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Abstract— In this work, we develop a method based
on robust control techniques to synthesize robust
time-varying state-feedback policies for finite, infinite,
and receding horizon control problems subject to con-
vex quadratic state and input constraints. To ensure
constraint satisfaction of our policy, we employ (initial
state)-to-peak gain techniques. Based on this idea, we
formulate linear matrix inequality conditions, which
are simultaneously convex in the parameters of an
affine control policy, a Lyapunov function along the
trajectory and multiplier variables for the uncertain-
ties in a time-varying linear fractional transforma-
tion model. In our experiments this approach is less
conservative than standard tube-based robust model
predictive control methods.

I. INTRODUCTION

In this paper, we deal with the synthesis of robust
policies subject to linear time-varying discrete-time dy-
namics and convex constraints. Solving this type of
control problem has applications, for example, in robust
model predictive control (MPC) and trajectory planning.

Constraint satisfaction and robustness to uncertainties
in dynamical systems are among the most important
design objectives in controller synthesis. Controller de-
sign methods addressing these objectives are typically
ascribed to the fields of optimal and robust control.
A key issue in this setting is the complexity of the
policy even for linear quadratic control problems if these
are subject to constraints [40] or uncertainties [32]. In
fact, no method is known today to solve these problems
exactly with polynomial complexity (over an infinite
horizon). For this reason, relaxation techniques are em-
ployed to find suboptimal solutions. Specifically, robust
control relies on multiplier relaxations [11], [35], [39]
to guarantee robustness against uncertainties and, e.g.,
MPC relaxes the infinite horizon optimal control problem
by approximating it with a finite horizon problem.

Given these facts, a natural approach to address con-
trol problems with constraints and uncertainties is to
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combine both relaxation techniques, i.e., to study the
finite horizon robust control problem subject to con-
straints. This is the topic of the present paper. To avoid
overly conservative stability and feasibility results [28],
we optimize over affine linear feedback policies instead of
feedforward policies. This is by now generally accepted as
the preferred approach for problems with uncertainties
[12]. Specifically, to deal with uncertainties, we utilize
multipliers from robust control. To ensure robust con-
straint satisfaction, we define the constraints as outputs
of our system and use the energy-to-peak gain [34]
to bound the maximum of these outputs for a given
initial state. The resulting optimization problem can be
convexified in all variables as a linear matrix inequality
(LMI) problem.

The fusion of robust control with receding horizon
optimal control has been studied since at least 1987 [6].
From this perspective, the present paper follows the
ideas outlined by Kothare in [21], [22], who proposed to
solve time-invariant robust control problems subject to
constraints online, taking the current state into account.
The time-invariance introduces conservatism, which is
why [8], [7], [36] proposed to additionally optimize over
a N -step input sequence using Kothares MPC scheme as
terminal ingredient. Convex optimization of time-varying
feedback policies subject to constraints and uncertainties
is then established by minimax MPC as described, e.g., in
[25]. All these methods rely on solving LMI optimization
problems online, which is often considered costly. On the
other hand, as we show in [13] that the structure of LMIs
for robust controller synthesis can be exploited to develop
faster solvers, which is particularly interesting for online
applications like MPC.

After minimax MPC, so-called tube-based MPC meth-
ods with fixed feedback terms [24] gained much attention
due to their seemingly lower computational complexity.
However, this reduced computational effort comes at the
price of not being able to optimize the tube and tube
controller online and tightening the constraints, resulting
in conservatism. Furthermore, optimizing robust perfor-
mance and incorporating model uncertainty descriptions
from robust control is challenging in tube-based MPC.
In recent publications, the integration of classical robust
control tools, like dynamic IQCs [29], [37], into MPC is
explored. In addition, optimizing tube parameters online
to reduce conservatism has gained interest [31].

In parallel to robust MPC, finite horizon robust con-
troller design is investigated from a robust control per-
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spective [38], [3], [14] using LMI-based tools. Constraints
have been incorporated recently into such finite horizon
robust control settings under the umbrella of reachability
analysis [33]. This synthesis technique is extended to
joint optimization over feedforward and feedback terms
in [19] for Lipschitz continuous uncertain nonlinearities.

Table I gives an overview of robust MPC schemes
from the literature. We indicate whether the MPC meth-
ods are recursively feasible (RF), can incorporate linear
fractional transformations (LFTs) as uncertainty models,
optimize over feedback policies online (OFPO), involve
an LMI optimization problem, and how the number of
decision variables grows with the prediction horizon.
Integrating LFTs is beneficial as these representations
of uncertain systems are capable of handling rational
dependencies of system matrices on uncertain param-
eters. Additionally, optimizing feedback policies online
is desirable, since this increases the robustness of MPC
schemes. LMI optimization problems should be avoided,
because the typical online optimization problem in linear
MPC is a less costly to solve quadratically constrained
quadratic program. Finally, it is desirable that the num-
ber of decision variables grows at most linearly in N .

Among the multitude of tube-based MPC methods in
the literature, some allow for flexible uncertainty descrip-
tions such as LFTs. However, the offline calculation of the
feedback terms leads to unavoidable conservatism. This
is in contrast to the other methods considered, which
perform these calculations online. Here, LMI-MPC [25]
and SLSMPC can be considered as disturbance feedback
MPC methods, since LMI-MPC uses disturbance feed-
back and SLSMPC optimizes the closed loop transfer
function from disturbances to outputs. These methods
can achieve any of the desired properties in Table I. How-
ever, we mention that LFTs can only be handled when
incorporating LMIs. Finally, we also analyzed algorithms
[22], which solve time-invariant controller design prob-
lems online. Through this, feedback terms are optimized
online, LFTs can be considered, and the optimization is
recursively feasible. Constraints are taken into account
using the (initial state)-to-peak gain. Here, conservatism
arises from the assumption of quadratic Value/Lyapunov
functions and the time invariance of the controller law.
The present approach generalizes [22] to the time-varying
case, removing the conservatism caused by time-invariant
feedback policies. Compared to disturbance feedback ap-
proaches, the quadratic value function still poses a source
of conservativeness, but, on the other hand, recursive
feasibility is much easier to obtain and the number of
decision variables grows only linearly with the prediction
horizon. Moreover, LMI-based robust controller design is
embedded in our approach.

We start our exposition with Section II demonstrating
how the energy-to-peak gain enables the integration of
constraints in LMI formulations of robust control. The
problem formulation of Section II does not consider
uncertainties in which case we establish that our con-

TABLE I: This table compares the feastures recursive feasibility
(RF), linear fractional representation uncertainty model (LFT),
online feedback policy optimization (OFPO), convex program to be
solved online (CP) and the asymptotic number of decision variables
in the prediction horizon N of the MPC schemes tube MPC [24],
[26], [27], [20], ∞-hor. MPC [22], [9], SLSMPC [10], DFMPC [12]
(disturbance feedback MPC), LMI-MinMax MPC [25] and our
approach.

method RF LFTs OFPO CP # dec. v.

Tube MPC Yes (Yes) No QP O(N)

∞-hor. MPC Yes Yes Yes SDP -
SLSMPC No No Yes QP O(N2

)

DFMPC (Yes) (Yes) Yes QP/SDP O(N2
)

LMI-MPC Yes Yes Yes SDP O(N2
)

Our method Yes Yes Yes SDP O(N)

vexification is feasible at an initial state x̄, whenever the
corresponding open loop optimal control problem is fea-
sible at x̄. Uncertainties are included in Section III. We
introduce another relaxation step in Section IV to also
handle infinite horizon robust optimal control problems
with constraints. Finally, in Section V this formulation
is shown to be stable and recursively feasible if used in
a receding horizon fashion.

II. The uncertainty-free finite-horizon case
In a first step, we restrict ourselves to time-varying

affine systems without uncertainties of the form

xk+1 = fk +Akxk +B1
kuk, (1)

where xk ∈ Rn is the state and uk ∈ Rm is the con-
trol input and fk ∈ Rn is the affine term. We further
assume that the control policy satisfies some quadratic
constraints, i.e., uk should be chosen such that

v⊺kivki ≤ 1 ∀i = 1, . . . , s, k = 0, . . . , N (2)

holds for affine outputs vki = g2
ki + C2

kixk +D21
ki uk. Note

that the affine terms g2
ki enable the consideration of any

polytopic feasible set.
For systems (1) with constraints (2), an initial state x̄,

and a positive definite matrix Pf , we study the problem

minimize
(uk)N−1

k=0

N−1
∑
k=0

y⊺kyk +
⎛
⎝

1
xN

⎞
⎠

⊺

Pf

⎛
⎝

1
xN

⎞
⎠

(3)

s.t. xk+1 = fk +Akxk +B1
kuk,

yk = g1
k +C1

kxk +D11
k uk,

vki = g2
ki +C2

kixk +D21
ki uk, i = 1, . . . , s,

v⊺kivki ≤ 1, i = 1, . . . , s,

x0 = x̄.

To approach this optimal control problem, we con-
struct a family of functions Vk ∶ Rn → R with

Vk(xk) =
⎛
⎝

1
xk

⎞
⎠

⊺
⎛
⎝

p11
k p12

k

p21
k P 22

k

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Pk

⎛
⎝

1
xk

⎞
⎠

(4)
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defined by a sequence of symmetric matrices Pk ∈
R(1+n)×(1+n), a sequence of affine linear control policies
uk = πk(xk) = k1

k +K2
kxk = Kk (1 x⊺k)

⊺
, and a constant

ν ∈ R satisfying the conditions

Vk(x) ≥ y⊺y + Vk+1(x+), (5a)
for x+ = fk +B1

kk1
k + (Ak +B1

kK2
k)x,

y = g1
k +D11

k k1
k + (C1

k +D11
k K2

k)x,

V0(x̄) ≤ ν, (5b)

VN(x) ≥
⎛
⎝

1
x

⎞
⎠

⊺

Pf

⎛
⎝

1
x

⎞
⎠

, (5c)

Vk(x) ≤ ν ⇒ v⊺i vi ≤ 1, (5d)
for vi = g2

ki +D21
ki k1

k + (C2
ki +D21

ki K2
k)x,

for all x ∈ Rn, k = 0, . . . , N − 1 and i = 1, . . . , s. Condition
(5a) states that Vk decreases at least by the cost y⊺kyk

at every time-step, (5b) signifies that the initial state is
contained in a ν-sublevel set of V0, (5c) implies that VN

upper bounds the terminal cost. Lastly, (5d) means that
states in the ν-sublevel set of Vk satisfy all constraints.

We can formulate (5) as LMI constraints in (Pk)Nk=0
and ν.

Proposition 2.1: Let the functions Vk be parametrized
as in (4) and define Σ0 ∶= (1 x̄⊺)

⊺
(1 x̄⊺) as well as

⎛
⎜⎜
⎝

fK
k AK

k

g1K
k C1K

k

g2K
ki C2K

ki

⎞
⎟⎟
⎠
∶=
⎛
⎜⎜
⎝

fk Ak B1
k

g1
k C1

k D11
k

g2
ki C2

ki D21
ki

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0
0 I

k1
k K2

k

⎞
⎟⎟
⎠

.

Then, (5a)-(5c) are equivalent to the conditions

0 ⪰ (●)⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−p11
k −p12

k

−p21
k −P 22

k

p11
k+1 p12

k+1
p21

k+1 P 22
k+1

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 I

1 0
fK

k AK
k

g1K
k C1K

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(6a)
ν ≥ trace P0Σ0, (6b)

PN ⪰ Pf (6c)

respectively. Moreover, (5d) is implied by the inequality

Pk ⪰ ν (g2K
ki C2K

ki )
⊺
(g2K

ki C2K
ki ) . (6d)

Proof: Left-multiplication with (1 x⊺) and right-

multiplication with (1 x⊺)
⊺

of the matrix inequalities
(6a) and (6c) reveals the equivalence to (5a) and (5c),
respectively. The same argument shows (6d) ⇒ (5d).
Lastly, plugging the definition of Σ0 into (6b) proves the
equivalence to (5b).

Remark 2.2: Using the lossless S-procedure, it is pos-
sible to construct an equivalent LMI constraint for (5d)
instead of (6d). However, we could not convexify the
lossless constraint in all the parameters.

The matrix inequalities of Proposition 2.1 are linear
in the Lyapunov function matrices (Pk)Nk=0 and the
variable ν. In addition, since we impose the constraint
ν ≥ trace P0Σ0, we obtain the sequence of estimates

ν ≥ V0(x0) ≥ y⊺0y0 + V1(x1)
≥ y⊺0y0 + y⊺1y1 + V2(x2)

≥
N−1
∑
k=0

y⊺kyk + VN(xN)

≥
N−1
∑
k=0

y⊺kyk +
⎛
⎝

1
xN

⎞
⎠

⊺

Pf

⎛
⎝

1
xN

⎞
⎠

if we implement the control law uk = πk(xk) = k1
k+K2

kxk =
Kk (1 x⊺k)

⊺
and evaluate the inequalities along the

resulting trajectory. Thus, by minimizing ν as objective
function, we can try to find a smallest upper bound on
the performance of our controller (Kk)N−1

k=0 while certify-
ing constraint satisfaction. However, the matrix inequal-
ities of Proposition 2.1 are not linear in the controller
(Kk)N−1

k=0 such that they cannot be utilized for convex
synthesis. For this reason, we provide a convexification
in all variables in the following theorem.

Theorem 2.3: Define the decision variables

P̃k ∶= P −1
k , K̃k ∶=KkP −1

k , ν̃ ∶= ν−1, Z ∶= ν−2
√

Σ0P0
√

Σ0

including the slack variable Z and introduce the notation

⎛
⎜⎜
⎝

f̃K
k ÃK

k

g̃1K
k C̃1K

k

g̃2K
ki C̃2K

ki

⎞
⎟⎟
⎠
∶=
⎛
⎜⎜
⎝

fk Ak B1
k

g1
k C1

k D11
k

g2
ki C2

ki D2
ki

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p̃11
k p̃12

k

p̃21
k P̃ 22

k

k̃1
k K̃2

k

⎞
⎟⎟
⎠

.

Then, for positive definite matrices P̃k and Pk, (6a)-(6d)
are equivalent to

0 ⪯

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p̃11
k+1 p̃12

k+1 0 p̃11
k p̃12

k

p̃21
k+1 P̃ 22

k+1 0 f̃K
k ÃK

k

0 0 I g̃1K
k C̃1K

k

p̃11
k (f̃K

k )⊺ (g̃1K
k )⊺ p̃11

k p̃12
k

p̃21
k (ÃK

k )⊺ (C̃1K
k )⊺ p̃21

k P̃ 22
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (7a)

0 ⪯
⎛
⎝

P̃0 ν̃
√

Σ0

ν̃
√

Σ0
⊺

Z

⎞
⎠

, trace Z ≤ ν̃, (7b)

P̃N ⪯ P −1
f , (7c)

0 ⪯
⎛
⎜⎜
⎝

p̃11
k p̃12

k g̃2K
ki

p̃21
k P̃ 22

k C̃2K
ki

g̃2K
ki C̃2K

ki ν̃I

⎞
⎟⎟
⎠

. (7d)

Proof: Multiplying (6a) from both sides by P̃k yields

0 ⪰ (●)⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−p̃11
k −p̃12

k

−p̃21
k −P̃ 22

k

p11
k+1 p12

k+1
p21

k+1 P 22
k+1

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
0 I

p̃11
k p̃12

k

f̃K
k ÃK

k

g̃1K
k C̃1K

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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To arrive at (7a), we apply the Schur complement. To
infer (7d) from (6d) we proceed analogously. We multiply
from both sides by P̃k to obtain

P̃k ⪰ ν (g̃2K
ki C̃2K

ki )
⊺
(g̃2K

ki C̃2K
ki ) .

Now, applying the Schur complement lemma yields the
LMI (7d). Next, consider the condition ν ≥ trace P0Σ0 =
trace P̃ −1

0 Σ0. To handle this constraint, we add the slack
variable Z ⪰ ν−2√Σ0P̃ −1

0
√

Σ0. With this slack variable,
we can replace the original constraint by

ν̃ ≥ trace Z, Z ⪰ ν̃2
√

Σ0P̃ −1
0
√

Σ0.

By taking the Schur complement, the above is equivalent
to (7b). Finally, to convexify the constraint PN ⪰ Pf , we
invert the matrices on both sides leading to (7c).

With Theorem 2.3 we arrive at the convex relaxation
of problem (3) optimized over control policies

maximize
P̃k,K̃k,ν̃,Z

ν̃ (8)

s.t. (7a) for k = 0, . . . , N − 1,

(7d) for k = 0, . . . , N − 1,

(7b), and (7c).

In general, such a convex relaxation provides only an
upper bound on the optimal value of the considered
problem. In the present case without uncertainties, we
can nevertheless show that strict feasibility of (3) implies
strict feasibility of (8).

Theorem 2.4: There exists an input sequence (uk)N−1
k=0

such that all constraints of (3) are satisfied and v⊺kivki is
strictly smaller than one for k = 0, . . . , N − 1, i = 1, . . . , s,
if and only if (8) is strictly feasible.

Proof: The proof can be found in [15].
The optimal values of (3) and (8) are not necessarily

equivalent, which is discussed in [15].

III. The finite-horizon case with uncertainty
Building on Section II, we can incorporate an addi-

tional disturbance input in our model and work with

xk+1 = fk +Akxk +B1
kuk +B2

kwk. (9)

In this setup, wk ∈ Rl is the disturbance input, which
is introduced in addition to the state xk ∈ Rn and the
input uk ∈ Rm. We assume that both the disturbances
and the controller are subject to constraints, i.e., the
control input needs to enforce (2). Moreover, we require
the disturbance input to satisfy the quadratic constraint

⎛
⎝

zk

wk

⎞
⎠

⊺
⎛
⎝

M11
k M12

k

M21
k M22

k

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Mk

⎛
⎝

zk

wk

⎞
⎠
≥ 0

for all elements Mk of a convex cone M, where zk =
g3

k +C3
kxk +D31

k uk +D32
k wk is some output of our system.

We further assume that M−1
k exists for all Mk ∈ M,

that the inverse is contained in another convex cone

M′ and that for all Mk ∈ M the block M11
k is posi-

tive definite and M22
k is negative definite. Introducing

quadratically constrained inputs wk in this fashion is
standard in robust control and can be utilized to describe
simple bounded disturbances such as ∥wk∥ ≤ 1, but also
parametric uncertainties modeled by LFTs as, e.g., in
[16].

In the following dynamic program, we treat the distur-
bance as an adversary, i.e., we maximize over wk while
minimizing over uk in the problem

min.
u0∈U0

max.
w0∈W0

min.
u1∈U1

max.
w1∈W1

. . .
N−1
∑
k=0

y⊺kyk +
⎛
⎝

1
xN

⎞
⎠

⊺

Pf

⎛
⎝

1
xN

⎞
⎠

(10)
s.t. xk+1 = fk +Akxk +B1

kuk +B2
kwk,

yk = g1
k +C1

kxk +D11
k uk +D12

k wk,

vki = g2
ki +C2

kixk +D21
ki uk, i = 1, . . . , s,

zk = g3
k +C3

kxk +D31
k uk +D32

k wk,

x0 = x̄,

with sets Uk = Uk(xk) and Wk = Wk(zk) defined by

uk ∈ Uk(xk) ⇔ v⊺kivki ≤ 1 i = 1, . . . , s, (11)

wk ∈ Wk(zk) ⇔
⎛
⎝

zk

wk

⎞
⎠

Mk

⎛
⎝

zk

wk

⎞
⎠
≥ 0 ∀Mk ∈ M. (12)

Note that while minimizing over uk and maximizing
over wk may seem like a symmetric situation, this is
not the case from an optimization perspective. In par-
ticular, since the cost function is convex, minimizing
over (uk)N−1

k=0 for fixed (wk)N−1
k=0 is a convex quadratically

constrained quadratic program. On the other hand, max-
imizing over (wk)N−1

k=0 for fixed (uk)N−1
k=0 is a non-convex

quadratically constrained quadratic program. For this
reason, we cannot carry over the result of Theorem 2.4
from the uncertainty-free case.

Due to this asymmetry we treat constraints on uk

differently from constraints on wk. Concretely, to handle
(11), we once again search for functions Vk whose sublevel
sets guarantee the fullfilment of uk ∈ Uk(xk), while (12)
is taken into account through the S-procedure. Hence,
to solve (10), we again construct a family of functions
(Vk)Nk=0 as in (4) and a control policy πk(xk) = k1

k +
K2

kxk = Kk (1 x⊺k)
⊺

satisfying the inequalities (5b)-
(5d). In contrast to the disturbance-free case, however,
instead of (5a), the increment condition

Vk(x) ≥ y⊺y + Vk+1(x+), (13)
for x+ = fk +B1

kk1
k + (Ak +B1

kK2
k)x +B2

kw,

y = gk +D11
k k1

k + (C1
k +D11

k K2
k)x +D12

k w,

needs to be satisfied robustly with respect to w, i.e., for
all w ∈ Wk(zk) and all x ∈ Rn. By the S-procedure, if
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there exists some Mk ∈ M such that for all x ∈ Rn, w ∈ Rl

Vk(x) ≥ y⊺y +
⎛
⎝

z

w

⎞
⎠

⊺

Mk

⎛
⎝

z

w

⎞
⎠
+ Vk+1(x+), (14)

for x+ = fk +B1
kk1

k + (Ak +B1
kK2

k)x +B2
kw,

y = g1
k +D11

k k1
k + (C1

k +D11
k K2

k)x +D12
k w,

z = g3
k +D31

k k1
k + (C3

k +D31
k K2

k)x +D32
k w

holds, then this implies (13). Consequently, we can certify
robust performance and robust constraint satisfaction
using (14) and (5b)-(5d) as follows.

Proposition 3.1: Let the functions Vk be parametrized
as in (4) and define

⎛
⎜⎜
⎝

fK
k AK

k

g1K
k C1K

k

g3K
k C3K

k

⎞
⎟⎟
⎠
∶=
⎛
⎜⎜
⎝

fk Ak B1
k

g1
k C1

k D11
k

g3
k C3

k D31
k

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0
0 I

kk Kk

⎞
⎟⎟
⎠

.

Then, (14) is characterized by

(●)⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−p11
k −p12

k

−p21
k −P 22

k

M22
k M21

k

p11
k+1 p12

k+1
p21

k+1 P 22
k+1

I

M12
k M11

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 I 0
0 0 I

1 0 0
fK

k AK
k B2

k

g1K
k C1K

k D12
k

g3K
k C3K

k D32
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⪯ 0. (15)

Furthermore, the conditions (15) and (6b)-(6d) imply
robust performance in the sense that ν upper bounds the
optimal cost of (10) and robust constraint satisfaction in
the sense that the policy (πk)N−1

k=0 chooses feasible inputs
for any realization of (wk)N−1

k=0 satisfying (12).
Proof: To establish equivalence between (15) and

(14), left-multiply (1 x⊺ w⊺) and right-multiply its
transpose to (15). Summing (14) for k = 0, . . . , N −1 with
x = xk and w = wk chosen as a trajectory of (9) yields

V0(x0) ≥
N−1
∑
k=0

⎛
⎝

y⊺kyk +
⎛
⎝

zk

wk

⎞
⎠

⊺

Mk

⎛
⎝

zk

wk

⎞
⎠
⎞
⎠
+ VN(xN). (16)

Here, the terms
⎛
⎝

zk

wk

⎞
⎠

⊺

Mk

⎛
⎝

zk

wk

⎞
⎠

are positive for all ad-

missible values of wk and, hence, can be omitted without
violating (16). This establishes the inequalities

V0(x0) ≥
N−1
∑
k=0

y⊺kyk + VN(xN) and Vk(xk) ≥ Vk+1(xk+1).

In a next step we use the relations in Proposition 2.1.
From (6b) we conclude V0(x0) ≤ ν and from (6c) we infer

ν ≥
N−1
∑
k=0

y⊺kyk +
⎛
⎝

1
xN

⎞
⎠

⊺

Pf

⎛
⎝

1
xN

⎞
⎠

,

showing the robust performance bound of ν and that
x⊺kPkxk ≤ ν holds for all k. The latter fact together with
(6d) implies robust constraint satisfaction.

As in the disturbance-free case, we are interested in
matrix inequalities, which are also linear in the controller
parameter. This is provided in the next theorem.

Theorem 3.2: Define the decision variables

P̃k ∶= P −1
k , K̃k ∶=KkP −1

k , ν̃ ∶= ν−1, Z ∶= ν−2
√

Σ0P0
√

Σ0

including the slack variable Z, denote the matrix block

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
B2

k 0 I 0 0
D12

k 0 0 I 0
D32

k 0 0 0 I

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̃22
k M̃21

k

p̃11
k+1 p̃12

k+1
p̃21

k+1 P̃ 22
k+1

I

M̃12
k M̃11

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(●)⊺

by Q̃k and introduce the notation

⎛
⎜⎜
⎝

f̃K
k ÃK

k

g̃1K
k C̃1K

k

g̃3K
k C̃3K

k

⎞
⎟⎟
⎠
∶=
⎛
⎜⎜
⎝

fk Ak B1
k

g1
k C1

k D11
k

g3
k C3

k D31
k

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p̃11
k p̃12

k

p̃21
k P̃ 22

k

k̃1
k K̃2

k

⎞
⎟⎟
⎠

.

Then the matrix inequalities (15), (6b), (6c) and (6d) are
equivalent to the linear matrix inequalities

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q̃11
k q̃12

k q̃13
k q̃14

k p̃11
k p̃12

k

q̃21
k Q̃22

k Q̃23
k Q̃24

k f̃K
k ÃK

k

q̃31
k Q̃32

k Q̃33
k Q̃34

k g̃1K
k C̃1K

k

q̃41
k Q̃42

k Q̃43
k Q̃44

k g̃3K
k C̃3K

k

p̃11
k (f̃K

k )⊺ (g̃1K
k )⊺ (g̃3K

k )⊺ p̃11
k p̃12

k

p̃21
k (ÃK

k )⊺ (C̃1K
k )⊺ (C̃3K

k )⊺ p̃21
k P̃ 22

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⪰ 0,

(17)

(7b), (7c) and (7d) for positive definite Pk and P̃k.
Proof: Applying the dualization lemma (Lemma 4,

[18]) to (15) proves that (15) holds if and only if

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 0 0
0 I 0 0 fK

k AK
k B2

k

0 0 I 0 g1K
k C1K

k D12
k

0 0 0 I g2K
k C2K

k D22
k

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−p̃11
k −p̃12

k

−p̃21
k −P̃ 22

k

M̃22
k M̃21

k

p̃11
k+1 p̃12

k+1
p̃21

k+1 P̃ 22
k+1

I

M̃12
k M̃11

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(●)⊺

is positive semi-definite. By invoking the Schur comple-
ment we obtain (17). The remaining matrix inequalities
are identical to those in Theorem 2.3 and proven analo-
gously.

With this theorem, we can perform LMI synthesis of
robust state-feedback controllers subject to constraints
for finite horizon problems by solving the SDP

maximize
P̃k,K̃k,ν̃,Z,M̃k∈M′

ν̃ (18)

s.t. (17) for k = 0, . . . , N − 1,

(7d) for k = 0, . . . , N − 1,

(7b) and (7c).
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IV. The infinite horizon case with uncertainty
Now, we consider the infinite horizon problem

min.
u0∈U0

max.
w0∈W0

min.
u1∈U1

max.
w1∈W1

. . .
∞
∑
k=0

y⊺kyk (19)

s.t. xk+1 = fk +Akxk +B1
kuk +B2

kwk,

yk = g1
k +C1

kxk +D11
k uk +D12

k wk,

vki = g2
ki +C2

kixk +D21
ki uk, i = 1, . . . , s,

zk = g2
k +C2

kxk +D21
k uk +D22

k wk,

x0 = x̄,

where the constraint uk ∈ Uk(xk) is described by (11)
and the constraint wk ∈ Wk(zk) is described by (12). To
obtain a tractable relaxation of this problem, we assume
that for k ≥ N ∈ N0 the problem parameters are not
changing in k. Denoting the parameters at time k by

Gk ∶=

⎛
⎜⎜⎜⎜⎜
⎝

fk Ak B1
k B2

k

g1
k C1

k D11
k D12

k

g2
ki C2

ki D21
ki 0

g3
k C3

k D31
k D32

k

⎞
⎟⎟⎟⎟⎟
⎠

,

this means Gk = GN ∀k ≥ N . The assumption of constant
problem parameters for k ≥ N can be well justified, e.g.,
if the data (Gk)∞k=0 results from the linearization of a
nonlinear system around a reference trajectory, which is
at an equilibrium for k ≥ N . Accordingly, our strategy
for solving (19) consists of searching for a function
parametrized by (Pk)∞k=0 and a controller parametrized
by (Kk)∞k=0 which are stationary for k ≥ N , i.e.,

(P0, P1, P2, . . .) = (P0, . . . , PN−1, PN , PN , PN , . . .),
(K0, K1, K2, . . .) = (K0, . . . , KN−1, KN , KN , KN , . . .).

Refer to dual mode prediction [23] for details on this
parametrization of (Pk)∞k=0, (Kk)∞k=0. In the infinite hori-
zon case we require (14), (5b) for all k ≥ N instead of
enforcing the terminal condition (5c). To render this re-
quirement tractable, we exploit the stationarity assump-
tion to reduce this infinite family to the two constraints

VN(x) ≥ y⊺y +
⎛
⎝

z

w

⎞
⎠

⊺

MN

⎛
⎝

z

w

⎞
⎠
+ VN(x+) (20)

for x+ = fN +B1
N k1

N + (AN +B1
N K2

N)x +B2
N w,

y = g1
N +D11

N k1
N + (C1

N +D11
N K2

N)x +D12
N w,

z = g3
N +D31

N k1
N(C3

N +D31
N KN)x +D32

N w,

VN(x) ≤ ν ⇒ v⊺i vi ≤ 1, (21)
for vi = g2

Ni +D2
NikN + (C2

Ni +D2
NiKN)x,

for all x ∈ Rn, w ∈ Rl. The constraint (21) corresponds
to (5d) for k = N . However, (20) differs from (13),
since the same function VN appears on both sides of
the inequality. Nonetheless, we can still express (20) as
matrix inequality and convexify it, as follows.

Proposition 4.1: If the functions Vk are parametrized
as in (4) with stationary sequences as above, then the

conditions (14),(5d) are satisfied for all k ∈ N0, if (15)
holds for k = 0, . . . , N −1, (6d) holds for k = 0, . . . , N , and
PN , MN satisfy the matrix inequality

(●)⊺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−p11
N −p12

N

−p21
N −P 22

N

M22
N M21

N

p11
N p12

N

p21
N P 22

N

I

M12
N M11

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 I 0
0 0 I

1 0 0
fK

N AK
N B2

N

g1K
N C1K

N D12
N

g3K
N C3K

N D32
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⪯ 0. (22)
Proof: The proof relies on the same arguments as

the proof of Proposition 3.1 and is thus omitted.
Essentially, the matrix inequality (22) replaces the

terminal condition (6c). It ensures an upper bound on
the infinite tail cost and robust constraint satisfaction
for k ≥ N . Next, we derive a linear formulation of this
matrix inequality providing a convex relaxation of (19).

Theorem 4.2: Define the decision variables

P̃k ∶= P −1
k , K̃k ∶=KkP −1

k , ν̃ ∶= ν−1, Z ∶= ν−2
√

Σ0P0
√

Σ0

including the slack variable Z, denote the matrix block

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
B2

N 0 I 0 0
D12

N 0 0 I 0
D22

N 0 0 0 I

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̃22
N M̃21

N

p̃11
N p̃12

N

p̃21
N P̃ 22

N

ν̃I

M̃12
N M̃11

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(●)⊺

by Q̃N and introduce the new notation

⎛
⎜⎜
⎝

f̃K
N ÃK

N

g̃1K
N C̃1K

N

g̃2K
N C̃2K

N

⎞
⎟⎟
⎠
∶=
⎛
⎜⎜
⎝

fN AN B1
N

g1
N C1

N D11
N

g2
N C2

N D21
N

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p̃11
N p̃12

N

p̃21
N P̃ 22

N

k̃1
N K̃2

N

⎞
⎟⎟
⎠

.

Then the matrix inequalities (15), (6b), (22) and (6d)
are equivalent to the LMIs (17), (7b), (7d) and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q̃11
N q̃12

N q̃13
N q̃14

N p̃11
N p̃12

N

q̃21
N Q̃22

N Q̃23
N Q̃24

N f̃K
N ÃK

N

q̃31
N Q̃32

N Q̃33
N Q̃34

N g̃1K
N C̃1K

N

q̃41
N Q̃42

N Q̃43
N Q̃44

N g̃2K
N C̃2K

N

p̃11
N (f̃K

N )⊺ (g̃1K
N )⊺ (g̃2K

N )⊺ p̃11
N p̃12

N

p̃21
N (ÃK

N )⊺ (C̃1K
N )⊺ (C̃2K

N )⊺ p̃21
N P̃ 22

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⪰ 0.

(23)
Proof: The proof follows the same lines as the one

of Theorem 3.2 and is omitted.
Using Theorem 4.2 we now formulate a convex relax-

ation of (19). In this problem, we maximize over the
variable ν̃, whose inverse provides a robust upper bound
on the cost in (19). The resulting convex program is

maximize
P̃k,K̃k,ν̃,Z,M̃k∈M′

ν̃ (24)

s.t. (17) for k = 0, . . . , N − 1,

(7d) for k = 0, . . . , N,

(7b) and (23).
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V. Receding horizon control with uncertainty
Resulting from the controller synthesis problem (24)

we can define the receding horizon controller

πMPC
j (x̄j) = K̃0,jP̃ −1

0,j

⎛
⎝

1
x̄j

⎞
⎠
=K0,j

⎛
⎝

1
x̄j

⎞
⎠

where K̃0,j and P̃0,j are obtained by solving (24) for
the problem data (Gk,j)Nk=0 ∶= (Gj+k)Nk=0. Our final
result is the recursive feasibility, robust convergence and
robust constraint satisfaction of πMPC

j . We highlight that
πMPC

j is defined simply as the solution to problem (24),
which is recursively feasible by default. This property
is a consequence of the constraint (23), which can be
interpreted as a terminal ingredient for πMPC

j .
Theorem 5.1 (Recursive feasibility and convergence):

If (24) is feasible at x̄0, then (24) is feasible at all states
x̄j with j ∈ N defined by the closed loop

x̄j+1 = fj +Aj x̄j +B1
j πMPC

j (x̄j) +B2
j wj (25)

for any realization of (wj)∞j=0 satisfying (12). Further-
more, the constraints (11) are robustly satisfied and the
signal (yj)∞j=0 converges to zero.

Proof: The proof can be found in [15].
In Theorem 5.1, we interpret the convergence of

(yj)∞j=0 to zero as stability result given the fact that
an appropriate choice of (g1

k, C1
k , D11

k , D12
k ) yields y⊺j =

(x̄⊺j u⊺j ) and implies x̄j → 0 and uj → 0 for j →∞.

VI. Numerical example
We adopt an example from [10], where the LTI system

xk+1 =
⎛
⎝

1 + ϵ1 0.15
0.1 1

⎞
⎠

xk +
⎛
⎝

0.1
1.1 + ϵ2

⎞
⎠

uk

with xk ∈ R2, uk ∈ R and time-varying uncertain param-
eters ϵ1 and ϵ2 is considered. The states and inputs are
constrained by

x⊺k
⎛
⎝

1 0
0 0
⎞
⎠

xk ≤ 82, x⊺k
⎛
⎝

0 0
0 1

⎞
⎠

xk ≤ 82, u2
k ≤ 42.

In our git repository https://github.com/SphinxDG/
ConstrainedRobustControl, we derive Gk and a family
of multipliers M that describe this system, its con-
straints, and the uncertainties in the parameters ϵ1 and
ϵ2. As a result, we can test the feasibility of the infinite
horizon robust optimal control problem (19) at some
initial condition x̄ by attempting to solve the relaxation
(24). We can further determine the feasibility of (19) at x̄
exactly using a dynamic programming method described
in [17]. Thus, to evaluate our relaxation (24), we sample
initial conditions x̄ from the equidistant 10 × 10 grid
X0 at [−7.9, 7.9]2 and compute the fraction of initial
conditions certified as feasible by (24) over the truly
feasible initial conditions determined by the dynamic
programming method of [17]. To solve (24) we use the
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Fig. 1: This figure shows the fraction of initial conditions from
X0 ∩ F , for which we found a solution ν̃ > 0 to (24). Here, F is
the set of feasible initial conditions of the original problem (19).
The parameter ϵ1 is assumed in [−γ, γ] with γ sampled from
{0.05p ∣ p = 1, . . . , 9} and ϵ2 is assumed to be in [−0.1, 0.1]. The
plots show the fraction of feasible initial conditions for different
prediction horizons N .

solver Mosek [2] and the parser CVXPY [1]. The frac-
tion of initial conditions correctly classified as feasible
is plotted in Figure 1 for different prediction horizons
N over an uncertainty magnitude γ ∈ [0.05, 0.45] with
ϵ1 ∈ [−γ, γ] and ϵ2 ∈ [−0.1, 0.1]. As expected, a longer
prediction horizon monotonically increases the fraction of
feasible initial conditions and provides an improvement
over Kothares’ method [22], which is obtained for N = 0.

As we mentioned, a similar experiment has been car-
ried out in [10], where an additional norm bounded
disturbance has been considered. If we test the methods
benchmarked in [10] on our modified setup and compare
them to our solution, we obtain the results depicted
in Figure 2. We observe that SLSMPC achieves higher
feasibility ratios, while our method performs at least as
good as the best competitors considered in [10]. Recall,
however, that the method from [10] cannot be applied
to systems in LFT-form directly and it is not shown to
be recursively feasible in [10]. Furthermore, all methods
considered in [10] were supplied with the exact feasible
set of (19) as terminal region, which has been shown to
be a significant advantage [30] but can be expensive to
compute in higher dimensions; we did not make use of
this set in (24).

VII. Conclusion
In this article, we demonstrate how classical techniques

from robust control theory can be exploited to solve
dynamic programs with uncertainties and inequality con-
straints for time-varying linear systems. Since we invoke
the standard relaxations from robust control for convex-
ification, the solutions resulting from our method are
inexact. We apply these solutions for MPC and highlight
advantages over, e.g., tube-based MPC, which stems
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Fig. 2: This figure compares the feasibility of (24) to other methods
for robust MPC. The y-axis is the fraction of initial conditions from
X0 ∩ F , for which feasibility of (19) is certified. Here, F is the
set of feasible initial conditions for the original problem (19). The
parameter ϵ1 is assumed in [−γ, γ] with γ sampled from {0.05p ∣
p = 1, . . . , 9} and ϵ2 is assumed to be in [−0.1, 0.1]. The methods
compared are our method ( ), the tube based MPC methods
[24] ( ), [26] ( ), [20] ( ), [27] ( ), the disturbance
feedback methods [5] ( ), [4] ( ), and SLSMPC [10] ( ).

from the ability of our method to optimize feedback
policies online and to incorporate flexible uncertainty
descriptions in the form of LFT models. In future work,
we aim to extend the method presented to nonlinear
systems incorporating ideas from [14] and to reduce the
computational burden due to solving LMIs making use
of structure exploiting SDP solvers as in [13].
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