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Abstract— In this paper we provide an analytical solution
to an H2 optimal control problem, that applies whenever the
process corresponds to a uniformly damped network of masses
and springs. The solution covers both stable and unstable
systems, and illustrates analytically how damping affects the
levels of achievable performance. Furthermore, the resulting
optimal controllers can be synthesised using passive damped
mass-spring networks, allowing for controller implementations
without an energy source. We investigate the impact of both
positive and negative damping through a small numerical
example.

I. INTRODUCTION

In this paper we study an H2 optimal control problem for
a process with dynamics modelled by the linear differential
equations

Mq̈ + Cq̇ +Kq = f, q (0) = q̇ (0) = 0, (1)

under the restriction that the matrix M is positive definite,
and K is positive semi-definite. This is a prototypical setup
for the dynamics of a network of damped masses and
springs, such as that illustrated in Figure 1, when linearised
around an equilibrium point. The variable q is a vector of
generalised coordinates describing the configuration of the
system relative to equilibrium, and f is a vector of forces
applied at those coordinates. The entries of M and K can
typically be determined directly from the expressions for
the kinetic and potential energy for the system, and our
particular focus is on exploring the impact of the matrix
C on the optimal control problem, and the corresponding
optimal control law.

The motivation for studying this model class stems from
the fact that networks of masses and springs are frequently
used to model engineering processes, with applications rang-
ing from electrical power systems, to vehicle suspension
systems, to optimization algorithms, to structure stabilisation
[1], [2], [3], [4]. Key to their importance is the balance they
strike between simplicity and versatility. Moreover, models
of even very large systems can be systematically built up
through simple descriptions based on the underlying physics.
Yet despite this structural simplicity, the resulting models
can still describe a very rich range of behaviours, including
resonances across a wide range of time and length scales,
and even instability when allowing for negative damping.

In addition to their practical relevance, linear mass-spring
networks also have a range of desirable theoretical properties.
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Fig. 1: Example of a mass-spring network, with damped
springs. Masses m1 and m2 are connected with damped
springs with spring constants k1 and k2 and damping con-
stants c1 and c2. q1 and q2 are the positions of the masses,
and f1 and f2 are external forces applied to the masses.

These are particularly striking in the lossless case (namely
when C = 0), where for example central control theoretic
results such as the Kalman-Yakubovich-Popov lemma sim-
plify greatly, and the dynamics in (1) can be realised with
highly structured state-space realisations [5]. These features
can be exploited to simplify optimal control problems for
lossless systems, which can result in optimal control laws
that can both be described analytically and synthesised with
simple passive networks [6], [7].

When damping is introduced, the underlying theoretical
properties of (1) become significantly more complex (see for
example [8], [9] and the references therein for a discussion of
the quadratic eigenvalue problem). However if the damping
is uniform, many of the desirable properties from the lossless
case are preserved. Mathematically, uniform damping means
that C is symmetric and satisfies CM−1K = KM−1C.
This condition is equivalent to the existence of a congruence
transformation that decouples (1) into a set of orthogonal
modes [10] (we discuss this transformation further in sec-
tion III). Although an assumption of convenience, uniform
damping is surprisingly versatile, and will be satisfied by any
symmetric C matrix on the form

C = Mg
(
M−1K

)
,

where g is a polynomial (or entire) function. Note in par-
ticular that such a C need not be positive semi-definite,
and so uniformly damped networks do not need to be
stable. Special cases include Rayleigh damping [11], where
C = α0M + α1K for α0, α1 ∈ R. Given the difficulties in
modelling damping phenomena from first principles, uniform
models of damping are often adopted, at least as a first
approximation, and methods for estimating uniform damping
matrices from data are discussed in [12].

In this paper we study a natural H2 optimal control
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problem for (1) under the uniform damping assumption. We
start by developing analytical results for a highly structured
optimal control problem. This is presented as Theorem 1
in section II. In section III we show how to exploit the
uniform damping assumption to apply this result to solve
optimal control problems for systems described by (1), and
discuss and illustrate the structure in the resulting optimal
controllers. A striking feature of the obtained optimal con-
troller is that it has the same structure as the problem itself!
For the damped mass-spring network in (1) this means that
the optimal control law is itself a damped mass-spring net-
work. The theorems give an analytical solution to problems
with uniform damping, both positive and negative. Thus
the optimal controller obtained works for both stable and
unstable damped mass-spring networks. The H2-gain from
disturbances to performance outputs under optimal control is
expressed in the M , C and K matrices of (1). The analytical
nature of the result makes it to be well suited for large scale
networks with damped mass-spring dynamics, like power
system networks.

NOTATION√
E denotes the unique positive semi-definite matrix

square root of a positive semi-definite matrix E. The H2

norm of a stable transfer function G (s) is defined as

∥G∥2 =

(
1

2π

∫ ∞

−∞
tr (G(jω)∗G(jω))dω

)1/2

.

II. AN ANALYTICAL SOLUTION TO AN H2 OPTIMAL
CONTROL PROBLEM

In this section we study an H2 optimal control problem
for the feedback loop in Figure 2. This is a natural setup,
in which the objective is to design a controller K (s) to
minimise the effects of process and sensor disturbances on
the control effort and process output, as quantified by the H2

norm. We will provide an analytical solution to this problem
under a set of strict assumptions on the state-space realisation
of the process transfer function G (s). However in section III
we will show how to use this result to obtain an analytical
expression for the optimal control law when G (s) describes
the dynamics of a uniformly damped mass-spring network.

Problem 1: Let
ẋG = AGxG +BG (u+ wu) , xG (0) = 0,

z =

[
yG
u

]
=

[
CG 0
0 I

] [
xG

u

]
,

y = CGxG + wy,

(2)

where the matrices AG BG and CG have the following
structure

AG =

[
A11 A12

A21 0

]
, BG =

[
Q
0

]
, CG =

[
QT 0

]
, (3)

with the following properties of the sub-matrices:
• A11 is diagonal and square of size n× n;
• A12 is n×m, where 0 ≤ m ≤ n and only has entries

on the main diagonal and these entries are non-zero;
• A21 = −AT

12;

K (s) G (s)+

+

y

wy

u

wu
yG

Fig. 2: Illustration of Problem 1, with external disturbances
wu and wy acting on the system. The aim is to minimise the
effects of the disturbances on the outputs yG and u.

• Q has the property that QQT = I and is of size n× p;
• the 0 in AG is of size m ×m, the 0 in BG is of size

m× p and the 0 in CG is of size p×m, with p ≥ n.
Suppose also that the controller K (s) can be described

by the state-space system

ẋK = AKxK +BKy, xK (0) = 0,

u = CKxK +DKy.
(4)

Define Tzw (s) as the closed loop transfer function from w =[
wT

u wT
y

]T
to z described by (2) and (4). Find

γ∗
H2

= inf
{
γ : ∥Tzw (s)∥H2

< γ
}
,

where the infimum is taken over AK, BK, CK, and DK. ♢

Remark 1: In (3) the state vector xG has length n + m,
and the length of the input vector u is p. The slightly
unconventional naming of the size of the state vector will
be explained by the type of problems this setup can describe
in section III. ♢

Theorem 1: Under the conditions of Problem 1,

γ∗
H2

=
√
tr (Z3) + tr (Z),

where Z = A11 +
√
A2

11 + I , and an optimal controller is
given by:

ẋK =

[
A11 − 2Z A12

A21 0

]
xK +

[
ZQ
0

]
y, xK (0) = 0,

u =
[
−QTZ 0

]
xK.

(5)

Proof: Introduce the generalised plantẋz
y

 =

AG Bw BG

Cz 0 Dzu

CG Dyw Dyu

x
w
u

 ,

where
Bw =

[
BG 0

]
, Cz =

[
CG

0

]
,

and
Dzu =

[
0
I

]
, Dyw =

[
0 I

]
, Dyu = 0.

Under the conditions of Problem 1, the pair (AG, Bw) is
controllable and the pair (Cz, AG) is observable. To see this,
first note that since QQT = I , thus rank (Q) = n. Since the
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diagonal elements in A21 are all non-zero, rank (A21) = m.
The two first sub-matrices of the controllability matrix are[

BG AGBG

]
=

[
Q A11Q
0 A21Q

]
.

Therefore the controllability matrix has rank n +m, which
equals the state dimension. Thus (AG, BG) is controllable,
which also implies that (AG, Bw) controllable. The same
argument shows that (CG, AG) and (Cz, AG) are observ-
able. Furthermore the matrices Dzu and Dyw are full rank.
Therefore the H2 solution to Problem 1 can be tackled within
the Riccati equation framework of [13].

Let X denote the unique stabilising solution of

XAG +AT
GX −XBGB

T
GX + CT

z Cz = 0, (6)

and Y denote the unique stabilising solution of

Y AT
G +AGY − Y CT

GCGY +BwB
T
w = 0. (7)

The solutions X and Y can be used to calculate γ∗
H2

and define the optimal control laws. We will show under
the conditions of Problem 1 that X and Y can be found
analytically.

Ansatz: X is a diagonal matrix. Introduce

X =

[
X1 0
0 X2

]
where the dimensions of the sub-matrices of X match those
of AG. Rewriting (6) in terms of the sub-matrices from
Problem 1 (recall that A22 = 0), (6) is reduced to:

X1A11 +AT
11X1 −X2

1 + I = 0,

X1A12 +AT
21X2 = 0,

X2A21 +AT
12X1 = 0.

(8)

Since A11, X1 and X2 are all diagonal, the first equation
reduces to n scalar quadratic equations, with unique positive
definite solution x1,i = a11,i +

√
a211,i + 1, where x1,i

denotes the ith diagonal element in X1, and a11,i the ith
diagonal element in A11. Further, using that A21 = −AT

12,
the final two equations in (8) reduce to the equations x2,i =
x1,i for i = 1, . . . ,m. Inserting these solutions into one
diagonal matrix gives:

X =

[
Z 0
0 Zm

]
,

where Z = A11 +
√
A2

11 + I , and Zm is Z truncated to the
first m rows and columns. Since (AG, Bw) is stabilisable
and (Cz, AG) is detectable, the unique stabilising solution
to (6) is equal to the unique positive semi-definite solution
to (6) [14, Corollary 12.5]. Since the X we have found is
positive definite, it is therefore the sought stabilising solution.
Equation (7) can be solved in an analogous manner. Note that
BGB

T
G = CT

GCG and CT
z Cz = BwB

T
w. This gives the same

solution for Y , namely that Y = X .
By [13, Theorem 1],

γ∗
H2

=
√
∥Ga (s)∥2H2

+ ∥Gb (s)∥2H2
,

where

Ga (s) = BT
GX

(
sI −AG + Y CT

GCG

)−1(
Bw − Y CT

GDyw

)
=

[
QTZ 0

](
sI −

[
A11 − Z A12

A21 0

])−1 [
Q −ZQ
0 0

]
,

and

Gb (s) =
(
Cz −DzuB

T
GX

) (
sI −AG +BGB

T
GX

)−1
Bw

=

[
QT 0

−QTZ 0

](
sI −

[
A11 − Z A12

A21 0

])−1 [
Q 0
0 0

]
.

The H2-norm of a state-space model can be calculated using
either its controllability or its observability gramian. More
specifically, if Gg (s) = Cg(sI −Ag)

−1Bg is stable, its H2-
norm is given by

∥Gg (s)∥2H2
= tr

(
CgL

c
gC

T
g

)
= tr

(
BT

g L
o
gBg

)
,

where Lo
g is the observability gramian, and Lc

g is the con-
trollability gramian. These matrices are in turn given by the
positive definite solutions to the two Lyapunov equations

AgL
c
g+Lc

gA
T
g+BgB

T
g = 0 and AT

gL
o
g+AgL

o
g+CT

g Cg = 0.

We will start by finding the controllability gramian for
Ga (s), which we denote Lc

a.
Ansatz: Lc

a is diagonal. Introducing

Lc
a =

[
L1 0
0 L2

]
,

with dimensions of the sub-matrices of Lc
a matching the sub-

matrices of AG, the Lyapunov equation is reduced to:

(A11 − Z)L1 + L1(A11 − Z)T + I + Z2 = 0,

A12L2 + L1A
T
21 = 0,

A21L1 + L2A
T
12 = 0.

(9)

Solving the above shows that L1 = Z and L2 = Zm.
Solving for Lo

b and making the ansatz that it is diagonal
gives the exact same equations as in (9), and thus

Lo
b = Lc

a =

[
Z 0
0 Zm

]
.

Therefore the H2 gains of Ga (s) and Gb (s) are

∥Ga (s)∥2H2
= tr

([
QTZ 0

]
Lc
a

[
ZQ
0

])
= tr

(
Z3

)
,

and

∥Gb (s)∥2H2
= tr

([
QT 0
0 0

]
Lo
b

[
Q 0
0 0

])
= tr (Z),

which implies that γ∗
H2

=
√
tr (Z3) + tr (Z) as required.

The realisation of the controller follows from [13, Theo-
rem 1]. In particular

AK = AG −BGB
T
GX − Y CT

GCG =

[
A11 − 2Z A12

A21 0

]
,

BK = Y CT
G =

[
ZQ
0

]
, and CK = −BT

GX =
[
−QTZ 0

]
,

and the proof is complete.
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III. APPLYING THEOREM 1 TO UNIFORMLY DAMPED
MASS-SPRING NETWORKS

In this section we will look at an optimal control problem
for a damped mass-spring network. We will see that under
the assumption of uniform damping, it is possible to convert
this on to the form of Problem 1. We will further show how
to write the optimal H2-gain for this problem in terms of
the mass and damper parameters of the network, and that
the resulting H2-controller is itself a passive, damped, mass-
spring network, that inherits many of the structural properties
of the system that is being controlled. A small numerical
example is provided to illustrate the result.

A. The Optimal Control Problem

We first define the problem that is to be studied.
Problem 2: Consider a system described by

Mq̈ + Cq̇ +Kq = u+
√
Mwu, q (0) = q̇ (0) = 0,

y = q̇ +
√
M−1wy,

(10)

where M , C, K ∈ Rn×n, satisfy the following conditions:
1) M is positive definite;
2) K is positive semi-definite;
3) C is any symmetric matrix that satisfies CM−1K =

KM−1C.
Find a controller on the form of (5) that minimises the H2

norm of the closed loop transfer function from disturbance
w to performance output z, where

w =

[
wu

wy

]
and z =

[ √
Mq̇√

M−1u

]
. ♢

In the context of damped mass-spring networks, the first
equation in (10) is a statement of Newton’s second law,
where q is the generalised coordinates, M is the mass-matrix,
C is the damper-matrix, and K is the stiffness-matrix. The
input u is a force that can be applied to the network by a
controller, and wu is a disturbance acting on the network. The
second equation in (10) describes the measurements taken,
where it is assumed that the velocity of each generalised
coordinate is measured subject to measurement noise wy.

We now discuss the implications of the restrictions 1)–3)
in Problem 2.

1) This condition makes M invertible, allowing for a sim-
ple conversion of (10) into state-space form. This con-
dition can be relaxed at the expense of more complex
derivations. For extensions of the concept of uniform
damping to this setting, see [12, Theorem 1].

2) This condition is needed to ensure the skew-symmetric
structure A21 = −AT

12 required in Problem 1 appears
when converting Problem 2 into the form of Problem 1.
In the damped mass-spring interpretation of Problem 2,
this corresponds to that all springs have non-negative
spring constants.

3) As discussed in the introduction, this is the uniform
damping condition. As shown in [10], this condition
is equivalent to the existence of an invertible matrix

S such that STMS = I , and both STCS and STKS
are diagonal. Note in particular that this implies that
Q = ST

√
M satisfies QQT = I . Since Q is square this

further implies that QTQ = I .
Remark 2: Any matrix C given by a Caughey series

C = M

n−1∑
j=0

αj(M
−1K)j ,

where αj ∈ R, is uniformly damped. When αj = 0 for j ≥ 2
this is typically called Rayleigh damping [11]. Conversely
whenever K has distinct eigenvalues a uniformly damped C
admits a Caughey series. Note that C need not be positive
semi-definite (for example when all the αj’s are negative).
When this is the case the dynamics in (10) are unstable. ♢

There are further implicit assumptions in Problem 1. Most
significantly, the disturbances and performance outputs in
Problem 2 are scaled. These scalings are required to trans-
form Problem 2 into Problem 1. However this requirement
can likely be significantly relaxed by generalising Problem 1
and Theorem 1. There are a number of ways this could be
approached, but we keep these scalings here for simplicity.

From the application point of view, these scaling are not
unreasonable as we now discuss. It is likely reasonable that
wu should be scaled by the size of the masses, since larger
masses will likely be affected by larger disturbance. Looking
at the performance output z, we see that the velocities
of large masses incur larger penalties than those of small
masses. This is again reasonable, since when larger masses
move, they are harder to stop, so it is desirable to prevent
this with the control. At the same time, the forces acting
on large masses from the controller should be expected to
be larger than those of the smaller masses, which is again
reflected by the weight on u. The weight on wy is harder
to intuitively explain, but is needed for symmetry. Note also
that the scalings in terms of the square root of M are not
so unnatural, since the H2-norm penalises the square of the
signals in questions. In the case of the process output y,
for example, it means that we are minimising the effect on∫∞
0

y (t)
T
My (t) dt.

B. The solution to Problem 2
In this subsection we describe and illustrate the solution

to Problem 2. The derivation from Problem 1 and Theorem 1
will be given in the next subsection.

1) The optimal cost and control law: The optimal cost
for Problem 2 is given by

γ∗
H2

=
√
tr (Z3

C) + tr (ZC),

where

ZC = −
√
M−1C

√
M−1 +

√√
M−1CM−1C

√
M−1 + I.

(11)
The optimal controller can either be expressed in state-space
form, or as a second order differential equation. Taking the
later option shows that the control law is given by

MKq̈K + CKq̇K +KKqK = y, qK (0) = q̇K (0) = 0

u = −q̇K,
(12)
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where the matrices are
• TK = −C +

√√
MCM−1C

√
M +M2,

• MK = T−1
K MT−1

K ,
• CK = T−1

K

(
−C + 2

√√
MCM−1C

√
M +M2

)
T−1
K ,

• KK = T−1
K KT−1

K .
It is interesting to note that the optimal controller in (12)
is itself a damped mass-spring network, with parameters
written in terms of the original network. A tedious but
straightforward calculation in fact shows that CK is positive
definite (this follows from the fact that the north-west entry
in the AK in (5) is negative definite, and the negative
of this entry eventually becomes CK after a sequence of
transformations that preserve sign-definiteness). This means
that the controller can be implemented physically by building
a suitable passive damped mass-spring network.

2) An illustrative case: If the damping matrix C is
proportional to the mass matrix M , the controller expressions
simplify considerably. If C = α0M , then TK = (

√
α2
0 + 1−

α0)M , and (12) becomes

M−1q̈K

(
√
α2
0 + 1− α0)2

+
(2
√
α2
0 + 1− α0)M

−1q̇K

(
√
α2
0 + 1− α0)2

+
M−1KM−1qK

(
√
α2
0 + 1− α0)2

= y,

u = −q̇K.

The unstable case corresponds here to that α0 < 0. The more
negative α0 becomes, the more positive the term in front of
q̇K becomes in relation to the terms in front of q̈K and qK.
An interpretation of this is that for an unstable system the
controller introduces more damping, and the more unstable
the original system was, the greater the damping provided by
the controller. It should also be noted that the denominator in
all terms becomes larger with more negative α0. This means
that the more unstable the system is, the more important the
measurement y becomes in the control dynamics.

3) A numerical example: Consider the network in Fig-
ure 1, where m1 = 1 kg, m2 = 4, k1 = 1 N/m, and k2 = 2
N/m. This gives the following mass and stiffness matrices

M =

[
1 0
0 4

]
K =

[
3 −2
−2 2

]
.

Suppose that the damping is given as Rayleigh damping, then

C = α0M + α1K.

In Figure 3 the optimal H2-gain from disturbances to outputs
is plotted for different values of α0 and α1 on the interval
from −5 to 5. Here it can clearly be seen that if both α0 > 0
and α1 > 0, which corresponds to positive damping, γ∗

H2

is small. For strictly negative damping, corresponding to
the third quadrant where both α0 < 0 and α1 < 0, the
performance is much poorer, since the uncontrolled system
is unstable. In the second and fourth quadrants of Figure 3
C is positive definite for some combinations of α0 and α1,
and negative definite or indefinite for others. Depending on
the definiteness of C, the performance metric γ∗

H2
can either

be larger or smaller than the case of no damping.

-5

0

5

-5 0 5

α1

α0

101

100

Fig. 3: Levels of H2 performance achieved as Rayleigh
damping parameters α0 and α1 vary between −5 and 5.
Larger values of α0 and α1, which correspond to increased
levels of damping in the original network, result in improved
performance.

C. Solving Problem 2 with Theorem 1

1) Converting Problem 2 into Problem 1: We now de-
scribe the required transformations to convert Problem 2
into Problem 1. We start by introducing a new variable
p =

√
Mq, thus q =

√
M−1p. Inserting this into (10) and

multiplying both sides by
√
M−1 from the left gives

p̈+
√
M−1C

√
M−1ṗ+

√
M−1K

√
M−1p =

√
M−1u+wu

(13)
Define ũ =

√
M−1u. Since K is positive semi-definite

and M is positive definite,
√
M−1K

√
M−1 is positive

semi-definite. Under the uniform damping assumption,√
M−1C

√
M−1 and

√
M−1K

√
M−1 commute. Since in

addition
√
M−1C

√
M−1 and

√
M−1K

√
M−1 are symmet-

ric, there exists a unitary transformation Q (that is QQT =
QTQ = I) such that

√
M−1C

√
M−1 = QTΛCQ,

√
M−1K

√
M−1 = QT

[
ΛK 0
0 0

]
Q,

where ΛC and ΛK are both diagonal and ΛK is positive
definite. Now define

L =

[√
ΛK

0

]
.

This makes L of size n×m, where n is the number of masses
in the network, and m is the number of non-zero eigenvalues
of K. Introduce the state variable

x =

[
Qṗ

LTQp

]
.
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Define ỹ =
√
My. Including the performance output z and

measurement ỹ, (13) admits the state-space realisation

ẋ =

[
−ΛC −L
LT 0

]
x+

[
Q
0

]
(ũ+ wu),

z =

[
[QT 0] 0
[0 0] I

] [
x
ũ

]
,

ỹ =
[
QT 0

]
x+ wy.

(14)

Problem 2 has now been written on the form of Prob-
lem 1, with the sub-matrices fulfilling all conditions in the
formulation of Problem 1.

2) Extracting the optimal solution to Problem 2: By
Theorem 1, the optimal H2-gain from disturbances to per-
formance outputs is given by

γ∗
H2

=
√
tr (Z3) + tr (Z), where

Z = −ΛC +
√
Λ2
C + I.

(15)

With ΛC = Q
√
M−1C

√
M−1QT, Z can be expressed in

terms of the original system matrices according to

Z = −Q
√
M−1C

√
M−1QT

+

√
Q
√
M−1CM−1C

√
M−1QT + I.

Using the cyclic property of the trace, and the fact that the
matrices Q and QT can be pulled out of the square root,
shows that

tr
(
Z3

)
= tr

(
Z3
C

)
and tr (Z) = tr (ZC),

where ZC is defined in (11).
From (5), the optimal controller in state-space form is

given by

ẋK =

[
−ΛC − 2Z −L

LT 0

]
xK +

[
ZQ
0

]
ỹ, xK (0) = 0,

ũ =
[
−QTZ 0

]
xK,

(16)
where Z is defined as in (15). This structure is very similar to
the structure of the problem in (14). Reversing the described
transformations yields the controller expression in (12). This
can be done by first introducing pK through

xK =

[
QṗK

LTQpK

]
,

and then setting qK = TK

√
M−1pK, where

TK =
√
MQTZQ

√
M = −C+

√√
MCM−1C

√
M +M2,

and simplifying. TK is non-singular since M is non-singular.
This can most easily be seen in first expression of TK above
where Z is non-singular according to (15) and Q is non-
singular due to it being unitary. Equation (16) can, with these
transforms, be rewritten and simplified to

T−1
K MT−1

K q̈K + T−1
K KT−1

K qK

+ T−1
K

(
−C + 2

√√
MCM−1C

√
M +M2

)
T−1
K q̇K = y,

u = −q̇K,

which is the result in (12).

IV. CONCLUSIONS

An analytical solution to a structured optimal control
problem has been derived. This was used to analytically
solve a corresponding problem for any system that can be
modelled as a uniformly damped network of masses and
springs. The results illustrate the impact of damping on
system performance, and also that such systems can be
optimally regulated by passive networks of damped masses
and springs.
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