].

It should be noted that the higher harmonics in T rhps
ctrl

(Figure 4(b)) may increase OpEx and, therefore, the LCoE.
However, the most detrimental effect on OWC is turbine
stall, which generates high frequency vibrations [35], and,
to this end, RHPS control tends to keep Ω higher (Figure
4(a)), hence reducing the risk of stall.
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