
  

 

Abstract— This paper presents an adaptive optimal control 

algorithm to minimize membrane fouling and energy to deal 

with model uncertainty and disturbances in the characteristics 

of the water to be filtered. The Membrane BioReactor under 

interest is operated at constant flux and the objective is to 

minimize energy requirements such that the quantity of water 

filtered over a given period of time tf equals p*. The algorithm is 

based on the iterative application of the optimal strategy initially 

proposed in [1] to account on input water characteristics 

changes. With such a modified control approach, it is shown in 

simulations that the ratios between filtration and backwash time 

periods adapt over the time to take account on unknown water 

input variations. 

I. INTRODUCTION 

Membrane BioReactors (MBR) are more and more used in 
the wastewater industry due to their high treatment 
performance and the recent and continuous decrease in their 
investment and functioning costs, [2]. However, their main 
drawback remains the risk for membrane fouling which must 
be managed. A number of strategies and technologies have 
been proposed to deal with this problem for both systems 
functioning at constant flux (and variable TransMembrane 
Pressure) or at variable flux (and constant TMP). Among 
others, methods based on models, and notably optimal controls 
have shown to exhibit very interesting results in practice, cf. 
for instance [3-5]. With respect to other methods, these 
approaches are interesting because they allow to quantify, for 
the simplified models used, how far the actual functioning 
evolves from the theoretical optimum. 

Dealing with such model-based approaches require using 
models of MBR. Such models can be obtained from data (as 
in our approach) or from mass-balance models coupling 
biokinetics models (based on the well-known ASM models) 
with models describing the dynamics of membrane fouling, cf. 
for instance [6]. In this work, such detailed models are used for 
simulating the actual system (as a "virtual process") while a 
simple control design model is obtained using the data 
generated with the detailed model. In such a way, the detailed 
model is seen as a virtual process that can be used to evaluate 
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the control approaches and their robustness prior to apply them 
in real life. 

This paper is organized as follows. First, the optimization 
problem when the systems inputs are constant is recalled 
together with its general solution. Then, its adaptive form to 
deal with varying inputs is proposed. For testing the adaptive 
optimal control, a virtual process coupling a biological process 
model with a model describing the fouling dynamics is 
proposed. Then, the proposed control algorithm is applied to 
this virtual process: the results obtained are compared to those 
obtained assuming constant inputs. Finally, conclusions and 
perspectives are drawn. 

II. OPTIMAL CONTROL OF FILTRATION SYSTEMS 

A. Optimal time control with a constant input flux 

In this section, we recall the optimal control problem that 

has been solved in [1]. Let us consider a membrane system 

operated at constant flux. It is supposed that the dynamic of 

the system may be characterized by a hidden variable x(t) – 

for the sake of simplicity let interpret it as the quantity of 

matter attached onto the membrane - this dynamic being 

modeled as: 
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2
𝑓
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where u in [-1,1] is the control (by convention, u=1 during 

filtration phase and u=-1 in backwash phase). 

The dynamic of the water produced over time is given by: 
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where Lp and Lr are the fluxes during filtration and backwash 

respectively. 

 It was further assumed that the total energy demand is the 

sum of the energy needed during the filtration phase and the 

one required during the backwash phase: this energy, denoted 

ET depends on x(t) and is expressed by (3): 
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where x0 is the initial state while lp and lr are functions 

modeling the required energy during the filtration and the 

backwash phases, respectively. 

 Under appropriate general hypotheses and using the 

Pontryagin Maximum Principle, Aichouche et al. solved 

analytically the problem of minimizing the total energy ET to 

attain a given quantity of water treated at the free final time tf 

in computing the best sequence of filtration and backwash 

phases, and their optimal lengths for the specific following 

functions (available studies show that first-order functions are 

good candidates, [1]): 

fp=apx+bp    (4) 

fr=arx    (5) 

lp=cpx+dp    (6) 

lr=crx+dr    (7) 

 Formally speaking, the following problem was solved: 

∫ (
1 + 𝑢

2
𝑙𝑝(𝑥(𝑡)) +

1 − 𝑢

2
𝑙𝑟(𝑥(𝑡))) 𝑑𝑡

𝑡𝑓

0𝑢(∙)

𝑖𝑛𝑓

 

subject to (1) and (2) with 𝑢 ∈ [−1,1] and where tf is the 

first entry time in the target : 

𝑇 = {(𝑥, 𝑝)  𝑠. 𝑡.  𝑝 ≥ 𝑝∗} 
where p* is the desired quantity of water to be treated at tf. 

 In the most general case, it was shown that the optimal 

control consists in first applying either filtration or backwash 

(depending on the position of the initial condition x0 with 

respect to a specific value 𝑥, which only depends on the 

parameters of the model) until a singular arc is attained 

(corresponding to a specific value 𝑢), then stay on this 

singular arc until a specific instant (which also only depends 

on the model parameters), and finally apply a filtration phase 

until the desired quantity of water p* be attained. Notice that 

such a strategy involves a singular arc: it means that the 

system is assumed to be able to function at a value of u which 

is neither -1 (backwash) nor +1 (filtration). Since a filtration 

system can only function physically in these two distinct 

modes, applying a singular arc in practice on a given period 

of time is equivalent in fixing the filtration over backwash 

times ratio and alternating between these two controls as often 

as possible. This theoretical optimal strategy is illustrated in 

Figure 1. 

Remark: Figure 1 presents the very general optimal control 

synthesis for the problem considered. Notice however that for 

some very specific initial conditions, the optimal control 

consists in switching from -1 to +1 instead of staying on the 

singular arc (cf. [1]). This case corresponds to the yellow 

curve, which is called a “switching curve” in optimal control 

theory. In practice, this case is very particular and in most 

cases does not occur, unless at initial time the variable p is 

relatively close to p* while x is already large, which makes 

not really sense in real applications. 

 More precisely, for the functions (4-7) it was shown that 

the optimal control parameters to minimize ET are given by: 

𝑥 =

(
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  (8) 

𝑢 =
−(𝑎𝑝 + 𝑎𝑟)𝑥 + 𝑏𝑝

(𝑎𝑟 − 𝑎𝑝)𝑥 + 𝑏𝑝
 (9) 

 
Figure 1. Optimal synthesis for the considered parameters in the (p; x) 

plane. The singular arc is in green and the switching curve in yellow (from 
[1]) 

B. Main contribution: an adaptive strategy to deal with 

uncertainty and input disturbances 

 Notice that the above recalled optimal control parameters 

(the ratio of filtration/backwash phase lengths and the 

switching instant) only depend on the initial condition and on 

the model parameters. It should be underlined here that these 

parameters are supposed to be constant. Of course, functions 

fp and fr in (1) do depend on input concentrations. In other 

words, the proposed control is feasible and indeed optimal as 

long as the input water characteristics are constant. Thus, such 

a strategy is of interest when the filtration system is 

considered as an unitary separation system. However, it is the 

rule rather than the exception that input water characteristics 

change in time, notably its concentration in total suspended 

solids (TSS). It is notably the case when the filtration system 

is coupled with a biological process and form a MBR 

treatment process. This situation was well motivated in [6] 

where it is mentioned: “[...] such a system cannot be modelled 

by a “biological compartment” followed by a model 

describing the physical behavior of the membrane: the 

coupling of both must be necessarily taken into account to 

finally come up with what will be named hereafter an 

“integrated model”. Thus, when the inputs of the whole 

system vary with time, the parameters of the functions fp and 

fr in (1) would also change with time. This makes most of the 

optimal control approaches developed in the literature for the 

optimal control of MBR – and that are often applied in open 

loop - not very robust with respect to process inputs. 

 To deal with these characteristics, the following adaptive 

optimal control is proposed. This adaptive control is still 
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based on the previously recalled algorithm: however, instead 

of computing control parameters once and for all, model – and 

control parameters - are re-identified after each 

filtration/backwash sequence assuming the TMP is measured 

online. That way, the control continuously adapts control 

parameters to the actual fouling dynamics in case of input 

changes. It is an important step forward with respect to the 

initial work proposed in [1] since instead of an open-loop 

control, the optimal control works now in closed-loop. 

 The hereabove described algorithm is modified as 

follows: 

 The initialization of the control is unchanged: a first 
identification is realized using data available during one (or 
more) filtration/backwash sequence(s). Then, based on the 
identified kinetics, the computation of the optimal control 
parameters is realized and one obtains in particular 𝑥. At 

that instant, we apply 𝑢0 = +1 (filtration) if 𝑥 < 𝑥 or 𝑢 =
−1 (backwash) if 𝑥 > 𝑥 until 𝑥 = 𝑥 (and we denote 𝑡𝑒 the 

corresponding instant); 

 At 𝑡𝑒, using the last available data, we identify again the 
model dynamic and compute a new control 𝑢1. To allow 
for the system to attain a pseudo steady state, the new 
computed control is applied for a number of cycles, 
typically 3 (and we denote 𝑡𝑐 one cycle length); 

 From that time (𝑡𝑒+3𝑡𝑐) until the time at which the 
objective will be attained (a given quantity of treated water 
has been produced), we i) re-identify the dynamics of the 
system, ii) re-identify control parameters and iii) apply it 
to the system after each cycle period. 

 This algorithm is schematically represented in Figure 2: 

 
Figure 2. An adaptive optimal control of the filtration membrane system to 

adapt the optimal control in the presence of input variations 

Remark: Notice that the variations of the parameters over the 

time are not known in advance. Therefore, the optimization 

problem under uncertainty could be defined under some 

statistical knowledge of the uncertainty and then consists in 

optimizing in average, or as a robust optimization "in the 

worst case", which might be very conservative. Here, we 

implicitly assume that the variations of the parameters are 

slow so that we expect that applying the optimal feedback law 

as if the parameters were constant would not be so far from 

the optimal solution as if the variations of parameters were 

known in advance. Of course, we do not have a mathematical 

proof of this property, but we show the efficiency of the 

approach as a proof of concept. Let us underline that this 

approach is possible because we have a control strategy in 

feedback loop. 

To test this new adaptive algorithm, a model coupling the 
biological and fouling dynamics is necessary. We present such 
a coupled model in the following section inspired from the 
model initially proposed in [7] and further validated by [8]. 

II. A VIRTUAL PROCESS: COUPLING A BIOLOGICAL 

PROCESS MODEL WITH A FILTRATION MODEL 

A. Model of a virtual Anaerobic Membrane BioReactor 

To simulate the functioning of a biological system, we 

chose to couple a biokinetic model of the anaerobic digestion 

including the dynamics of the SMPs (cf. [9]) to a fouling 

model initially proposed in [7]. This model describes the 

dynamics of a simple two step model of the anaerobic 

digestion that has been validated several times on real data, 

including the dynamics of the so-called Soluble Microbial 

Products (this model is named hereafter "AM2b", cf. [8]). An 

interesting point is that this last model potentially allows us to 

take into account the influence of both the Total Suspended 

Solids that attach onto the membrane (the "cake") and the 

SMP (that are smaller components and that can block the 

pores of the membrane). 

Based on a mass balance for the different model 

components, the dynamic equations of the coupled system, 

during the filtration phase, are given by: 

�̇�1 = (𝜇1(𝑆1) + 𝜇𝑃𝑀𝑆(𝑆𝑀𝑃)… 

…− 𝑘𝑑1 −
𝑄𝑤
𝑉
− 𝐶𝑥1)𝑋1 

(10) 
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𝑉
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…+ (𝑏3𝜇1(𝑆1) + 𝑘𝑑1 − 𝑏1𝜇𝑃𝑀𝑆(𝑆𝑀𝑃))𝑋1… 
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(14) 
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𝜇𝑃𝑀𝑆(𝑆𝑀𝑃) = 𝜇𝑆𝑀𝑃𝑚𝑎𝑥
𝑆𝑀𝑃

𝐾3 + 𝑆𝑀𝑃
 (17) 

𝑀 = 𝛽
𝑄𝑜𝑢𝑡
𝑉
+ (1 − 𝛽)

𝑄𝑤
𝑉

 (18) 

where Qin is the input flow rate (L/h), Qout the permeate flow 

rate (L/h), X1 the acidogenic biomass concentration, X2 the 

methanogenic biomass concentration, S1 the COD 

concentration, S2 the VFA concentration,  𝑘𝑑1 and 𝑘𝑑2 are the 

mortality of X1 and X2, respectively (h-1), 𝑘𝑖, 𝑖 = 1. .3 and 

𝑏𝑖 , 𝑖 = 1. .4 are yields coefficients (g/g), 𝜇1 the growth rate of 

the acidogenic biomass growing on S1, 𝜇𝑃𝑀𝑆 the growth rate 

of acidogenic biomass growing on the SMP, 𝜇2 the growth 

rate of methanogenic biomass growing on S2, 𝜇𝑚𝑎𝑥1 the 

maximum growth rate of X1 on S1 (h-1), 𝜇𝑚𝑎𝑥2 the maximum 
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growth rate of X2 on S2 (h-1), 𝜇𝑃𝑀𝑆𝑚𝑎𝑥,  the maximum growth 

rate of X1 on the SMP (h-1), K1 the semi-saturation constant 

associated to S1, K2 the semi-saturation constant associated to 

S2, K3 the semi-saturation constant associated to the SMP and 

Ki the inhibition constant associated to the consumption of S2. 

The contribution of the soluble (ST=S1+S2 and SMP) and 

particulate components (XT=X1+X2) to the membrane fouling 

is supposed to be modeled by two different phenomena, that 

are the cake formation (mostly by particulate components but 

also by soluble components) and the pores blocking (mostly 

by the SMP but also by other soluble components) following 

the dynamics: 

�̇� = 𝛿𝑄𝑜𝑢𝑡(∑ 𝐶𝑆𝑖𝑆𝑖𝑖 + 𝐶𝑆𝑀𝑃𝑆𝑀𝑃 + ∑ 𝐶𝑋𝑖𝑋𝑖𝑖 ) (19) 

�̇�𝑝 = 𝛿′𝑄𝑜𝑢𝑡(𝛽𝑆𝑀𝑃 + 𝛽′𝑆𝑇) (20) 

where 𝐶𝑆𝑖, 𝐶𝑋𝑖, 𝐶𝑆𝑀𝑃, 𝛽 and 𝛽′ are weighted functions while 𝛿 
and 𝛿′ are parameters used to balance the rates of the two 
fouling phenomena. 

B. Dynamic of the system during the backwash 

 During backwash, the only phenomena of importance is 

supposed to be the detachment of the attached matter. Under 

the assumptions i) that the dynamics of biological phenomena 

are supposed to be very slow with respect to the dynamics of 

the detachment and ii) that the mass of matter detached is 

small with respect to the matter present in the reactor, the 

dynamic equations for the backwash period are simply given 

by: 

�̇� = −𝑓𝑚(m) = −𝑤.𝑚 (21) 

�̇�𝑝 = −𝑓𝑠(𝑆𝑝) = −𝑤
′. 𝑆𝑝 (22) 

where w and w’ are the backwashing efficiencies related to 

cake layer and to pores blocking, respectively. 

C. Open loop simulation: Effect of an input step 

concentration on the simulated state 

 In this section, the model is simulated using an open-

loop strategy (e.g. with constant filtration and backwash time 

periods). It is simulated over a time horizon of 68 hours. The 

filtration and backwash periods lengths are 36 minutes and 3 

minutes respectively. The model inputs together with the 

parameter values used for the simulations are given in the 

following Table. In Figure 3, the input substrate 

concentrations S1in and S2in vary from 90 to 180, and from 20 

to 60, respectively, at time t=33h30min. 

Even if the filtration/backwash length were initially 

optimally computed (assuming inputs were known), in the 

presence of such unknown input changes, the constant control 

will not be optimal anymore. 

 
TABLE 1. INPUT AND MODEL PRAMETER VALUES USED FOR THE 

SIMULATIONS 

Input/parameter   unit Value 

𝜇𝑚𝑎𝑥1, 𝜇𝑚𝑎𝑥2, 𝜇𝑚𝑎𝑥𝑆𝑀𝑃  (1/h) 1.2; 1.5; 0.14 

K1, K2, K3, Ki                    (g/L) 10; 5; 3; 15 

𝑘𝑖 , (𝑖 = 1. .3)  - 25; 15; 16.08 

𝑏𝑖 , (𝑖 = 1. .4) - 40; 0.6; 3; 1.3 

kd1=kd2 (1/h) 0.18 

𝑄𝑖𝑛, 𝑄𝑜𝑢𝑡, 𝑄𝑤 (L/h) 10; 8.5; 1.5 

V (L) 50 

𝐶𝑥1 = 𝐶𝑥2 
𝐶𝑠1 = 𝐶𝑠2 = 𝐶𝑆𝑀𝑃  

- 0.05; 0.005 

𝛽,  𝛽′, 𝛿, 𝛿′ - 0.6; 0.04; 0.7; 0.06 

w, w’ - 10; 1 

 
Figure 3. Open-loop simulations of the MBR with step input concentrations. 

S stands for Sp.“Oscillations” (high variance) observed on some signals are 
due to the succession of filtration/backwash cycles which have more 

important repercussions on some variables than on others. 

III. NUMERICAL APPLICATIONS OF THE OPTIMAL 

CONTROL 

In this section, we apply the adaptive optimal control 

presented in Section II.B to the model recalled in the previous 

section. The control designs are performed with unknown 

input concentrations. The available measurement is the 

variable m. In practice, this measurement is not possible. It is 

thus assumed here that this “hidden” variable is simply 

proportional to the TMP. This measurement is known to be 

very robust not really subject to noise. To concentrate on the 

main important point of the paper (comparisons of the 

performances of the three control strategies) the simulations 

shown were realized without any noise. 

A. Adaptive optimal control of membrane fouling for 

constant input concentrations 

Recall that even if the input substrate concentrations are 
constant, they can be unknown. The algorithm described in 
Section II.B is applied to the MBR. The inputs substrates S1in 
and S2in are constant and equal 90 and 20 respectively. The 
closed loop control system is simulated over 68h and 15 
minutes. The first three filtration/backwash phase lengths, 
used for initial system identification are constant (tF=36 
minutes and tbw= 3 minutes). 

Figure 4 shows the automatic adaptation of the ratio of the 
length of the filtration phase over the length of the backwash 
phase (on the left Figure). On the right Figure, it is observed 
that the length of the backwash phase increases until the 
beginning of the 16th hour of the experiment and then 
stabilizes around 216 seconds. The stabilization observed is 
due to the convergence of the system towards a pseudo-steady 
state. 

B. Adaptive optimal control of membrane fouling in the 

presence of input disturbances 

Now, we simulated the closed-loop control of the MBR in 
the presence of input steps. At t=50, S1in and S2in vary from 90 
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to 180, and from 20 to 60, respectively. As can be seen in 
Figure 5, the control adapts to these changes in automatically 
increasing the backwash phase length. 

 

Figure 4. Adaptation of the optimal lengths of the filtration and backwash 
phases in the presence of unknown constant input substrate concentrations. 

On the left the ratio (tF/tbw), on the right tbw (in seconds) 

 

Figure 5. Adaptation of the optimal lengths of the filtration and backwash 
phases in the presence of an unknown magnitude step in the input substrate 
concentrations. The ratio (tF/tbw) is plotted on the left and tbw on the right (in 

seconds) 

IV. PERFORMANCE ANALYSIS 

In order to evaluate the performance of the new adaptive 

control, we compare three different strategies: 

 The first strategy consists in applying a constant 

filtration/backwash ratio as if inputs were not varying with 

time: it is a kind of industrial reference control (results 

plotted in blue); 

 The second tested strategy consists in applying the 

original optimal control proposed in [1] without updating 

model parameters over the entire operation time (results 

plotted in red); 

 The third control strategy consists in applying the actual 

adaptive optimal control approach (results plotted in 

green). 

A. Performance comparaison for constant input 

concentrations 

Again, consider constant inputs S1in=90 and S2in=20. The 
first open loop strategy is plotted in blue: it is obtained in 

applying constant filtration/backwash phase lengths (tF=36 
minutes and tbw= 3 minutes) over a period of 132.6 hours. The 
second simulated strategy is open loop: the optimal control 
(the ratio of filtration phase length over backwash phase 
length) is constant over the whole time horizon, equal to the 
optimal value found after the very first identification of the 
system realized using the data acquired on the first three 
functioning phases. In the actual case, it was found to be 
ui=0.82, corresponding to a backwash duration for each cycle 
i (i>3) equal to 207 seconds.  

 
Figure 6. TMP simulations using the three control strategies with constant 

input concentrations (constant phase length open-loop control in blue, open-

loop optimal control strategy in red and adaptive – closed-loop – control 
strategy in green) 

Finally, the last strategy is the adaptive optimal control 
approach proposed in Section II.B. To compare the different 
strategies, we plotted in Figure 6 the TMP simulated for these 
three strategies (we only displayed the filtration and the very 
first instants of backwash dynamics for not having too large 
coloured areas) and in Table 1 both the total energy required 
by the system over the total time period (on the left) and the 
total quantity of water filtered (on the right). 

Table 1: Total Energy (in W.s) and water volume (in m3) for the three tested 
strategies (constant phase length open-loop control #1, open-loop optimal 
control strategy #2 and adaptive #3) 

 #1 #2 #3 

Energy ET 179800 175400 171800 

Water volume 2.535 2.577 2.607 

B. Performance comparison for varying input 

concentrations 

Again, the three control strategies are simulated. 
However, instead of considering constant input strategies, a 
step in the input substrate concentrations arises at t=35h 
where S1in and S2in are varied from 90 to 180, and from 20 to 
60. 

The total energy requirements are given in Table 2 for 
each strategy. 

Table 2: Total Energy (in W.s) and water volume (in m3) filtered for the three 
tested strategies (constant phase length open-loop control #1, open-loop 
optimal control strategy #2 and adaptive #3) 

1337



  

 #1 #2 #3 

Energy ET 182600 177800 168300 

Water Vol. 2.441 2.481 2.491 

C. Discussions 

First, it is observed that the TMP is greater during the whole 

simulation time when the durations of the phases are not 

optimally controlled. This leads to the fact that The energy 

requirements when applying the open loop control strategy is 

greater than the two other control strategies. In addition, when 

using such an open loop strategy, not only the energy 

requirement is greater but the quantity of water filtered over 

the experimental time horizon is smaller. Second, notice that 

the closed-loop optimal control strategy gives better results 

than the open loop optimal control. It is due to the fact that 

using only the data acquired over the first three 

filtration/backwash periods is not enough to have a satisfying 

representation of the system over a long period of time. In 

fact, whatever the input substrate concentrations are varying 

or not, it is better to use the adaptive control strategy since it 

is able to better adapt to unknown inputs than the open loop 

control. In total, the adaptive optimal closed-loop control 

approach allows to treat 10% more than the optimal open-loop 

control approach while requiring about 10% less energy. 

V. CONCLUSION 

In this paper, a new closed-loop adaptive optimal control 
for membrane fouling control when the system operates at 
constant flux is presented. It is based on the iterative 
application of an optimal control strategy initially proposed in 
[1]. This new control allows to minimize the process energy 
requirements while accounting for unknown input substrate 
concentrations. Using simulations, it was shown that this new 
control is indeed able to minimize energy requirements while 
maximizing the volume of treated water over a given period 
of time in adapting the ratio of the filtration and the backwash 
phase lengths. 

The actual control is based on the assumption that the 
fouling only depends on the formation of a cake onto the 
membrane. In practice, it is known that there exist other 
fouling mechanisms such as pore blocking. In such 
phenomena, the role of the SMP is recognized as being major. 
Thus, in the future, we will investigate the robustness of the 
proposed adaptive controller with respect to different kinds of 
fouling mechanisms and try to develop new optimal 
controllers for more detailed membrane fouling models. 
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