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Abstract— Networks of dynamical systems play an important
role in various domains and have motivated many studies on
the control and analysis of linear dynamical networks. For
linear network models considered in these studies, it is typically
pre-determined what signal channels are inputs and what are
outputs. These models do not capture the practical need to
incorporate different experimental situations, where different
selections of input and output channels are applied to the same
network. Moreover, a unified view of different network models
is lacking. This work makes an initial step towards addressing
the above issues by taking a behavioral perspective, where
input and output channels are not pre-determined. The focus of
this work is on behavioral network models with only external
variables. By exploiting the concept of hypergraphs, novel
dual graphical representations, called system graphs and signal
graphs, are introduced for behavioral networks. Moreover,
connections between behavioral network models and structural
vector autoregressive models are established. In addition to
their connections in graphical representations, it is shown that
the regularity of interconnections is an essential assumption
when choosing a structural vector autoregressive model.

I. INTRODUCTION

Networks of dynamical systems are spatially distributed
dynamical systems and consist of numerous individual sub-
systems that interact with each other to achieve sophisticated
tasks. They play a pivotal role in various domains, including
robotic swarms, power grids, transportation systems, and
biomolecular networks [1]–[3].

Motivated by the importance of these systems, consider-
able attention has been given to the development of anal-
ysis and control techniques for linear dynamical networks.
These techniques have been developed in different modeling
frameworks. Early works can be found in, e.g., the study of
composite systems by Rosenbrock [4] in the 70s by using
polynomial models. Without the intention to make a com-
prehensive review of the vast literature, we mention several
other modeling frameworks: state-space models for linear
dynamical networks [5], [6], polynomial models [5], the
structural vector autoregressive (SVAR) model in time series
analysis [7], and models consisting of transfer functions in
system identification [8], [9].

The above models of linear dynamical networks, if not
autonomous, typically start with chosen input and output
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channels. However, from a practical point of view, it may
be desired to conduct multiple experiments, with different
choices of input and output channels, on the same dynamical
network. The above freedom of choosing inputs and outputs
of one network is not captured in the above modeling
frameworks. Moreover, from a theoretical point of view, it
is often not clear how these models are connected, and what
underlying assumptions have been made when choosing a
particular model. Overall, we argue that there is a lack of a
unified theoretical framework for looking at these different
linear network models.

The above two problems motivate us to adopt the per-
spective from the behavioral system theory, introduced by
Willems [10], [11]. In the behavioral theory, possible time
trajectories in (Rq)Z+ allowed by a system, also called
behaviors, take the central role. Different models that can
generate the behaviors are regarded as different representa-
tions of the system. One of the most novel aspects in the
behavioral theory is that inputs and outputs are not pre-
distinguished but deduced from the modeling framework.
This shows the potential of the behavioral theory to capture
different experimental settings in modeling linear dynamical
networks. Another important feature of the behavioral theory
is that an axiomatic characterization of linear system repre-
sentation is provided: A subset of (Rq)Z+ is closed, linear,
and shift-invariant (time-invariant) iff it can be represented
by a polynomial model [12]. This brings polynomial models
onto the central stage, and their connections with other rep-
resentations have also been established [11]. This axiomatic
characterization is particularly suitable for understanding the
assumptions and connections of different network models.

Since the initial discussions on networks from the behav-
ioral perspective [13], several problems have been studied
in the behavioral theory [14]–[16] and in its applications to
physical networks [17]. The results in [14], [16] concern
control problems of linear dynamical networks from the
behavioral perspective. In [15], the focus is on formalizing
additional restrictions on the behavior, called contracts, for
input-output models. The analysis of passive networks and
electrical circuit networks is studied in [17]. Another inter-
esting extension of the behavioral theory is the incorporation
of category theory [18]. However, we are not aware of
recent works that connect different network models and study
network representations in a behavioral framework.

In this work, following [11], [13], we make an initial
step towards addressing the two ultimate issues discussed
previously, i.e., the incorporation of freedom for choosing
input and output channels in a network modeling framework
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and building a unified view on different network models. For
simplicity, we limit the scope to linear network models with-
out latent variables, i.e., the variables that are internal and
unmeasured. Compared to the previous studies on networks
in the behavioral setting, our contributions are as follows:

• Novel graphical representations for the network model
in the behavioral setting are introduced;

• An explicit connection between the behavioral network
model and the SVAR model is established.

More specifically, we start from the interconnection of
linear dynamical systems in the behavioral framework [11],
where inputs and outputs are not pre-distinguished. Then,
novel graphical representations of behavioral networks are
introduced by exploiting the concept of hypergraphs [19].
This leads to novel dual concepts called system graphs
and signal graphs as formal graphical representations of
behavioral networks. The system graph models dynamical
systems as vertices and formalizes the standard graphical
visualization of networks in the behavioral theory. The signal
graph models signals as vertices and systems as edges,
which match more closely with the behavioral framework,
where trajectories play the central role. Finally, we estab-
lish a connection between behavioral networks and SVAR
models, due to the important role of SVAR models in
various applications [20]. We show that the regularity of
interconnections, as introduced in [21], is a fundamental
assumption underlying SVAR models. More interestingly, we
also show explicit connections between system graphs, signal
graphs of behavioral networks and directed graphs of SVAR
models.

II. PRELIMINARIES

A. Notation

The notation Z+ denotes the set of non-negative integers.
The set of all functions from a set X to a set Y is denoted
as YX . The notation col(F1, F2), where F1 and F2 are two

matrices with the same number of columns, denotes
[
F1

F2

]
.

Given w ∈ Rq , we say that col(u, y) is a component-wise
partition of w if a permutation matrix Π exists such that
w = Πcol(u, y). Given a positive integer m, the symbol
Im denotes the set {1, . . . ,m}. The notation wIm denotes
col(w1, . . . , wm), and for any Ī = {i1, . . . , ir} ⊆ Im,
πĪ(wIm) denotes a projection and equals wĪ.

For any positive integer q, R•×q[s] denotes the set of
polynomial matrices with q columns, an arbitrary number
of rows, and an indeterminate s. A polynomial matrix U ∈
Rq×q[s] is unimodular if its inverse is also a polynomial
matrix. The notation deg(r) of a polynomial r ∈ R[s]
denotes its degree. We define a function M : Rm×q[s] →
{0, 1}m×q such that [M(R)]ij = 0 iff Rij = 0, i.e., M(R)
shows the sparsity pattern of R. Note that R = 0 means R
is a zero function. Notation [R]i⋆ denotes the i-th row of R.

B. Systems theory from a behavioral perspective

Following [11], we define a dynamical system as Σ =
(T,W,B) with a time axis T, a signal space W, and its

behavior B ⊆ WT. In this work, we will focus on linear time-
invariant systems in a discrete-time setting, and the main
results also hold for the continuous-time setting with minor
modifications as highlighted later in Remark 3.4.

Following the notation in [21], any R ∈ R•×q[s] defines
a discrete-time dynamical system via the equation

R(σ)w = 0 (1)

as Σigma(R) ≜
(
Z+,Rq, ker(R)

)
, where ker(R) = {w ∈

(Rq)Z+ | w satisfies (1)}, and σ is the shift operator, i.e.,
σw(t) = w(t + 1). Notation Lq denotes the set of all such
dynamical systems, i.e., Lq ≜ {Σigma(R) | R ∈ R•×q[s]}.
As shown in [11], Lq actually contains the linear time-
invariant finite-dimensional dynamical systems.

A polynomial matrix R defines Σigma(R) uniquely; how-
ever, Σigma(R) does not uniquely define a polynomial ma-
trix: It holds that Σigma(R) = Σigma(UR), where U is any
unimodular polynomial matrix [12]. We call R ∈ R•×q[s]
a kernel representation of Σ ∈ Lq if Σ = Σigma(R).
Moreover, any Σ ∈ Lq admits a kernel representation R ∈
R•×q[s] that has full row rank (over the polynomial ring
R[s]). Such an R is called a minimal kernel representation
of Σ, and its rank is uniquely determined by Σ. We define the
function p : Lq → {1, . . . , q} such that p(Σ) is the rank of
any minimal kernel representation of Σ ∈ Lq . If p(Σ) = q,
i.e., Σ can be represented by R(σ)w = 0 with det(R) ̸= 0,
Σ is an autonomous system.

Given a minimal kernel representation R ∈ Rp(Σ)×q[s]
of Σ ∈ Lq , the McMillan degree of R is defined as the
maximum degree of all the p(Σ)× p(Σ) minors of R [21],
and it is uniquely determined by Σ. Therefore, we define
the function n : Lq → Z+ such that n(Σ) is the McMillan
degree of Σ. As shown in [11], n(Σ) also equals the state
dimension of a minimal state-space representation of Σ.

For any Σ =
(
Z+,Rq,B

)
∈ Lq , there exist P ∈

Rp(Σ)×p(Σ)[s] with det(P ) ̸= 0 and Q ∈ Rp(Σ)×(q−p(Σ))[s]
such that

Σ : P (σ)y = Q(σ)u (2)

describes the behavior of Σ, i.e., B = {w | w =
Πcol(u, y) ∈ (Rq)Z+ , (2)} for some permutation matrix Π.
Such a component-wise partition col(u, y) of w is called an
input-output partition with input u and output y. The input u
is free, i.e., for any u, there exists a y such that Πcol(u, y) ∈
B. If P−1Q is proper, then col(u, y) is called a proper input-
output partition of w. A proper input-output partition always
exists: Given a minimal kernel representation R of Σ ∈ Lq ,
choose P to be a p(Σ) × p(Σ) submatrix of R such that
deg(det(P )) is the largest among all submatrices. However,
note that this partition may not be unique, leading to the
freedom in choosing different inputs and outputs.

III. MANIFEST NETWORKS IN A BEHAVIORAL SETTING

A. Algebraic representation

In a network setting with only manifest variables, i.e.
variables that are external or measured, we are interested
in the interconnection of several dynamical systems.
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Definition 3.1 ( [11]): Consider N dynamical systems
Σi = (T,W,Bi) for i ∈ IN , then their interconnected system
is defined as Σ = ∧N

i=1Σi ≜ (T,W,∩N
i=1Bi), and Σi is

called a component of Σ.
The definition of interconnected systems, also called dy-

namical networks, considers the total interconnection of
dynamical systems, i.e., all Σi have the same signal space.
It covers the special cases where Σi have different signal
spaces, i.e., the so-called partial interconnection, as shown
in the following example from [21]: The interconnection of
Σ1 = (T,W1 × W2,B1) and Σ2 = (T,W2 × W3,B2) is
equivalent to the interconnection of Σ̄1 = (T,W1 × W2 ×
W3,B1×(W3)

T) and Σ̄2 = (T,W1×W2×W3, (W1)
T×B2).

In this work, we will introduce a binary matrix and
graphical representations to encode the above structure of
a partial interconnection. To this end, we first define the
following concept:

Definition 3.2: Given a dynamical system1 Σ =
(T,

∏
j∈IL Wj ,B), the signal wj with j ∈ IL is said being

unconstrained in Σ if B = {wIL ∈ (
∏

j∈IL Wj)
T | wj ∈

(Wj)
T, wIL\{j} ∈ πIL\{j}(B)}.

Signal wj being unconstrained means that ∀ wj ∈ (Wj)
T

and ∀ wIL\{j} ∈ πIL\{j}(B) lead to wIL ∈ B. This is a
stronger requirement than requiring wj to be free [11], i.e.,
∀ wj ∈ (Wj)

T, ∃ wIL\{j} ∈ πIL\{j}(B) such that wIL ∈ B.
When the Euclidean space is considered as the signal

space, we have the following algebraic characterization of
the unconstrained signals:

Lemma 3.1: Given a dynamical system Σ =(
Z+,

∏
j∈IL Rqj ,B

)
∈ Lq , then wj is unconstrained

if and only if Rj = 0 for any kernel representation
[R1 R2 · · ·RL] of Σ, where Rj ∈ R•×qj [s].

Proof: The “if” part is straightforward. We can prove
the “only if” part by contradiction as follows. Firstly,
note that 0 ∈ B = ker

(
[R1 R2 · · ·RL]

)
, and thus

wIL\{j} = 0 ∈ πIL\{j}(B). Assume that Rj ̸= 0, and
consider [R1(σ) . . . Rj(σ) . . . RL(σ)]w = 0. There must
exist wj ̸= 0 such that Rj(σ)wj ̸= 0. Then, it is clear
w = col(0, . . . , 0, wj , 0, . . . , 0) /∈ B, which contradicts wj

being unconstrained.
As shown in the above lemma, a signal vector being

unconstrained simply means that the corresponding block
matrix in the kernel representation is zero. If we consider
a linear system Σ = (Z+,Rq1 × Rq2 × Rq3 ,B) ∈ Lq , then
w2 is unconstrained iff Σ admits a kernel representation as

[
R1(σ) 0 R3(σ)

] w1

w2

w3

 = 0,

where wi ∈ (Rqi)Z+ . The above sparsity pattern of the kernel
representation is invariant after an equivalent transformation,
i.e., the pre-multiplication of a unimodular matrix.

With the above concept, we can characterize the sparsity
pattern of interconnected systems by a binary matrix:

1We write the signal space as a product to decompose the signal vector
w into L subvectors, i.e., w = wIL = col(w1, . . . , wL).

Definition 3.3: Consider N dynamical systems Σi =
(T,

∏
j∈IL Wj ,Bi) for i ∈ IN , the incidence matrix S ∈

{0, 1}N×L of the interconnected system ∧N
i=1Σi is defined

as Sij = 0 iff wj is unconstrained in Σi.
An incidence matrix S of an interconnected system con-

tains important structural information: Its number of rows
equals the number of components, and its number of columns
equals the number of signal vectors. As an example, con-
sider an interconnected system with 4 components Σi =
(Z+,

∏4
j=1 Rqj ,Bi) ∈ Lq for i ∈ I4 and an incidence matrix

S =


1 1 1 0
0 1 0 1
0 0 1 1
0 0 1 1

 . (3)

The above incidence matrix implies that ∧4
i=1Σi admits a

kernel representation
R11(σ) R12(σ) R13(σ) 0

0 R22(σ) 0 R24(σ)
0 0 R33(σ) R34(σ)
0 0 R43(σ) R44(σ)



w1

w2

w3

w4

 = 0, (4)

where the i-th block row is a kernel representation of Σi. In
(4), wi can be scalar-valued or vector-valued, and each row
can be a block row or one-dimensional.

Remark 3.1: The incidence matrix of (4) is invariant after
the equivalent transformation of each component, i.e., pre-
multiplication of (4) by a block diagonal unimodular matrix.
However, it may change after the equivalent transformation
of the complete network, i.e., pre-multiplication of (4) by a
general unimodular matrix.

We summarize the above point and the previous discus-
sions into the following result:

Corollary 3.1: Consider discrete-time systems Σi =
(Z+,

∏
j∈IL Rqj ,Bi

)
∈ Lq for i ∈ IN and a matrix S ∈

{0, 1}N×L, the following statements are equivalent:
(a) The matrix S is an incidence matrix of ∧N

i=1Σi;
(b) It holds that Sij = 0 iff Rij = 0 for any kernel

representation
[
Ri1 Ri2 . . . RiL

]
of Σi, where

Rij ∈ R•×qj [s].
Remark 3.2: Given a system Σ ∈ Lq , it can be de-

composed as an interconnection of components, which is
analogous to the step of zooming in modeling [11]. However,
this decomposition is typically non-unique.

B. Graphical representation

Models of networks are typically associated with a graph-
ical representation, e.g., directed or undirected graphs. While
the graphical visualization of interconnected systems has
been used extensively in the behavioral theory [13], [15],
[16], it is typically not formalized in terms of graph theory.
Graphical representations are considered in [11], [14] but
with pre-determined inputs and outputs. Other graphical
representations are mainly motivated by the modeling of
electrical circuits [17], [22] and are hard to connect to graphs
of other linear network models.
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Since an incidence matrix S has a one-to-one correspon-
dence with the so-called hypergraph [19], we formalize the
graphical representation of an interconnected system in this
subsection.

Definition 3.4 ( [19]): A hypergraph is a pair (V, E) with
a finite set V and a multiset 2 E that contains subsets of V .

Each element in V is called a vertex and each element
in E is called a net or a edge. The nets are unordered sets
and thus undirected. One net can contain multiple vertices
or a single vertex, in contrast to standard graphs where an
edge always connects two vertices3. This modeling feature is
useful when cluster-wise interactions are of interest, e.g., in
modeling consensus phenomena or contagion processes [3].

Any S ∈ {0, 1}N×L uniquely specifies a hypergraph via
a function G(S) = (V, E), where

V = IL, and E = {E(i) | i ∈ IN}, (5)

and E(i) ≜ {k ∈ IL | Sik = 1}. The multiset E in (5)
contains repeated elements if S contains identical rows. The
dual hypergraph of G(S) is defined as G(S⊤), where edges
in G(S) become vertices in G(S⊤).

Given an incidence matrix S of an interconnected system
and the hypergraph G(S), each vertex in G(S) denotes a
signal vector and each edge denotes a component of the
interconnected system. This is in contrast to the standard
graphical visualization in the behavioral theory [15], [16],
[21], where components are drawn as vertices and signals are
drawn as edges. This type of graph can actually be obtained
as the dual hypergraph G(S⊤). We distinguish the above two
different graphical representations in the following definition:

Definition 3.5: Given an incidence matrix S ∈ {0, 1}N×L

of an interconnected system ∧N
i=1Σi, where Σi =

(T,
∏

j∈IL Wj ,Bi), the hypergraph G(S) is called the signal
graph of ∧N

i=1Σi, and the dual hypergraph G(S⊤) is called
the system graph of ∧N

i=1Σi.
Example 3.1: Consider the interconnected system (4) of

4 components and its incidence matrix (3). The incidence
matrix leads to a signal graph (V, E), with V = I4 and the
multiset E = {I3, {2, 4}, {3, 4}, {3, 4}}. The signal graph
G(S) is shown in Fig. 1(a), where we label vertex i as
wi equivalently, and each net represents one row of S
and thus a component Σi. A net is visualized as a cluster
in the signal graph, while a two-vertex net can also be
visualized as an undirected edge. Note that the net {3, 4}
appears twice in E due to the last two identical rows in
(3). The system graph G(S⊤) has V = I4 and E =
{{1}, {1, 2}, {1, 3, 4}, {2, 3, 4}}. It is visualized in Fig. 1(b),
where we have labelled the vertex i ∈ V as Σi. The nets
represent the rows of S⊤ and thus the signals. They are
drawn as edges, following the conventional visualization in
the behavioral theory [15], [16], [21]. For example, the net
{2, 3, 4} represents the signal w4 and is drawn as an edge
connecting the components Σ2, Σ3, and Σ4.

2A multiset is a collection of elements with possible repeated elements.
3The edge set of a standard graph is typically a subset of V × V [19].

(a) (b)
Fig. 1. Two graphical representations of (4) are shown. The signal graph
in (a) represents the 4 signal vectors as 4 vertices and the 4 components as
4 nets/edges. The dual graph in (b) represents the 4 components as vertices
and the 4 signals as nets, visualized as edges by convention.

While block diagrams like system graphs and Fig. 1(b)
are commonly used in systems and control theory, signal-
based graphs like Fig. 1(a) are typically used in system
identification [9] and machine learning [7]. The duality in
Definition 3.5 will be essential to connect the above different
network models from various domains. A preliminary study
of this direction will be given later in Section IV.

Remark 3.3: In [23], relevant concepts called “subsystem
structure” and “signal structure” are discussed, where the
first one is associated with the state-space representation
and the second one is associated with models containing
transfer functions. By contrast, the dual graphs in this work
are representations of kernel representations.

C. Regularity of interconnection

For the interconnection of dynamical systems, the concept
of regularity has been studied in the behavioral theory [11],
[21]. The regularity is typically studied for the interconnec-
tion of two dynamical systems in the context of control, i.e.,
the interconnection of a plant and a controller [21], [24], [25]
or the interconnection of two local controllers in distributed
control [16]. In this work, we focus on the regularity of the
interconnection of an arbitrary finite number of dynamical
systems, as shown in the following definition.

Definition 3.6: Given Σi ∈ Lq for i ∈ IN , the intercon-
nection Σ = ∧N

i=1Σi is a regular interconnection if p(Σ) =∑N
i=1 p(Σi). It is called a regular feedback interconnection

if it is a regular interconnection and n(Σ) =
∑N

i=1 n(Σi).
A regular interconnection requires each component to

have distinct and independent outputs. It also means that
each component has independent physical constraints/laws
to characterize its behavior. This interpretation is from
the fact that, an interconnection ∧N

i=1Σi is regular iff
col(R1, . . . , RN ) has full row rank, where Ri is a minimal
kernel representation of Σi.

The regular interconnection of a plant and a controller
is shown to be equivalent to a feedback connection, where
the controller is a possibly non-proper input-output system
[21]. To ensure that the controller is proper, a regular
feedback interconnection is needed [21]. The regular feed-
back interconnection is defined by the condition of regular
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interconnection and the additional condition that the McMil-
lan degrees of components respect the additive rule. The
latter condition requires the components to have independent
state variables. This is commonly satisfied by networks of
physically decoupled systems, e.g., multiple robots, but may
be violated by physical coupling, where states of different
components are coupled via algebraic constraints, as shown
later in Example 3.2.

With the above concepts, the following two results are
straightforward extensions of [21, Th. 8 and 12] from two
components to a finite number of components.

Corollary 3.2: Given an interconnected system Σ =
∧N
i=1Σi with Σi ∈ Lq for all i ∈ IN , then its intercon-

nection is a regular interconnection if and only if 4 the
signal vector w of Σ admits a component-wise partition
col(y1, . . . , yN , u), where yi ∈ (Rp(Σi))T, such that

• in Σ, col(u, col(y1, . . . , yN )) is a proper input-output
partition;

• in Σi, col
(
col(u, y1, . . . , yi−1, yi+1, . . . yN ), yi

)
is an

input-output partition, for all i ∈ IN .
The above result states that if the interconnection is

regular, the interconnected system can be regarded as an
interconnection of (possibly non-proper) input-output sys-
tems with output-to-input interconnections: Each component
receives the outputs of other components as its inputs. This
is a fundamental property of many input-output network
models.

To further ensure that all the input-output components
are proper, a regular feedback interconnection should be
considered:

Corollary 3.3: Given Σ = ∧N
i=1Σi with Σi ∈ Lq for

all i ∈ IN , then its interconnection is a regular feedback
interconnection if and only if the signal vector w of Σ
admits a component-wise partition col(y1, . . . , yN , u), where
yi ∈ (Rp(Σi))T, such that

• in Σ, col(u, col(y1, . . . , yN )) is a proper input-output
partition;

• in Σi, col
(
col(u, y1, . . . , yi−1, yi+1, . . . yN ), yi

)
is a

proper input-output partition, for all i ∈ IN .
Regularity of interconnections is a fundamental property

in network models with output-to-input interconnections. It
is typically assumed implicitly when a model is chosen. We
will discuss this point for SVAR models in the next section.

D. Lack of regularity

Despite the existing discussions and applications of regular
interconnections [14], [16], [21], there seems a lack of
discussions on the situations where interconnections are not
regular. It is easy to find real-world networks with non-
regular (feedback) interconnections. Thus, it is of interest
to investigate how to handle non-regular interconnections
and to ask whether network models with output-to-input
interconnections can still be applied to these situations. We
motivate these discussions in the following example:

4The “if” part is not stated in [21] but holds trivially. This also holds
similarly for Corollary 3.3.

Fig. 2. The interconnection ∧3
i=1Σi is not a regular feedback interconnec-

tion; however, if merging Σ̄2 = Σ2∧Σ3 into a single component, Σ1∧Σ̄2

becomes a regular feedback interconnection of two components.

Example 3.2: For the simple circuit in Fig. 2, we choose
V , VC , I1, and I2 to be the manifest variables, which
denote the voltage across the circuit, the voltage across
the capacitors, the current through the capacitor C1, and
the current through C2, respectively. Let d/dt denote the
differentiation operator5, and the models are Σ1 : V −
VC = (d/dt)L(I1 + I2), Σ2 : I1 = (d/dt)C1VC , and
Σ3 : I2 = (d/dt)C2VC . We have p(Σi) = 1 for all
i ∈ I3, and it is easy to verify p(∧3

i=1Σi) = 3. This shows
p(∧3

i=1Σi) =
∑3

i=1 p(Σi) = 3, and thus, ∧3
i=1Σi is a regular

interconnection. However, n(Σi) = 1 for i ∈ I3, and it is
easy to show

∑3
i=1 n(Σi) = 3 > n(∧3

i=1Σi) = 2. Therefore,
∧3
i=1Σi is not a regular feedback interconnection. This is

because Σ2 and Σ3 share the same state VC .
However, if we regard Σ̄2 = Σ2 ∧ Σ3 as a single

component, then p(Σ1 ∧ Σ̄2) = p(Σ1) + p(Σ̄2) = 3 and
n(Σ̄2)+n(Σ1) = n(Σ1∧ Σ̄2) = 2. This shows that Σ1∧ Σ̄2

is a regular feedback interconnection of two components,
where VC and I2 can be chosen as the outputs of Σ̄2 and
are also inputs to Σ1. Here, we obtain an output-to-input
interconnection between Σ̄2 and Σ1. ■

As shown in the above example, the lack of regular
feedback interconnection is typically caused by static map-
pings between state variables of different components. One
way to resolve the lack of regularity is by grouping some
components into a single component, thus leading to the loss
of structural information of the network. We can formalize
this in the following result:

Proposition 3.1: Given Σ = ∧N
i=1Σi with Σi ∈ Lq for

i ∈ IN , there exists a partition {Ī1, . . . , Īk} of IN such
that ∧k

i=1Σ̄i is a regular (feedback) interconnection of k
components, where Σ̄i = ∧j∈ĪiΣj .

Proof: The existence is proved by letting Ī1 = IN .
In a kernel representation of a network, the partition of IN

corresponds to the merging of some block rows into a new
block row. Non-trivial partitions are preferred in practice.
Particularly, to maintain the structural information of the
network, it may be desired to make k as close to N as
possible. It is attractive to develop algorithms to obtain such
a “maximally merged” network, and this will be pursued in
the future work.

Remark 3.4: All the previous results for discrete-time sys-
tems also hold for continuous-time systems, if we replace the

5The continuous-time setting does not affect the discussion here.
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time set Z+ by R, the shift operator σ by the differentiation
operator d/dt, and the definition of ker(R) by the set of
weak solutions w of R(d/dt)w = 0 [21].

IV. STRUCTURAL VAR MODEL

A. From SVAR to behavioral networks

The SVAR model has been applied to several applications
[7], [20]. This model can be justified from a statistical
perspective [26]. Having established the model of intercon-
nected systems in the behavioral setting, we will investigate
its connection with the SVAR model from a behavioral
perspective. Another goal is to understand the underlying
assumptions when choosing an SVAR model. In this work,
we consider the SVAR model in a deterministic setting.

We consider the SVAR model [7] with exogenous inputs6:
For i ∈ IN ,

yi(t+ li) =Xi,0y(t+ li) +Xi,1y(t+ li − 1) + · · ·+
Xi,liy(t) +Qi,0u(t+ li) + . . . Qi,liu(t),

where li ∈ Z+, y ∈ (RN )Z+ , u ∈ (Rm)Z+ , Xi,k ∈ R1×N

and the i-th element of Xi,0 is zero, and Qi,k ∈ R1×m. The
model can be written more compactly as

X(σ)y = Q(σ)u, (6)

which satisfies the following assumption on the instantaneous
effects Xi,0:

Assumption 4.1: The leading row coefficient matrix of X ,
i.e., col(e1 − X1,0, . . . , eN − XN,0), has ones on its main
diagonal and has full rank7.

We note that Assumption 4.1 is less restrictive than the
standard assumption in [7]. In addition, X and Q may
contain zeros to encode the interconnections among the
scalar-valued signals.

There are two ways to interpret (6), either as a single
dynamical system or as an interconnection of single-output
components. The first view has been discussed in [11], and
we take a network perspective here.

Equation (6) defines an interconnection of dynamical
systems ∧N

i=1Σi, where the component Σi is defined by the
i-th row of (6) with output yi. The inputs of Σi consist of
the external input u and the outputs of the other components.
Moreover, the sparsity pattern of the matrices in (6) specifies
the incidence matrix of the interconnected system. The above
discussions are summarized in the following result:

Lemma 4.1: Given (6) that satisfies Assumption 4.1, de-
note the i-th row of the model by Ri = [X − Q]i⋆, and
consider dynamical systems Σi = Σigma(Ri) for i ∈ IN .
Then ∧N

i=1Σi has an incidence matrix M([X −Q]) and is
a regular feedback interconnection.

Proof: The incidence matrix follows from the def-
inition. From the model, it is clear that p(Σi) = 1 and
n(Σi) = li for all i ∈ IN , leading to

∑N
i=1 p(Σi) = N and

6A typical example of the i-th row in a VAR model is yi(t) = ay(t −
1)+ by(t− 2), with a and b being row vectors. We have shifted it in time
to avoid the negative powers of the shift operator.

7Vector ei is a standard basis row vector with the i-th element being one.

∑N
i=1 n(Σi) =

∑N
i=1 li. Since the leading row coefficient

matrix of X has full row rank, we have (i) det(X) ̸= 0 and
thus p(∧N

i=1Σi) = N =
∑N

i=1 p(Σi); (ii) deg(det(X)) =∑N
i=1 li and thus n(∧N

i=1Σi) =
∑N

i=1 n(Σi) =
∑N

i=1 li.
The above result shows that the regularity of interconnec-

tions is an essential property of the SVAR model.
From a graphical point of view, the incidence matrix

M([X −Q]) induces a square adjacency matrix:

Asvar = M
([

X −Q
0m×N 0m×m

])
. (7)

Matrix Asvar of (6) is typically used to obtain a directed
graph of the SVAR model [27] via a function Gd(Asvar) =
(Vd, Ed), where the vertex set Vd = IN+m denotes all
the scalar-valued signals, and the edge set Ed = {(i, j) ∈
IN+m × IN+m | [Asvar]ji ̸= 0, i ̸= j}. Element (i, j) ∈ Ed
denotes a directed edge from vertex i to j.

The relation between the incidence matrix S = M([X −
Q]) and the adjacency matrix Asvar leads to an immediate
relation between the hypergraph G(S) and the directed graph
Gd(Asvar) of (6), as discussed in the following example:

Example 4.1: Consider a SVAR modelσly1
σly2
σly3

 =

 0 X12(σ) 0
X21(σ) 0 0

0 0 0

y1y2
y3

+

Q1(σ)
0

Q3(σ)

u,

which can be represented by a directed graph as in Fig. 3(a),
i.e., signals are vertices and yi has a directed edge to yj iff
Xji ̸= 0. Edges from u to yj are defined similarly.

Fig. 3. A directed graph of an SVAR model is shown in (a). The model
also defines an interconnected system in the behavioral setting with a signal
graph (b) and a system graph (c).

This model also defines an interconnected system ∧3
i=1Σi

of 3 components with an incidence matrix:

S =

1 1 0 1
1 1 0 0
0 0 1 1

 .

The signal graph G(S) and the system graph G(S⊤) of
∧3
i=1Σi are shown in Fig. 3(b) and (c), respectively. For

example, Σ1 in Fig. 3(c) is defined by the first row of the
SVAR model, and its behavior involves y1, y2, and u.

B. From behavioral networks to SVAR

Conversely, an interconnection of dynamical systems can
also be represented by (6) if it is a regular feedback inter-
connection, as shown in the following result:
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Proposition 4.1: Consider Σi = (Z+,Rq,Bi) ∈ Lq with
p(Σi) = 1 for i ∈ IN . If ∧N

i=1Σi is a regular feedback
interconnection, there exist a proper input-output partition
col(u, y) of w, X ∈ RN×N [s], and Q ∈ RN×(q−N)[s] such
that ∩N

i=1Bi =
{
w ∈ (Rq)Z+ | w = Πcol(y, u), (6)

}
for

some permutation matrix Π, and X satisfies Assumption 4.1.
Proof: Given minimal kernel representations Ri of

Σi, R = col(R1, . . . , RN ) has full row rank due to the
assumption of regular feedback interconnection, and thus R
is a minimal kernel representation of Σ = ∧N

i=1Σi. Since
n(Σ) =

∑N
i=1 n(Σi), following the proofs in [21, Th. 8 and

12] analogously, there exists a proper input-output partition
col(u, y) of w, where y = col(y1, . . . , yN ), leading to a
behavioral equationX1(σ) . . . ⋆

...
. . .

...
⋆ . . . XN (σ)


 y1

...
yN

 = Q(σ)u, (8)

where X and Q are submatrices of R, Xi has dimen-
sion 1 × 1 with deg(Xi) = n(Σi), and deg(det(X)) =∑N

i=1 deg(Xi) = n(Σ). The last fact shows that the leading
row coefficient matrix of X has full rank. Moreover, the
fact deg(Xi) = n(Σi) shows that the diagonal entries of
the leading row coefficient matrix of X equal the leading
coefficients of Xi. Then pre-multiplying (8) with a real
diagonal matrix can transform Xi into a monic polynomial
for all i ∈ IN , leading to ones on the main diagonal of
the leading row coefficient matrix of X . This proves the
properties in Assumption 4.1.

If the interconnected system ∧N
i=1Σi in Proposition 4.1

has an incidence matrix S, it is easy to obtain the adjacency
matrix of the SVAR model given the obtained X and Q
as in the above proof: It holds that M([X − Q]) = SΠ.
It is also attractive to investigate whether it is possible to
obtain the graph of the SVAR model by using only binary
matrices, without resorting to polynomial matrices. This will
be investigated in future work.

V. CONCLUSIONS

In this work, a behavioral perspective on linear networks is
further developed, following the behavioral theory [11], [13].
This is an initial step towards addressing the two issues, i.e.,
the incorporation of freedom in input and output selection
and building a unified view on different network models.

Building on the behavioral theory, the novelty of this
work lies in the introduction of new graphical representa-
tions of behavioral networks by exploiting the concept of
hypergraphs. Regularity of interconnections is also discussed
and has been shown as an underlying assumption of SVAR
models. Moreoever, the connection between the hypergraphs
of behavioral networks and the directed graph of SVAR
models is investigated.
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