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Abstract— This paper presents a new way to conduct the
control performance assessment (CPA). The measurement of
control quality is a multi-criteria task from a practical point
of view. Generally, the tuning of any controller means reaching
a compromise between the accuracy and speed. The required
(optimal) ratio between these two contradictory factors depends
on the process demands, limitations and the engineering skills.
Two basic indexes: the overshoot and settling time fit perfectly
into such defined requirements. This research follows these
path, but with the use of modern measures: robust statistical
scale and shape factors, tail index and ARFIMA filter fractional
order estimator. The assessment uses two dimensional Index
Ratio Diagram (IRD), which allow to compare contradictory
measures. Moreover, they allow to define new multi-criteria in-
dex able to compare different loops. The validation is compared
against commonly used integral indicators.

Index Terms— control performance assessment, robust statis-
tics, L-moments, tail index, ARFIMA, fractional order

I. INTRODUCTION

Control performance assessment plays an important role
in the engineering practice, as it supports a control engineer
with a dedicated information about the loop performance.
It’s obvious why the CPA matters. Poor control worsens
total process efficiency. Though this fact is not negotiable,
there are quite a few control systems that are far away
from being even close to the good operation. It’s due to the
insufficient daily care, process fluctuations, instrumentation
breakdowns, wrong or outdated design, poor tuning, varying
business requirements, lack of experienced staff, external
impacts, uncertainties, human influence and many others
[1]. Key performance indicators (KPIs) of control systems
help an engineer to make a decision about control loop
improvement. The CPA has to be used with clear and
reliable methodology. The PID-based (Proportional-Integral-
Derivative) single element loops form the overwhelming
majority of control structures in process industry [2]. Thus,
there are many dedicated approaches [3].

Reported CPA research started in 1967 [4] for pulp and
paper plant utilizing statistical approach – process variable
standard deviation. Since 1967 the CPA has explored many
research areas [3], like the dedicated plant tests [5], model-
based [6] or model-free [7] approaches. Single methodology
algorithms are extended with hybrid techniques [8].

There is a general understanding that there is no single
or universal method. Therefore, hybrid and multi-criteria
approaches seem to give enough insight. Moment ratio
diagrams (MRD) can be treated as such a tool [9]. L-moment
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ratio diagrams (LRMD) modify the MRDs giving scaled and
robust approach [10]. This work takes the inspiration from
the MRD and LMRD trying to explore their positives and fit
them into control engineering. Generally, the system must
meet some compromise between the speed and accuracy.
Both demands cannot be fulfilled at the same time. This
dilemma is clearly seen in the two basic measures of the
system step response. The overshoot (κ) reflects control
accuracy, while the settling time (Tset) informs about the
speed. Though a solution to plot them in one diagram
seems natural, it does not exist in the literature. Therefore,
it is introduced and denoted as the Index Ratio Diagram –
IRD(κ,Tset) [11].

The overshoot and settling time are derived using the loop
step response, which is hardly achievable in practice. Apart
from them, there are many other indexes that could replace
them, like control error statistical scale factors and moments,
integrals. Each of them has advantages and shortcuts, as they
reflect different properties [3]. This article examines various
variants of their use in the IRD framework. Additionally,
a new control measure is brought into the picture and
investigated – the tail index [12]. The use of tail index is
justified by the fact that they allow to address the tails of the
time series distributions and the industrial control errors are
mostly heavy tailed [13].

The main contribution of this work is the introduction of
the IRD diagrams into control engineering and multi-criteria
performance assessment of the PID-based univariate loops.
The secondary results lies in the incorporation of the tail
index. The results are evaluated with the simulation environ-
ment, while the industrial aspects are shortly discussed. The
paper starts with Section II describing methods followed by
the simulation analysis included in Section III. Section IV
concludes the paper disclosing observed open issues.

II. METHODS AND MEASURES

The research uses various statistical and CPA approaches,
which are integrated within the proposed IRD framework
analysis: basic integral measures [3], classical, robust and L-
moments, accompanied with the tail index. The indexes are
evaluated for the control error signal.

A. CPA integral indexes

The integral square error (ISE) is calculated as mean
integral of the squared errors ϵ(k) over a set of discrete time
moments k = 1, . . . , N

ISE =
1

N

N∑
k=1

ϵ2(k). (1)
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The ISE penalizes large observations neglecting the smaller
ones. They usually appear after disturbances. It is seriously
affected by outlying observations and is characterized with
the 0% breakdown point [14]. The integral absolute error
(IAE) sums error absolute values over time

IAE =
1

N

N∑
k=1

|ϵ(k)| . (2)

It is not so conservative as it penalizes continuing oscilla-
tions. Although its breakdown point is 0% as well, the IAE
is robust against a part of outliers.

B. Statistical moments
One may use statistics in many ways. This paper follows

a theoretical way assuming some distribution, which might
reflect the underlying process. Such a probabilistic density
function (PDF) we use to evaluate its factors and moments (if
they exist). The other way is to approach the task empirically,
when we need to estimate those parameters.

Let assume that {Xi}T represents a given time series with
its mean µ and the r-th central moment γr = E (X − µ)

r,
E (·) is the expectation operator. The mean µ is the first
moment γ1, and variance σ2 is the second one denoted as
γ2; σ is the standard deviation. These two moments are
often used together with next ones: the skewness γ3 and
the kurtosis γ4. The skewness presents data asymmetry and
kurtosis the concentration.

γ3 =
1

Nσ3

N∑
i=1

(xi − x0)
3 (3)

γ4 =
1

Nσ4

N∑
i=1

(xi − x0)
4 − 3 (4)

The existence of outliers in data causes their distributions
being fat tailed [15]. This feature biases classical estimation
of the mean and standard deviation.

C. L-moments
The theory of L-moments has been proposed by Hosking

[10] as a linear combinations of order statistics. The theory of
L-moments includes new description of the PDF shape, helps
to estimate factors of an assumed distribution and allows
to test hypothesis about theoretical PDFs. We may define
L-moments for any random variable, whose expected value
exists. The L-moments give almost unbiased statistics, even
for a small sample. They are less sensitive to the distribution
tails [16]. This properties are appreciated in the life sciences,
although they might be also used in control engineering.
Their calculation is done as follows. The data {x1, . . . , xN},
N - number of samples, are ranked in ascending order from
1 to N. Next, the sample L-moments (l1, . . . , l4), the sample
L-skewness τ3 and L-kurtosis τ4 are evaluated as:

l1 = β0, l2 = 2β1 − β0, l3 = 6β2 − 6β1 + β0,

l4 = 20β3 − 30β2 + 12β1 − β0,

τ2 =
l2
l1
, τ3 =

l3
l2
, τ4 =

l4
l2
, (5)

where

βj =
1

N

N∑
i=j+1

xi
(i− 1)(i− 2) · · · (i− j)

(N − 1)(N − 2) · · · (N − j)
(6)

Statistical properties are reflected in L-shift l1, L-scale
l2 ∈< 0, 1), L-covariance (L-Cv) τ2, L-skewness τ3 ∈
(−1, 1) and L-kurtosis τ4 ∈ (−1/4, 1). They help to fit a
distribution to a dataset. L-skewness and L-kurtosis work
as the goodness-of-fit measure. They can be calculated for
theoretical PDFs [17] and normal distribution has: l1 = µ,
l2 = σ/π, τ3 = l3/l2 = 0 and τ4 = l4/l2 = 0.1226.

D. Robust statistics

One uses the robust statistics to address the issue of
outliers. Robust estimators were introduced long ago, but
works of Huber [18] discovered them for wider public.
Robust methods allow to estimate the shift, the scale or
regression parameters for data affected reach in outliers.
This work uses the M-estimators with logistic psi-function
implemented in the LIBRA toolbox [19].

E. Moment ratio diagrams

Moment ratio diagrams graphically show statistical prop-
erties of the considered time series in a plane The MRD is a
graphical representation in a Cartesian coordinates of a pair
of standardized moments. Actually, there are two versions
[?]. The MRD(γ3, γ4) shows the third standardized moment
γ3 (or its square γ2

3 ) as abscissa and the fourth moment
γ4 as ordinate, plotted upside down. There exists theoretical
limitation of the accessible area, as γ4 − γ2

3 − 1 ≥ 0. The
locus corresponding to PDF can be a point, curve or region. It
depends on the number of shape parameters. PDFs lacking
shape factor (like Gauss or Laplace) are represented by a
point, functions with one shape coefficient are represented by
a curve. Regions reflect functions with two shape factors. The
second type of the diagram MRD(γ2, γ3) represents variance
γ2 as the abscissa and skewness γ3 as the ordinate. This
diagram is location and scale dependent.

F. L-moment ratio diagrams

L-moments have been introduced by Hosking [10] and
are common in the extreme analysis. They allow to iden-
tify proper distribution for empirical observations. The
LMRD(τ3, τ4) shows the L-kurtosis τ4 versus L-skewness
τ3 and the LMRD(l2, τ3) relates the skewness to the scale
factor (L-l2 variance).

G. The α-stable distribution

Apart from the specific robust estimators or L-moments
one may use other distributions. Stable functions deliver an
alternative set of the statistical measures [3]. The α-stable
distribution is expressed by the characteristics equation

F stab
α,β,δ,γ (x) = exp {iδx− |γx|α (1− iβl (x))} , (7)

where

l (x) =

{
sgn (x) tan

(
πα
2

)
for α ̸= 1

sgn (x) 2
π ln |x| for α = 1

(8)
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The coefficient 0 < α ≤ 2 is called the stability index, the
|β| ≤ 1 is the skewness factor, δ ∈ R the shift and γ > 0
the scale. Thus, the α-stable distribution has one shift factor,
one scale and two shape coefficients: α and β.

H. Tail index

Statistics frequently use the law of large numbers and the
central limit theorem. Once data exhibits outliers, which is
revealed in the form of tails, the majority of the assumptions
made are not met. In such a case the knowledge, where
the tail starts, and which observations are located in the
tail plays an important role [21], [22]. There are many
methods to estimate it and the tail index, denoted as ξ̂, is the
most promising one [23]. There are quite a few tail index
estimation approaches, with two leading ones: the Hill [24]
and Huisman estimator [25]. This research uses the second
one in the analysis.

III. SIMULATION ANALYSIS

Dedicated Matlab environment is prepared with the PID
controller in a parallel form. The analysis focuses on univari-
ate PID control with three processes, proposed by Åström
[26] as control benchmarks:

– System with Multiple Equal Poles

G1(s) =
1

(s+ 1)4
, (9)

– First Order System with Dead Time

G4(s) =
1

(0.2s+ 1)2
e−s, (10)

– Fast and Slow Modes

G5(s) =
1

(s+ 1)(0.04s2 + 0.04s+ 1)
. (11)

These transfer functions allow to consider relatively wide
scope of processes. All simulated models are discretized with
a sampling period Tp = 0.1 [s]. Setpoint is constant and set
to zero. Loops are disturbed by:

• simulated Gaussian N(0, σ2) measurement noise with
standard deviation σ = 0.1 ·

√
2,

• and filtered (first order filter) fat-tail disturbance added
before the process and simulated using α-stable distri-
bution with α = 1.95, γ = 2.0 and β = δ = 0.

The detailed analysis procedure is presented for the first
process G1(s), while the following two are used to confirm
and visualized obtained results. Fig. 1 shows exemplary
time trend of the G1(s) controlled by the well-tuned PID
controller kp = 1.0503, Ti = 2.9977, Td = 0.9293. The
good controller for the G4(s) has kp = 0.2653, Ti =
0.6066, Td = 0.2121, and for the G5(s): kp = 0.1330, Ti =
0.2585, Td = 0.0808.

The analysis uses various PID parameter sets. The gain
kp ∈ ⟨0.05; 2.05⟩ changes every 0.25, the integration time
Ti ∈ ⟨0.2; 10.2⟩ changes every 1.0 and the derivative is con-
stant Td = 0.9293. To exclude the statistical effects, each set
of parameters is run 50 times and the resulting CPA measures
are averaged. The same approach is repeated for other two
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Fig. 1: Time series for loop G1(s) and well-tuned PID tuning

transfer functions. For the G4(s) the kp ∈ ⟨0.2; 1.6⟩ changes
every 0.2, the integration time Ti ∈ ⟨0.1; 5.1⟩ changes every
0.5 and the derivative is constant Td = 0.2121. For the G5(s)
the kp ∈ ⟨0.02; 1.02⟩ changes every 0.1, the integration time
Ti ∈ ⟨0.05; 2.3⟩ changes every 0.25 and the derivative is
constant Td = 0.0808.

The loop performance analysis starts with the IRD(κ,Tset)
diagram sketched in Fig. 2, which compares the overshoot
against the settling time. We clearly see a kind of the Pareto-
front of the best solutions according to different preferences.
The diagram is shaded according to the IAE index, because
we always miss one indicator. Generally, such a drawing
delivers only some relative visual information - we still
would like to have a single loop performance indicator.
Actually, an engineer could select that the best tuning is
reflected by the shortest distance from the origin point
[x0; y0] = [0; 0]. Moreover, one would wish to have this
value independent on the real units of time and overshoot.
Thus, we scale it and obtain the following IRD distance index
dIRD(x,y) for scaled values x and y:

dIRD(x,y) =
1√
2

√
(x− x0)

2
+ (y − y0)

2 (12)

The next Fig. 3 shows the scaled plot with scaling factors
xmax = 80 and ymax = 500. The diagram indicates the best
tuning depicted as the yellow square. This best PID controller
obtains dIRD(κ,T set) = 0.013 for the following parameters:
kp = 0.55 and Ti = 3.20. The pink square indicates the
preselected well-tuned PID loop.

As the overshoot and settling time are hardly achievable
in practice, other indicators should be brought to the picture.
We suggest to use other measure, which can be evaluated
with the operation control error data. Moreover, they should
somehow reflect the time and the accuracy. We propose to
use some variability measure and distribution shape factor.

Let’s investigate robust standard deviation σR and the tail
index ξ̂. Fig. 4 shows the IRD(σR,ξ̂) diagram related to the
IAE, while Fig. 5 shows the same plot related to the ISE
index. Scaling factors are xmax = 1.5 and ymax = 15

Now, the best PID controller obtains dIRD(σR,ξ̂)
= 0.270

for the following parameters: kp = 0.05 and Ti = 6.20.
There is also visible difference between the IAE and ISE.
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Fig. 2: IRD(κ,Tset) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found (the circles are
shaded according to the IAE value) (points overlap each
other)
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Fig. 3: Scaled IRD(κ,Tset) diagram for G1(s)
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Fig. 4: IRD(σR,ξ̂) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found (the circles are
shaded according to the IAE value)

We clearly see that ISE starts to differentiate between tuning
for worse controllers, than the IAE.
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Fig. 5: IRD(σR,ξ̂) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found (the circles are
shaded according to the ISE value)

Fig. 4 shows the IRD(l2,ξ̂) diagram, which exchanges
the robust scale estimator with the L-moment L-l2. The
diagram is almost exactly the same, however it has one more
advantage. The L-estimator is already scaled as l2 ∈< 0, 1).
The tail index is scaled as previously. The best PID obtains
dIRD(l2,ξ̂)

= 0.268 for the same parameters as previously.
This observation is very important as it seems that the L-
scale l2 estimator fits our requirements.
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Fig. 6: IRD(l2,ξ̂) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found

Thus, further steps should investigate the possibility to
exchange the tail index with other factors that are already
scaled. There are two alternatives: the stability index α and
the L-kurtosis. The is limited α ∈ (0, 2⟩ and therefore we
may easily select the OY scaling to ymax = 2. Fig. 7 presents
the respective diagram. This kind of plot is characterized with
a different challenge: what is the best point. For sure, it’s not
the origin. Let’s make a working hypothesis that it should
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be an independent Gaussian noise [3], so we measure the
distance to the point [0; 2]. The best indicated controller gets
dIRD(l2,α) = 0.054 for kp = 0.05 and Ti = 0.20.
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Fig. 7: IRD(l2,α) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found

The last investigated variant of index ratio diagrams is
the IRD(l2,τ4) shown in Fig. 8. This plot does not require
any scaling as the L-kurtosis cannot exceed 1.0 and we
assume that it should not get negative values. In this case
similar discussion of the optimal point appears. Following
previous assumption we select the point [0; 0.1226]. As
expected, this plot detects the same controller as previously
with dIRD(l2,τ4) = 0.051.
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Fig. 8: IRD(l2,τ4) diagram for G1(s): pink square depicts
good tuning, while yellow – the best found

Concluding, we get three options to be considered. The
IRD(σR,ξ̂) diagram requires relative scaling in both axes,
while the IRD(l2,ξ̂) needs scaling only in OY. They both
indicate the same solution. Thus, it’s obvious to favor the
second one. In the second group we have diagrams that do
not require any relative decision about scaling (IRD(l2,α)
and IRD(l2,τ4)), but there is an assumption about the so
called optimal zero point, which is not so obvious as it seems

[27]. The comparison of the performance of the detected
controllers is shown in Table I.

TABLE I: Performance of indicated controller for G1(s)

kp Ti Td κ [%] Tset [s]
IRD(σR,ξ̂) 0.55 3.2 0.9293 0.0 19.7
IRD(l2,ξ̂)
IRD(l2,α) 0.05 0.2 0.9293 32.8 38.5IRD(l2,τ4)

The analysis of the above results suggest to use the
IRD(l2,ξ̂) diagram as it requires the least relativity in the
scaling selection and delivers reasonable results. The analysis
of the consecutive two process aims at the validation of this
hypothesis. Tables II and III present the analogous results
for processes G4(s) and G5(s), respectively.

TABLE II: Performance of indicated controller for G4(s)

kp Ti Td κ [%] Tset [s]
IRD(σR,ξ̂)

0.2 0.1 0.2121 ≫ 100 ≫ 1000IRD(l2,α)
IRD(l2,τ4)
IRD(l2,ξ̂) 0.2 1.1 0.2121 0.0 20.6

TABLE III: Performance of indicated controller for G5(s)

kp Ti Td κ [%] Tset [s]
IRD(σR,ξ̂)

0.02 0.05 0.0808 1.7 5.8IRD(l2,ξ̂)
IRD(l2,α)
IRD(l2,τ4) 0.02 0.3 0.0808 0.0 56.4

We notice that the IRD(l2,ξ̂) in all cases allows to deliver
reliable results. The following Figs. 9 and 10 show the
respective plots for both transfer functions: G4(s) and G5(s).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
L-l2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ta
il 

in
de

x 
(H

ill
)

0.2 0.25 0.3 0.35 0.4 0.45
IAE

empirical optimal the best found

Fig. 9: IRD(l2,ξ̂) diagram for G4(s): pink square depicts
good tuning, while yellow – the best found

Simulations give the possibility to change the tuning as
we wish. We do not have to take care about potential poor
behavior, that might deteriorate real process operation. In
practice we do not have such comfort and we have may check
only a few tuning sets. The IRD plot shows only single point.
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Fig. 10: IRD(l2,ξ̂) diagram for G5(s): pink square depicts
good tuning, while yellow – the best found

Its position depends on the performance, but it is affected by
the process itself. We cannot decide, which position in the
diagram is better. It’s relative.

However, it doesn’t mean that the IRD has no practical
value. We should extend horizons. We can add the time to
the analysis or we can compare different loops looking for
their similarities. These issues have been already investigated
[28] in the practical sense.

IV. CONCLUSIONS AND FURTHER RESEARCH

This paper introduces the Index Ratio Diagrams into the
control research and practice. It shows that proper selection
of the diagrams allows to determine poor and good tuning. It
is suggested to investigate further and validate the potential
of the IRD(l2,ξ̂) diagram. It considers new CPA indicators
as the L-variance l2 and the tail index ξ̂.

The simulation analysis shows the potential of the pro-
posed approach. However, these initial results just only open
new options. There is a need to investigate further the
properties of the L-moments and tail index in the control
engineering research context. Next, the aspect of the tail
index scaling should be investigated.

The other types of the IRD diagrams should not be
forgotten, as there is an open issue with the selection of
the well-tuned point in case of the target L-Kurtosis and the
stability index α. This paper shows that there is much to
be done in this research especially in combining simulations
with an engineering practice.

REFERENCES

[1] Bauer, M., Horch, A., Xie, L., Jelali, M. and Thornhill, N., The current
state of control loop performance monitoring – A survey of application
in industry, Journal of Process Control. vol. 38, 2016, pp. 1–10.

[2] Samad, T., A Survey on Industry Impact and Challenges Thereof
[Technical Activities], IEEE Control Systems Magazine. vol. 37, no.
1, 2017, pp. 17–18.
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