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Abstract— The weighted linearization is a generalization of
the first-order Taylor approximation where the computation of
the Jacobian matrices at the point of interest is replaced by the
computation of the integral of the Jacobian matrix function
by a weighting function that expresses how much different
parts of the domain should be taken into account during
the linearization. This paper blends the weighted linearization
with the existing gradient descent (GD) method to develop a
novel optimization technique named weighted gradient descent
(WGD). The WGD is shown to outperform the GD in terms of
mean absolute error, given an appropriate tuning of the WGD
hyper-parameters, when applied to various nonlinear functions
that are multi-modal in nature, thus exhibiting several optima.

I. INTRODUCTION

Nonlinear functions are of special interest to various
domains of engineering and technology since most systems
of practical interest exhibit nonlinearities, including multi-
scale spatio-temporal phenomena [1], dead-zone [2], multi-
stability [3], to name a few. Such systems call for incorpora-
tion of nonlinearities within a given approach, which may be
a non-trivial task for tractable design, and non-applicable in
general sense for complex large scaled systems. Nonlinear
programming problems in management science and opera-
tions research [4] with inherent model nonlinearities present
challenges in that searching for the global optimum within
an acceptable computational time is generally difficult.

On the contrary, approaches for linear systems are very
well established in the literature with scalable design, anal-
ysis and generalised closed form solutions [5]. These ap-
proaches can be applied to nonlinear systems by using
effective linear approximations that are equivalent to the
nonlinearities in a neighborhood of the operating point of
interest. These linear approximations are often obtained by
finite difference approaches in form of piecewise or first-
order methods to solve nonlinear optimization problems
[6]. Further functional expansion methods such as Magnus
expansions [7], Chen-Fleiss expansion [8], etc. have been
developed for formal linear differential equations. Although
they are useful in obtaining explicit expressions of the
solutions and can be adapted to address ordinary nonlinear
differential equations on smooth manifolds [9], they remain
limited in face of multi-modal functions with several lo-
cal/global minima [10]. In this context, the most common
linearization method, i.e. expansion in Taylor’s series around
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the operating point, is a popular approach and remains quite
effective for approximating nonlinearities as long as the
deviation of the state variables from the operating point is
minor [11].

On the other hand, gradient descent (GD) based ap-
proaches have proven to be extremely effective in various
fields where the central problem is cast as an optimization
problem calling for minimization (or maximization) of a
cost function with respect to a given set of parameters.
Most of the GD based approaches require the objective
function to be differentiable, call for computation of first
order partial derivatives and remain relatively efficient in face
of nonlinear functions as well as non-smooth problems. For
example, [12] used GD based linearization under constraints
for nonlinear model predictive control; [13] presented a GD
based approach for non-convex non-smooth problems; [14]
presented a stochastic GD based approach for nonlinear ill-
posed problems; [15] presented approaches for multi-point
generalization of the gradient descent iteration for local
optimization for non smooth problems. GD based approaches
are of central importance in various fields of engineering
and technology, including machine learning [16] and modern
deep learning [17], [18], system identification of discrete-
time systems [19] and continuous-time systems [20], [21],
reinforcement learning for optimal control learning [22] in
model-free as well as model-based settings [23], etc. Al-
though GD based approaches are effective in general sense,
they suffer from slower convergence rate issues in face of
noisy objective functions and strong non-linearity.

As such, it becomes imperative to develop effective
GD based approaches that lead to faster convergence to
global/local optima. In this context, the weighted lineariza-
tion technique was recently proposed in [24], wherein com-
putation of the Jacobian matrices at the state trajectory of
interest is replaced by the multiple integral over the state
and input spaces with the corresponding Jacobian matrix
functions multiplied by a weighting function. It was shown
that the standard Taylor linearization can be recovered as
a particular case of the proposed weighted linearization.
Moreover, in [25] the weighted linearization technique has
been incorporated in the equations of the extended Kalman
filter to obtain a new version of the Kalman filter, referred
to as weighted Kalman filter, which was shown to to exhibit
better convergence properties and less average estimation
error than the extended Kalman filter.

This paper blends the benefits of the recently proposed
weighted linearization technique [24] with the existing GD
method, to develop a novel weighted gradient descent
(WGD) approach that generalises the existing standard GD
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method. The paper shows that the WGD outperforms the
GD in terms of mean absolute error, given an appropriate
tuning of the WGD hyper-parameters, when applied to
various nonlinear functions that are multi-modal in nature
with several local/global minima.

The present section is followed by background details on
the weighted linearization in Section 2 and the novel WGD
approach along with corresponding pseudo-algorithm in Sec-
tion 3. Section 4 presents the simulation study, followed by
Section 5 which discusses the observed performance, and
finally Section 6 which draws the main conclusions.

II. WEIGHTED LINEARIZATION

The most common approach to obtain a linear approxima-
tion of a nonlinear function is to truncate the Taylor series
so that only the zeroth and first order terms are kept. Let
f : R → R and x̄ ∈ R, then such an approximation is
obtained as follows:

f(x) ≈ f(x̄) +
df

dx
(x̄) (x− x̄) (1)

In the multi-variable case, i.e., when f : Rn → R, the
derivative is replaced by the gradient:

∇f(x) , [∂f(x)/∂x1, ∂f(x)/∂x2, . . . , ∂f(x)/∂xn]
T (2)

so that (1) becomes:

f(x) ≈ f(x̄) +∇f(x̄)(x− x̄) (3)

for a given x̄ ∈ Rn. It is well-known that a geometric
interpretation for (1) and (3) is that they describe the line
and hyperplane, respectively, which are tangent to f(x) at
x = x̄. It is in such sense that the linear approximation is
considered to be valid only near x̄, where near depends on
the general behaviour of the nonlinear function about x̄.

In [24], an alternative way to approximate the function
f(x) has been proposed and named weighted linearization,
described hereafter in the multi-variable case. Let us consider
a function ρ : Rn → R≥0, which will be referred to as
weighting function, satisfying the following condition:∫

Rn

ρ(x)dnx = 1 (4)

Then, we define as the linear approximation of f(x)
weighted through ρ the following function:

fρ(x) = f(x̄) +

(∫
Rn

ρ(x)∇f(x)dnx

)
(x− x̄) (5)

Note that (5) is a generalization of (3), which can be re-
covered through a specific choice of the weighting function.
In fact, by choosing:

ρ(x) = δ(x− x̄) (6)

where δ(·) denotes the multi-variable Dirac delta function,
i.e., the measure defined in Rn such that:∫

Rn

δ(x)f(x)dnx = f(0) (7)

for every compactly supported continuous function f , then
one obtains from (5):

fδ(x) = f(x̄) +

(∫
Rn

δ(x− x̄)∇f(x)dnx

)
(x− x̄) (8)

= f(x̄) +∇f(x̄)(x− x̄)

In rough words, a geometric interpretation of (5) is that
it describes the hyperplane passing through (x̄, f(x̄)) but in
general not tangent to f(x) in that point, which captures the
overall trend of the nonlinear function about x̄, where the
precise interpretation of about is expressed by the weighting
function. As a matter of example, let us consider the function:

f(x) = x+ x3 (9)

which can be approximated at the point x̄ = 2 via standard
linearization as follows:

f(x) ≈ f(2) +
df

dx
(2)(x− 2) = 10 + 13(x− 2) (10)

= 13x− 16

On the other hand, if we choose the weighting function as
a Gaussian function centred at x̄ with RMS width σ, the
weighted linearization becomes described by:

f(x) ≈ f(2) +

∫ +∞

−∞
exp

(
− (x− 2)2

2σ2

)
(1 + 3x2)dx

x− 2

σ
√

2π
(11)

For example, using σ = 1, we obtain f(x) ≈ 16x − 22,
whereas with σ = 2, we obtain f(x) ≈ 25x− 40.

The graphical representation of f(x) and the obtained
linear approximations are shown in Fig. 1, where the fact
that the slope of f(x) tends to grow faster to the right of x̄
than it does to the left of x̄ leads to the increased slope of
the linearized function when the parameter σ is increased.

Fig. 1: f(x) = x + x3 with its weighted linearization
(Gaussian ρ(x) centred at x̄ with RMS width σ).

III. WEIGHTED GRADIENT DESCENT

The main contribution of this paper is to adapt the gradient
descent optimization algorithm to work under a computation
of the gradient based on weighted linearization. In this way,
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an alternative version of this popular first-order iterative op-
timization algorithm is obtained, referred to in the following
as weighted gradient descent (WGD).

In the proposed WGD, with the goal of finding the
minimum of a multi-variable function f : Rn → R, one
starts with a guess x0 and a weighting function ρ0(x), and
considers the sequence x0, x1, x2, . . . such that:

xm+1 = xm − γm
∫
Rn

ρn(x)∇f(x)dnx, m ≥ 0 (12)

where both the learning rate γ and the weighting function
ρ(x) are allowed to change at every iteration.

A basic intuition for this alternative algorithm, which is
expressed in a pseudo-code form in Algorithm 1, can be
provided by using the common analogy of a person trying
to get down a mountain based on the observed steepness. In
the standard GD algorithm, that person would use only the
slope at its current position to decide in which direction to
move further, a logic that would lead to wrongly deciding
not to move further as soon as a plateau of any size, even
infinitesimal, is reached. On the other hand, in the WGD,
that person would look around and would use the slope at
different points, weighted through the weighting function, to
decide in which direction to move further.

By an appropriate choice of the weighting function, the
weighted gradient algorithm can attenuate undesirable effects
due to nonlinearities that can deteriorate the performance
of gradient-based algorithms. As a matter of example, we
show in Fig. 2 the case of the multi-modal scalar function
f(x) = x2 + 1000 sin(x). This function exhibits a derivative
which bounces between positive and negative values (blue
line in the figure, denoted as σ = 0), which may lead
a gradient-based algorithm to getting stuck in oscillations
around local minima. If we consider instead the derivative
weighted through a Gaussian function with RMS width σ,
the above-mentioned issues get attenuated (red and yellow
lines in Fig. 2, corresponding to σ = 1 and σ = 2,
respectively), thus facilitating the convergence of a gradient-
based algorithm towards a global minimum.

IV. RESULTS

In order to assess the performance of the WGD against
the standard GD, we have considered different two-variable
functions used for testing optimization algorithms, com-
prising bowl-shaped, plate-shaped, valley-shaped and multi-
modal functions, which are described in detail below. For
each function, once denoted the two variables as x and y, we
have used 1000 initial conditions (x0, y0) distributed within
a domain X0 ×Y0, with X0 and Y0 intervals defined below
for each function.

We proceed to evaluating the performance of standard gra-
dient descent versus weighted gradient descent for different
values of the learning rate γ, which is kept constant between
samples for simplicity. The termination conditions have been
set to ∇min = 10−6, mmax = 104 and ∆min = 10−6. At
each sample, the weighting function is chosen as a square

Algorithm 1 Weighted gradient descent

Input: function to be optimised f(x)
Output: value of x where f(x) is - hopefully - minimum
Choose an initial guess x0, an initial weighting function ρ0(x),
and an initial learning rate γ0
Set current best value xbest = x0
Set termination parameters:

current iteration m = 0
current gradient norm ∇f =∞
current step size ∆x =∞

Set termination conditions:
maximum number of iterations mmax

minimum gradient norm ∇min

minimum step size ∆min

while m < mmax AND ∇f > ∇min AND ∆x > ∆min do
Compute:

gm =
∫
Rn ρm(x)∇f(x)dnx

xm+1 = xm − γmgm
Update termination parameters:

∇f = ‖gm‖
∆x = xm+1 − xm
m = m+ 1

Choose a new weighting function ρm(x) and a new learning
rate γm
if f(xm) < f(xbest) then

xbest = xm
end if

end while
return xbest

Fig. 2: Handling multi-modal functions via a weighted
derivative.

distribution centred around the current (xm, ym), as follows:

ρm(x, y) =

{
1

4b2 if (x, y) ∈ B
0 otherwise

(13)

with B = [xm−b, xm+b]× [ym−b, ym+b], where 2b is the
side of the square. Note that (13) tends to the multi-variable
Dirac delta function centred at (xm, ym) when b→ 0.

For each function fi(x, y), learning rate γ, parameter of
the weighting function b and initial condition (x0, y0), we
run the gradient descent algorithm and compute the mean
absolute error (MAE) of the best explored value of the
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function under consideration. The MAEs are collected in
contour plots, which show the performance obtained with
different values of the learning rate γ and the hyperparameter
b. The standard gradient descent is obtained when b = 0, so
the benchmark for comparing GD versus WGD is given by
the shades of gray taken in the lowest portion of the plots. In
rough words, a value of b that corresponds to a darker shade
of gray than the one appearing closer to the γ-axis indicates
that the WGD behaves better than GD for those values of γ
and b, whereas a lighter shade of gray signals a worsening
in the performance. Finally, a red color is used to indicate
values of γ and b that produce a NaN result, i.e. divergence
of the algorithm.

The employed functions are described in the following
subsections.

A. Bohachevsky function
The Bohachevsky function is bowl-shaped and described

by the following expression:

f1(x, y) = x2 + 2y2 − 0.3 cos(3πx)− 0.4 cos(4πy) + 0.7

which has a global minimum f(x∗, y∗) = 0, at (x∗, y∗) =
(0, 0). The domain for the initial conditions has been chosen
as (x0, y0) ∈ [−100, 100] × [−100, 100]. The weighted
gradient has been computed as:

∇f1(x, y, b) =

[
2x+ 0.15

b
[cos (3π(x− b))− cos (3π(x+ b))]

4y + 0.2
b

[cos (4π(y − b))− cos (4π(y + b))]

]

B. Zakharov function
The Zakharov function is plate-shaped and is described by

the following expression:

f2(x, y) = x2 + y2 + (0.5x+ y)2 + (0.5x+ y)4 (14)

which has a global minimum f2(x∗, y∗) = 0, at (x∗, y∗) =
(0, 0). The domain for the initial conditions has been chosen
as (x0, y0) ∈ [−5, 10] × [−5, 10]. The weighted gradient is
computed as:

∇f2(x, y, b) =


(
2.5 + 1.3b2

)
x+

(
1 + 2.5b2

)
y · · ·

· · ·+ 0.3x3 + 1.5x2y + 3xy2 + 2y3(
1 + 2.5b2

)
x+

(
4 + 5b2

)
y · · ·

· · ·+ 0.5x3 + 3x2y + 6xy2 + 4y3



C. Dixon-Price function
The Dixon-Price function is valley-shaped and described

by the following expression:

f3(x, y) = (x− 1)2 + 2(2y2 − x)2 (15)

which has a global minimum f3(x∗, y∗) = 0, at (x∗, y∗) =
(1,
√

2/2). The domain for the initial conditions has been
chosen as (x0, y0) ∈ [−10, 10] × [−10, 10]. The weighted
gradient is computed as:

∇f3(x, y, b) =

[
6x− 8y2 − 2− 8

3
b2

32b2y − 16xy + 32y3

]

D. Rosenbrock function

The Rosenbrock function is valley-shaped and described
by the following expression:

f4(x, y) = 100
(
y − x2

)2
+ (x− 1)2 (16)

which has a global minimum f4(x∗, y∗) = 0 at (x∗, y∗) =
(1, 1), which is difficult to converge to using gradient-based
optimization algorithms [26]. The domain for the initial
condition has been chosen as (x0, y0) ∈ [−5, 10]× [−5, 10].
The weighted gradient is computed as:

∇f4(x, y, b) =

[
(400b2 + 2)x+ 400x3 − 400xy − 2

200
(
y − x2 − b2

3

) ]

E. Beale function

The Beale function is multimodal and described by the
following expression:

f5(x, y) = (1.5− x+ xy)2 +
(
2.3− x+ xy2

)2
(17)

+
(
2.625− x+ xy3

)2
which has a global minimum f5(x∗, y∗) = 0 at (x∗, y∗) =

(3, 0.5). The domain for the initial condition has been chosen
as (x0, y0) ∈ [−4.5, 4.5]×[−4.5, 4.5]. The weighted gradient
is computed as:

∇f5(x, y, b) =



2b6x
7

+ 6b4xy2 + 2b4x
5
· · ·

· · ·+ 10b2xy4 + 4b2xy2 · · ·
· · · − 4b2xy − 2b2x

3
+ 5.3b2y · · ·

· · ·+ 1.5b2 + 2xy6 + 2xy4 · · ·
· · · − 4xy3 − 2xy2 − 4xy + 6x · · ·
· · ·+ 5.3y3 + 4.5y2 + 3y − 12.8

· · · 2b6y + 6b4x2y + 20b4y3

3
+ 4b4y

3
· · ·

· · · − 2b4

3
+ 20b2x2y3 + 4b2x2y · · ·

· · · − 2b2x2 + 5.3b2x+ 2b2y5 + 4b2y3

3
· · ·

· · · − 2b2y2 − 2b2y
3
− 2b2

3
· · ·

· · ·+ 6x2y5 + 4x2y3 − 6x2y2 · · ·
· · · − 2x2y − 2x2 + 15.8xy2 + 9xy + 3x



F. Branin function

The Branin function has three global minima and is
described by the following expression:

f6(x, y) =

(
y − 5.1x2

4π2
+

5x

π
− 6

)2

+10

(
1− 1

8π

)
cos(x)+9.6

(18)
with three global minima f6(x∗, y∗) = 0 at (x∗, y∗) =

(−π, 12.3), (x∗, y∗) = (π, 2.3) and (x∗, y∗) = (9.4, 2.5).
The domain for the initial conditions has been chosen as
(x0, y0) ∈ [−5, 10] × [0, 15]. The weighted gradient is
computed as:

∇f6(x, y, b) =


0.2(b2x+ x3)− 51

4π3

(
b2 + 3x2

)
· · ·

· · ·+ 5 sin(b) sin(x)
b

(
1
4π
− 2
)
− 0.52xy · · ·

· · ·+ 10
π

(
5x
π

+ y − 6
)

+ 3.1x
2
(
5x
π

+ y − 6
)
− 17

20π2

(
b2 + 3x2

)
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(a) f1(x, y) (Bohachevsky) (b) f2(x, y) (Zakharov) (c) f3(x, y) (Dixon-Price)

(d) f4(x, y) (Rosenbrock) (e) f5(x, y) (Beale) (f) f6(x, y) (Branin)

(g) f7(x, y) (Styblinski-Tang) (h) f8(x, y) (Griewank) (i) f9(x, y) (Rastrigin)

Fig. 3: MAE of the best explored value

G. Styblinski-Tang function
The Styblinski-Tang function is described by the following

expression:

f7(x, y) =
1

2

(
x4 + y4 − 16x2 − 16y2 + 5x+ 5y

)
+ 78.3 (19)

which has the global minimum f(x∗, y∗) = 0 at (x∗, y∗) =
(−2.9,−2.9). The domain for the initial conditions has been
chosen as (x0, y0) ∈ [−5, 5]×[−5, 5]. The weighted gradient
is computed as:

∇f7(x, y, b) =

[
2b2x+ 2x3 − 16x+ 2.5
2b2y + 2y3 − 16y + 2.5

]

H. Griewank function
The Griewank function has many regularly distributed

local minima. It is described by the following expression:

f8(x, y) =
x2 + y2

4000
− cos(x) cos

(
y√
2

)
+ 1 (20)

which has the global minimum f8(x∗, y∗) = 0 at (x∗, y∗) =
(0, 0). The domain for the initial condition has been chosen
as (x0, y0) ∈ [−600, 600] × [−600, 600]. The weighted
gradient is computed as:

∇f8(x, y, b) =

 b2x+2000
√
2 sin(b) sin( b√

2
) sin(x) cos

(
y√
2

)
2000b2

b2y+2000 sin(b) sin
(

b√
2

)
cos(x) sin

(
y√
2

)
2000b2


I. Rastrigin

The Rastrigin function is highly multimodal and has
several regularly distributed local minima. It is described by
the following expression:

f9(x, y) = 20 + x2 + y2 − 10 cos(2πx)− 10 cos(2πy) (21)

which has the global minimum f9(x∗, y∗) = 0 at (x∗, y∗) =
(0, 0). The domain for the initial conditions has been chosen
as (x0, y0) ∈ [−5.12, 5.12] × [−5.12, 5.12]. The weighted
gradient is computed as:

∇f14(x, y, b) =

[
2x+ 10 sin(2πx) sin(2πb)

b

2y + 10 sin(2πy) sin(2πb)
b

]
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V. DISCUSSION

The functions chosen in this study exhibit diverse at-
tributes such as bowl and valley shapes, and include mono-
modal and multi-modal functions with one or multiple dis-
tributed minima (global/local). Overall, with the exception
of Branin function (Fig. 3f) and Styblinski-Tang function
(Fig. 3g), the proposed WGD outperforms the standard GD
if the learning rate and weighting function length (span) are
suitably chosen. For instance, in face of appropriately chosen
length b ∈ [0, 0.9] and with learning rate remaining not too
high or too low, the WGD leads to an MAE that is less or as
good as that obtained via standard GD approach. As such,
weighting function parameter(s) and learning rate constitute
the so called hyper-parameter set and need to be fine tuned to
the objective function at hand. Indeed, presence of weighting
function such as a square enlarges the scope of the optimizer
by presenting a set of weighted possibilities at each step,
and leads to an assessment of the data (objective function
topology) at a finer granularity. However, if the size of such
a function is very large (for example, b > 1) then, WGD is
not necessarily able to perform well plausibly due to presence
of several nonlinear typologies (for example, valleys) within
the weighting function range leading to a relatively much
coarse assessment. For instance, Rosenbrock function which
is difficult to converge with standard GD, WGD performs
generally much better with less learning rate value and value
of weighting function parameter that is not very large (Fig.
3d).

It is worth noting that in face of highly multi-modal
functions with several local/global minima, WGD is able
to demonstrate a better performance overall over a large
spectrum values of λ, b.

VI. CONCLUSIONS

We have introduced a novel gradient-based optimization
approach based on the weighted linearization. The proposed
weighted gradient descent is able to attenuate undesirable
effects due to nonlinearities that typically deteriorate the
performance of gradient-based algorithms. Different two-
variable functions comprising bowl-shaped, plate-shaped,
valley-shaped and multi-modal functions have been used
to assess the performance of the proposed approach. The
results have shown that in many cases the weighted gradient
descent outperforms the standard gradient descent if the
hyper-parameters are properly tuned.

The discussion in this work is limited to a specific choice
of the weighting function, i.e., a square distribution centred
around the current point. Future work will be devoted to
a deeper study of how to perform a good selection of the
weighting function, possibly taking into account the local
features of the nonlinearities. Additional paths for future re-
search concern how the weighted gradient descent algorithm
can be modified to incorporate stochastic elements and to
explore its potential for applications in machine learning.
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