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Abstract— A data-driven model, in conjunction with eco-
nomic model predictive control, presents a promising approach
to enhance the control of an industrial system with limited de-
velopment cost. Neural network-based models inherently offer
the capacity to identify a wide spectrum of dynamic systems,
a pivotal aspect in ensuring a flexible control methodology.
However, the training of such neural models requires datasets
that are often unattainable in practical scenarios, given that
available data is typically confined to the operational data of
the system. The literature has shown that linear models are
sometimes more relevant in these types of situations, even if
they are less flexible. This contribution proposes a comparative
study between black-box linear models and neural network-
based models. The objective is to evaluate their relevance when
used as part of economic predictive controllers in the context
of building temperature regulation. The BOPTEST (Building
Optimization Performance Tests) benchmark is used for this
purpose. Emphasis is placed on different nonlinear model
structures to better understand their influence on the results
observed in the literature.

I. INTRODUCTION

In a world increasingly marked by the urgent imperatives
of climate change and energy transition, the optimization of
dynamic system control takes center stage, emerging as a
pivotal enabler of resource-efficient and environmentally sus-
tainable technological advancements. Notably, many systems
exhibit suboptimal control, often attributed to the limited
allocation of resources for deploying state-of-the-art control
methods [1]. Among these systems, those with significant
global consumption impacts include buildings [1], [2], public
swimming pool [3] or waste water treatment plan [4].

The scientific community has introduced new concepts and
algorithms to enable greater energy consumption flexibility
and enhanced efficiency for equivalent performances [2], [5].
In the HVAC sector (Heating, Ventilation, and Air Condi-
tioning), modern methods can save up to 50% of energy
compared to traditional approaches [1]. Unfortunately, these
methods are costly to implement due to the addition of sen-
sors, identification experiments, or model design, and hence,
they are not widely adopted in practice. This underscores
the significance of proposing a versatile framework that
necessitates minimal investment to promote wider adoption
within the industrial sector.
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With recent advances in non-linear system identification
[6], [7] based on neural networks, coupled with the Model
Predictive Control (MPC) paradigm [2], [4], it is now feasible
to design optimal controls that only require a dataset based
on the targeted plant and an estimation of the working
cost related to the input signal. This method minimizes the
reliance on experts and, ultimately, can facilitate the broader
adoption of modern control techniques

Concrete applications of Neural Network (NN) models
with MPC have been observed in literature. Afram et al. em-
ployed an Economical Model Predictive Control controller
(EMPC) with a NN to manage an HVAC system, achieving
operating cost savings of up to 70% [2]. A Long Short-
Term Memory (LSTM) NN has been applied successfully to
identify and control both the four-tank and two tank systems
(TS) as well as a Continuous Stirred Tank Reactor [8]. In
another contribution, a feed-forward NN was employed to
control a four-tank system, surpassing the linear version in
terms of steady-state error [9].

While we can celebrate these achievements, certain limi-
tations persist that hinder the widespread success of controls
based on NN models. Firstly, highly expressive models de-
mand a substantial amount of well-distributed data to ensure
compliance for regulation, given their notable extrapolation
limitations [3]. Secondly, and related to the first issue,
modern identification approaches predominantly emphasize
accuracy metrics to gauge performance. However, recent
contributions indicate that while pure accuracy is valuable,
it alone is not a sufficient condition for effective closed-loop
control performance with EMPC [10], [11].

Black box linear models are less susceptible to extrapo-
lation issues [3], [12] and remain particularly pertinent for
control tasks. There are numerous successful applications of
MPC using black box linear models in HVAC regulation [4]
and chemical process regulation [4], [12]. Such linear models
can also yield suitable results without standard identification
experiments (such as using a random controller to obtain
uncorrelated input from output) in MPC applications [13],
[14].

In the long run, unlike highly expressive nonlinear mod-
els, linear models do not scale well with larger datasets,
potentially limiting the achievement of higher performance
[8], [3], [15]. We do not considered, here, techniques that
enhance linear expressiveness through adaptive approaches
or local linear models [4], [6], as they introduce additional
design costs. Furthermore, such linear models may be less
accurate compared to grey box models [15].

Nevertheless, there are several contributions that attempt
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to compare linear and nonlinear black box models in terms
of closed-loop performance using predictive controllers. Un-
fortunately, there is no clear trend that emerges from these
studies. Some report better performance with linear models
[12], [14], while others highlight the strengths of nonlinear
models [8]. This inconsistency can be attributed to the
insufficient maturity of nonlinear black box identification
methods. Not all comparisons include the latest identification
methods, such as [16], and employ equivalent dataset for
training.

In response to this situation, this work provides a compre-
hensive overview of the trends and limitations of data-driven
linear and nonlinear methods, emphasizing various nonlinear
identification approaches. To carry out this investigation, we
employ the BOPTEST control benchmark [5] designed for
HVAC systems. This benchmark offers realistic simulations
and serves as a platform for implementing EMPC strategies.
The selection of building as context is particularly relevant,
given the diverse methodologies employed in this field, in
contrast to domains such as wastewater treatment plants or
swimming pools.

This study presents a comprehensive comparison between
linear and nonlinear system identification methods in terms
of prediction and closed-loop performance. Integrating recent
top-performing nonlinear identification techniques, it offers
refined insights over previous research and underscores their
real-world applicability. Furthermore, an ablation study of
non-linear methods are carried out to furnish concrete rec-
ommendations for their application.

The paper is structured to first outline the prevailing
models and techniques, followed by an introduction to the
methodological approach for comparison. This is followed
by an evaluation of the models’ predictive and closed-
loop performance. Before concluding, an ablation study is
presented to discern the impact of the techniques.

II. SELECTED MODEL STRUCTURES AND LEARNING
APPROACHES

A. Linear and Non-linear Models: Modern Methods

System identification is a broad field with a wide range
of methods [6], [17]. To ensure the clarity of this article, a
subset of models was chosen. Furthermore, as we deal with
black box models and prediction control methods, only dis-
crete models are considered avoiding so the implementation
of numerical integration.

We begin with the Linear State Space (LSS) model em-
ploying the subspace identification method [17]. It takes the
basic form as follows:

x[k + 1] =Ax[k] +Bu[k]

y[k] =Cx[k] + e[k]
(1)

Here, y ∈ Rny , x ∈ Rnx , and u ∈ Rnu represent the observed
signals, state signals, and input signals, respectively, while
e[k] ∈ Rny represents the observation error. The subspace
method allows for obtaining matrix A, B, and C from a given
dataset using a specific schema and oblique projection. This

model will be taken as the linear baseline for comparison
using the MATLAB® system identification toolkit.

Non-linear identification is considered through three non-
linear model structures, each involving neural networks. The
Deep Encoder State Space (DESS) method [18] exploits the
state space formalism and a nonlinear reconstructibility map
to estimate the state:

x[t] = ψθ(u[t : t− no], y[t : t− no])

x[t+ 1] = gθ(x[t], u[t], e[t])

y[t] = hθ(x[t]) + e[t]

(2)

With the three functions ψθ, gθ, and hθ represent the state
transition function, the observation function, and the recon-
struction map, respectively. For this model, we will use the
associated Deepsi [16] open-source library.

To estimate this model, an approximation of the Simula-
tion Error Minimization (SEM) is performed using Multi-
Step-ahead Prediction Error Minimization (MS-PEM). This
approach has several advantages: it is smoother [19] com-
pared to SEM, more tractable, and equivalent to the (MPC-
RI) MPC Relevant Information principle [20]. The MPC
Relevant Information principle utilizes the MPC horizon to
define the prediction depth used for identification.

The DESS method implementation also introduces a resid-
ual block formulation, where the nonlinear function is split
into a linear part and a nonlinear part [7]. Some advanced
initialization processes have been proposed to improve con-
vergence speed and accuracy [21].

The Non-Linear Auto-Regressive with eXogenous input
(NLARX) model is a popular model structure that utilizes
past delayed input and output signals to predict. It is highly
regarded because it can be learned through classic regression
tasks and does not require a dedicated observation system.
The NLARX model can be considered as a very special
case of DESS with a linear reconstructibility map and an
imposed choice of the state vector. This model is represented
as follows:

y[t] = fθ(y[t− 1 : t− na], u[t− 1 : t− nb]) + e[t]

with
{
y[t− 1 : t− na] = [y[t− 1]T y[t− 2]T · · · y[t− na]

T ]T

u[t− 1 : t− nb] = [u[t− 1]T u[t− 2]T · · · u[t− nb]
T ]T

(3)

With fθ representing the fitted NLARX function (with its
parameters θ), y[t− 1 : t− na] and u[t− 1 : t− nb] are the
delayed output and input signals used as regressors for the
regression.

This model can be identified using machine learning
libraries, but can be enhanced with modern methods like the
ResNet architecture (which is equivalent to using discrete
derivatives as model output like [22]) and MS-PEM. These
two techniques will be implemented subsequently, and will
ultimately be involved in the ablation study.

Finally, we introduce another nonlinear model that incor-
porates multi-step prediction, unlike all previous models that
use single-step iterative prediction, as shown in [4]. We will
call this model the Multi-Step Neural Network (MS-NN).
The concept is to directly predict the entire output horizon
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using a single feed-forward function. This function is tuned
to align with the considered MPC horizon. We employ a
neural network and the following formulation:

y[t : t+H] = fθ(y[t− 1 : t− na], u[t− nb : t+H − 1]) + e[t]

(4)

Where H is the prediction depth of this model. This last
model offers more degrees of freedom since the dynamics
of the prediction can vary according to the prediction depth.
The last two models are implemented with custom code using
the JAX library [23] in Python.

B. Linear vs. Non-linear Models in Closed-Loop Control

Despite numerous contributions [24], [25] that have high-
lighted the superior accuracy of black box nonlinear models
(based on neural networks) in prediction tasks, compared
to linear and grey box models, few comparisons have been
made in a closed-loop context. In the context of closed-loop
comparison, establishing clear dominance of a strategy over
another requires further refinement. Many research findings
[4], [11], [12], [14], [26] have shown that control perfor-
mance tends to be inferior when employing non-linear black
box models faces to traditional Linear State Space (LSS)
or Auto-Regressive models. This phenomenon is elucidated
in [10], which shows that achieving superior prediction
accuracy within a given test set is not a sufficient guarantee
for superior MPC performances. This observation aligns with
the extrapolation challenges that neural networks and other
highly expressive models can encounter, as discussed in, for
instance, [3].

However, certain studies [9], [8] have demonstrated that
nonlinear models can lead to enhanced closed-loop perfor-
mance in certain specific contexts. For instance, Jung et al.
[8] employ LSTM for controlling Continuous Stirred-Tank
Reactor (CSTR) systems, while Blaud et al. [9] utilize the
ResNet architecture and nonlinear predictive control for tank
reservoir systems.

The absence of a clear global trend can be attributed
to various factors. Firstly, disparities exist in assumptions
across studies regarding state measurability. Specifically,
while some contributions assume fully measurable states,
often resulting in more favorable outcomes with neural
network-based models (e.g., [9], [8]), others do not make this
assumption. Secondly, there is variability in the experimental
design used to feed identification algorithms. Some studies
employ random sample experiments, which can enhance the
extrapolation performance of nonlinear models, while others
opt for more realistic identification experiments. Among the
latter notably [14] and [26] have reported unsatisfactory
control performance when implementing neural networks as
models. Thus, differences in state measurability assumptions
and experimental designs collectively contribute to the ab-
sence of a trend universally applicable.

This situation is exacerbated when considering the
methodological approaches of papers focusing on non-linear
methods. Unfortunately, studies spotlighting modern nonlin-
ear methods, such as [8], do not engage in realistic iden-

tification experiments, complicating potential conclusions.
Conversely, those incorporating realistic identification exper-
iments, such as [4], [12], [14], display non-linear methods
that underperform in prediction compared to linear models
even before engagement in closed-loop experiments. This
performance gap is inconsistent with papers that focus only
on prediction performance, such as [24] and [25], where the
linear model is beaten most of the time in prediction.

When utilizing nonlinear methods with neural networks,
it is essential to conduct hyperparameter optimization (as
demonstrated in [9]) and also to present outcomes with
multiple trained models to estimate the variance of results
stemming from the stochastic nature of training, as noted in
[14]. Unfortunately, both of these aspects can be resource-
intensive to obtain, which is why they are often lacking
in most of the previously mentioned contributions. In the
following we try not to avoid these important questions.

III. METHODOLOGY

A. Hydronic testcase

The testcase BESTEST Hydronic Heat Pump is selected
from BOPTEST [5]. It has been studied using various meth-
ods, including reinforcement learning [27] and traditional RC
grey box models [5]. It is based on the standard BESTEST
900FF structure from the ASHRAE standard [28]. This
model represents a simplified version of a residential house
for five members. The house consists of a rectangular single
zone measuring 12 by 16 meters with a height of 2.7m and
an equivalent window on the south side that is 24 m2.

BOPTEST also offers a realistic controller based on a PID
(Proportional-Integral-Derivative) with fixed occupied and
unoccupied temperature setpoints. It will be considered as
default controller. This type of controller is often considered
as a practical way to generate an initial dataset [5], [14],
[26], [27], since it maintains the operating requirements.
BOPTEST proposes different control criteria to compare
different strategies. The total economical cost of the experi-
ence and the total discomfort will be used to compare and
analyze closed-loop performance. These metrics are directly
calculated using BOPTEST and can be easily compared with
results from other contributions.

The test scenario includes several inputs and outputs to
consider to get optimized predictive models. It also provides
various temperature sensors, solar radiation, inhabitant heat
perturbations, and more. For the control aspect, we have uhp,
upump, and ufan, which represent the heat pump power,
the recycling pump activation, and evaporator fan activation,
respectively. To align this study with other works, we adopt
the same input/output identification setup as described in [5].
Only the heat pump is controlled, and the last two signals are
set to 1 if the heat pump is active (for more details, please
refer to [5]).

We also use the same predictive control strategy based
on EMPC (Economical Model Predictive Control). The for-
mulation is described in Equation 5. With Ppump, Pfan,
Php representing the pump, fan and heat pump power re-
spectively. p represents the electricity price according to the
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simulation profile. fθ is the black box model to use (one
of those introduced in section II-A). The variable w serves
as a slack variable, penalizing temperatures lower than the
conformance limit Tconf.The parameter Q weighs this penalty
in the total cost of the MPC formulation.

argminu[1:H]

H∑
k=1

p[k](Php[k] + Pfan[k] + Ppump[k]) +Qw[k]

with



ŷ[k + 1|t] = fθ(ŷ[k + t|t], u[k])
w[k] + ŷ[k + t|t] ≥ Tconf[k + t], w[k] ≥ 0
ŷ[t+ 0|t] = y[t]
Php[k] = h(uhp[k], y[k])
Ppump[k] = 500W if uhp[k] > 0 else 0
Pfan[k] = 40W if uhp[k] > 0 else 0

(5)

The upper limit is ignored because it does not limit the
control strategy aimed at minimising heat production (to re-
duce energy consumption). The Fig. 1 shows the two bounds
evolving according to the time. We have selected Q =
20$K−1H−1, which corresponds to an equal weighting of the
standard regulator performance between its operational cost
and constraint violation. To obtain the estimation of the heat
pump consumption, a linear regression is performed using the
control signal and inside temperature. This regression has a
coefficient of determination (R2) of 0.94, which is sufficient
for control purposes. According to the results with the grey
box [5], we choose a sampling rate of 900s with a time
horizon of 12h. We also assume a full future information
configuration [29] which means that we consider a perfect
weather forecasting to contain experiment complexity.

This EMPC formulation is challenging to solve due to the
mixed integer formulation of Ppump and Pfan. To maintain
the lowest possible complexity, as done in [5], the problem
is relaxed using a sigmoid function to ensure a smooth
transition from uhp = 0 to uhp = 0.1. The IPOPT continuous
nonlinear solver with the Pyomo interface [30] are used to
solve the EMPC problem in closed loop.

B. Data sampling and training process

When using black box identification, it is very important
to specify which data is used and what experiments are done
to generate the training dataset. Contrary to the traditional
approach using proper random signals (as in [8], [11]), here
we adhere to a protocol that can be deployed in an operating
system. As in [27] and the idea proposed in [13], an initial
training dataset can be sampled using only the original
controller of the plant. This is made possible by multiple
setpoints and bounded control which bring a non-zero data
distribution of the temperature to regulate. This initial dataset
is called Restricted Dataset.

To provide more insight into the power of the non-
linear identification schema, we also generated a second
dataset (as suggested in [13]), using the EMPC formulation
(Equation 5) and the linear state space model (Equation
1). This approach remains, due to suitable results with the
linear model (see section IV), compliant with the regulation
requirements. This second dataset, named Extended Dataset,

consists of a part with the native controller and a part with
the linear MPC-based controller. The aim is to offer two
different datasets that can be acquired without any specific
identification experiments while remaining compliant with
the control requirements.

The benchmark provides only one year of real weather
data collected in Belgium, which limits the dataset size. To
avoid complexity, data from the entire year will be collected
for each dataset to generate global models (valid for all
seasons). The restricted dataset will have one year of data,
and the extended dataset will span two years (one for each
controller). This is a crucial factor in building modeling, as
seasons can significantly affect prediction performance [15].
Assuming a global model can substantially reduce model
complexity compared to more intricate approaches, such
as having multiple models for each season, which would
increase the engineering effort.

The benchmark testcase is composed of two test sections:
the typical heat day and the peak heat day. Both sections
represent a periods of 2 weeks that are used for the closed-
loop simulation. It is important to exclude these sections
from the training dataset, as is commonly done.

Hyper-parameter (HP) optimization is conducted for each
model. A grid search approach is used for the linear models,
and a random search approach is applied with around 300
HP trials. To avoid any bias in the validation set selection
(since our dataset is composed of only one year), a cross-
validation scheme is employed. This approach tests a set of
HP on 5 different pairs of training and validation datasets. In
this study, we have chosen a validation dataset of 6 weeks.
The Root Mean Square Error (RMSE) over the MPC horizon
is used for model evaluation (see Equation 6). The average
of the results for the 5 models is utilized to quantify the
performance of the parameter set.

C. Accuracy and control criteria

Each model will be evaluated firstly in multi-step predic-
tion according to the MPC horizon (12h or 48 steps). This
evaluation is done with the test section, which comprises the
two periods of the given year (typical heat day and peak heat
day). To provide a clear analysis in terms of overfitting, gen-
eralization properties etc., we generated test data using three
different controllers: The original controller provided by
BOPTEST (test section from restricted dataset), a LSS-MPC
based on Equation 5 (test section from extended dataset),
and a random controller (that provides random amplitudes
with random hold duration). The prediction performance is
reduced to a scalar using to the following equation (with H
representing the MPC horizon size and K the dataset size):

L =
1

H

H∑
i=1

√√√√K−1−H∑
k=0

||ŷ[i+ k|k]− y[i+ k]||22
K −H

(6)

Next, models are evaluated in closed-loop experiments us-
ing different price signals. BOPTEST provides three price
senarios: constant price, dynamic price, and highly dynamic
price. The first scenario is straightforward, the second is the
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Models Dataset
Nominal
controller

LSS MPC
controller

Random
controller

LSS Restricted 0.30 ±0.00 0.52 ±0.00 0.41 ±0.00
Extended 0.62 ±0.00 0.98 ±0.00 0.62 ±0.00

NLARX Restricted 0.09 ±0.01 0.56 ±0.10 1.05 ±0.20
Extended 0.20 ±0.04 0.22 ±0.05 0.48 ±0.08

MS-NN Restricted 0.09 ±0.01 0.38 ±0.01 1.19 ±0.07
Extended 0.10 ±0.01 0.16 ±0.01 0.99 ±0.05

DESS Restricted 0.13 ±0.02 0.52 ±0.04 1.73 ±0.04
Extended 0.29 ±0.06 0.34 ±0.07 1.21 ±0.18

TABLE II: 12h ahead RMSE (Mean. ± Std.) for all models
using both restricted and extended datasets results the test
set. Extrapolation test sets are shown in orange.

most usual with a price for both day and night periods, and
the last is corresponds to the real-time market price. The
selected control metrics are the average cost of the regulation
and total discomfort for inhabitants. In addition to the two
metrics generated by BOPTEST, we introduce a third that
merges both objectives using the selected weighting factor Q
(from equation 5). This final cost uses the MPCs formulation
to compare MPC with their own criteria (also using the heat
pump power model). This last metric can be introduced as
follows (where Expsize is the experiment size) :

C = ∆T

Expsize∑
k

p[k](Php[k] + Pfan[k] + Ppump[k])

+Q(Tconf [k]− T [k])1Tconf [k]>T [k]

(7)

As introduced in [11], we also propose the n-Step ahead
Planning Deviation. This metric measures the discrepancy
between the trajectory planned by the MPC controller and
the trajectory realized in closed-loop. The deviation for
temperature can be computed as follows:

Ly(t) =

√√√√Expsize−1−t∑
k=0

||ŷ∗[t+ k|k]− y[t+ k]||22
Expsize − t

(8)

With ŷ∗[t + k|k] and y[t + k] representing the optimal
planning of the open-loop optimization for the time t + k
based on observations at instant k, and the actual outcome
at instant t + k, respectively. In fact, Ly(t) represents the
discrepancy w.r.t the prediction depth (t). This criterion is
crucial for determining whether the model mismatch within
the optimization process is significant. Here, a zero n-Step
ahead Planning Deviation is impossible due to the bounded
horizon without any terminal cost.

IV. MODEL PERFORMANCE

The HPs are optimized using the restricted dataset, and
they are listed in Table I. The training horizon specifies the
number of prediction steps used for model fitting. The L1

weight represents regularization using the absolute function
of the NN weights. All LSS parameters are linked to the
MATLAB API for the ssest function.

A. Prediction accuracy

The initial step is to compare model accuracy using both
the restricted and extended datasets according to different

LSS parameters :
• no: 2, nx: 2
• focus: simulation
• enforce stability: True
• n4weight: MOESP

MS-NN parameters:
• #layers: 1
• #neurons: 115
• no: 6
• Act. func.: elu
• Init. weight:

he uniform
• L1 weight: 4.13×10−6

• Learning rate: 9.85 ×
10−4

• Batch size: 64
• #epochs: 1174

NLARX parameters :
• #Layer: 3, #neurons: 9
• na: 4, nb: 5
• Act. func.: tanh
• Init.weight: glorot uni
• L1 weight: 8.30× 10−5

• Training horizon: 23
• Learning rate: 0.0023
• Batch size: 512
• #Epochs: 1166

DESS parameters:
• #Layer: 3,
• #neurons: 64
• no: 5, nx: 5
• Training horizon: 15
• Act. func.: elu
• Learning rate: 3.53×10−5

• Batch size: 256
• #Epochs: 373

TABLE I: HPs used in the numerical comparison.

testsets. TABLE II regroups all these results, with a predic-
tion horizon of 12h. Testsets based on controllers that are
not present in the training dataset are highlighted in orange.

In the restricted dataset, the linear model displays poor in-
terpolation accuracy (with data generated using the nominal
controller) compared to all non-linear models. Nonetheless,
its accuracy remains relatively consistent in the extrapolation
regime with data generated by both MPC and random
controllers. This confirms that the linear model’s ability
to maintain consistent extrapolation. Conversely, non-linear
models see an increase ranging from 4 times to 7 times when
transitioning from data generated by the nominal controller
(which involves interpolation) to the MPC controller (which
involves extrapolation). This effect is even more pronounced
with the random controller, leading to a broader temperature
distribution. It is noteworthy that DESS models attain accu-
racy comparable to the linear model when using the MPC-
based test set.

In the expanded regime, the linear model struggles, not
being adept at managing a dataset that is twice the size of
the restricted dataset. This extended dataset proves advan-
tageous for all non-linear models, which surpass the linear
ones in both original test sets. MS-NN delivers the finest
interpolation accuracy in comparison to NLARX and DESS.
This is attributable to its non-iterative nature which avoids
the accumulation of errors.

In the last test set using a random controller, the NLARX
model demonstrates the best non-linear generalization prop-
erty by achieving results that closely resemble the perfor-
mance of the linear model, contrary to DESS and MS-
NN. This may suggest a more sample-efficient algorithm
with superior generalization. This observation aligns with the
model’s high level of constraint in terms of expressivity.

Based solely on these prediction accuracy results, it is
difficult to predict any closed-loop results. The linear model
does not offer competitive performance but have good gener-
alization capability as its accuracy through different test-set
is stable.
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Fig. 1: Experimental results for the typical heat day scenario using a dynamic
price signal. The upper graph represents results with the restricted dataset, and
the lower one represents those using the extended dataset.

Fig. 2: Typical heat day scores (see
Equation 7) for selected black box
models (boxes stand for ± Std.).

Fig. 3: BOPTEST KPI obtained with selected models using the extended and
restricted dataset. Variance estimated using the five different trainings. Score
computed with the scenario typical heat day and dynamic price signal.

Fig. 4: Peak heat day scores (see
Equation 7) for selected black box
models (boxes stand for ± Std.).

B. Closed loop performance

Closed-loop experiments are conducted for each
BOPTEST scenario and price signal five times per type of
model (once per trained model).

Fig. 1 shows time results from two experiments using
either the restricted dataset or the extended one. From a
qualitative point of view, the experiment with the restricted
training dataset favors the linear model. All non-linear
models produce static errors during the occupancy period
(when the comfort lower limit is high) and poor anticipation
during constraint changes. On the other hand, linear models
offer relevant performance with a slight temperature decrease
when possible and an almost stable temperature during
the day period. In the second experiment, we observe a
substantial improvement for DESS and NLARX models,
which stabilize temperature perfectly. NLARX also succeeds
in anticipating lower bound fluctuations and manipulating the
price signal by shifting load consumption.

If we take a look at the BOPTEST KPIs (Fig. 3), this
observation is confirmed. The LSS model with a restricted
dataset stays close to the grey box performance from [5],
in contrast to non-linear models, which cause a lot of
discomfort. The result variance with a restricted dataset
is quite high, which reinforces the unrealistic usage of
neural network-based models with limited operating data
for control. Nonetheless, with an extended dataset, the trend

reverses; the NLARX and DESS models can outperform the
linear model and provide competitive results against grey
box models. This change in performance, influenced by the
quality of the datasets, could potentially explain the results
that differ in the literature when comparing linear models to
neural network-based models.

As we are engaged in a multi-objective performance
comparison task, we project the results using the chosen
constraint violation cost. This approach allows us to compare
models absolutely. We limit our plots to the extended dataset
because evaluating the performance of nonlinear models
with the restricted dataset would be useless (linear model
is the best by far). Fig. 4 and Fig. 2 show, respectively, all
performances with their standard deviations for typical heat
day and peak heat day. NLARX and DESS outperform LSS
and MS-NN in all price and scenario configurations. The
NLARX results are very low and with little variance, out-
performing all other models. We observe that DESS is behind
NLARX in terms of variance and average performance.

The results from MS-NN can be disappointing, as it
achieved the highest accuracy with the nominal and MPC-
based test set but failed to produce satisfactory results in
the closed-loop scenario. The planning mismatch can be
utilized for better understanding. Fig. 5 shows the planning
mismatch against closed-loop performance for all models.
This curve, which varies with time, is crucial for under-
standing closed-loop results. As anticipated, NLARX and
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Fig. 5: Model mismatch with respect to the planning predic-
tion depth. Solid line for typical heat day and dashed line
for peak heat day

DESS planning exhibit high short-term accuracy, which can
be instrumental in avoiding constraints violation. Moreover,
they are the best in both the mid-term and long-term, aiding
in the performance analysis in terms of total cost (because
good long-term planning allows a transfer of power to
exploit the volatility of electricity prices). In contrast, MS-
NN planning systematically exhibits inaccuracies across the
entire planning range. The inadequacy of planning increases
rapidly with the prediction horizon, which may explain the
significant discomfort.

From these results, the importance of dataset selection
becomes evident. If we consider low-cost and large-scale
deployment, the prospect of collecting data and directly
using neural models is in the authors’ opinion unrealistic.
Nevertheless, as suggested in [13], it is conceivable to adopt
a protocol in which black-box linear models are initially
employed to generate supplementary data while satisfying
control specifications. In a subsequent phase, as the oper-
ational dataset becomes more diverse, neural models could
offer a viable solution to enhance control further.

These results also elucidate why some papers, like [4],
employing less optimal neural network architectures for
control (such as MS-NN), have found that linear models
outperform even when paired with identification experiments.
The NLARX model outperforms DESS, which can be at-
tributed to the greater expressivity of DESS and the presence
of a nonlinear reconstructibility map that introduces bias in
the estimated state.

V. ABLATION STUDY OF THE NLARX MODEL

We propose an analysis of the respective influences of the
residual approach and the use of MS-PEM on the NLARX
model on the observed results.

We follow the same protocol as before to determine
the best hyperparameters and train models using both the
restricted and extended datasets. Our comparison covers
both prediction and control. We have adopted the following
naming conventions: ’NLARX’ for the standard method,
’NLARX W R’ for the NLARX model that omits the resid-
ual formulation (fitting y[k + 1] instead of y[k + 1]− y[k]),
and ’NLARX W H’ for the NLARX model trained using a
one-step-ahead criterion as opposed to MS-PEM.

To commence the presentation of the results, Table III
provides a summary of the predictions for the entire MPC
horizon (12 hours) using the parameters from the previous

Models Dataset
Nominal
controller

LSS MPC
controller

Random
controller

NLARX Restricted 0.09 ±0.03 0.56 ±0.23 1.54 ±0.48
Extended 0.20 ±0.09 0.22 ±0.10 0.52 ±0.06

NLARX W H Restricted 0.13 ±0.05 0.33 ±0.11 2.71 ±0.41
Extended 0.15 ±0.06 0.19 ±0.07 0.59 ±0.23

NLARX W R Restricted 0.09 ±0.02 1.07 ±1.04 6.74 ±2.11
Extended 0.10 ±0.03 0.17 ±0.04 1.57 ±0.88

TABLE III: 12h ahead RMSE (Mean. ± Std.) for different
NLARX training configurations using different testsets. Ex-
trapolation testsets are shown in orange.

dataset. In terms of interpolation performance, NLARX W R
achieves the lowest errors, which can motivate its use
in closed-loop performance. However, in the extrapolation
regime (restricted dataset and LSS MPC-based test set), it
displays bad results, indicating overfitting to the operating
dataset. On the other hand, NLARX W H provides similar
results in several metrics compared to NLARX. It achieves
better extrapolation performance with the restricted dataset
and LSS MPC controller based testset but worst with the
random controller based testset.

We observe significant differences in the HP choice when
comparing NLARX W H and NLARX. For instance, using
the MPC-RI criterion, NLARX yields a delay window of
na, nb = 4, 5. In contrast, NLARX W H results in na, nb =
1, 3. This discrepancy might explain their similarity in ex-
trapolation (even though NLARX uses a more sophisticated
method), since a reduced NN’s input size tends to favor
extrapolation.

The next step is to compare closed-loop performance.
Table IV summarizes results obtained with the typical heat
day scenario and dynamic price signal. As expected, all
models fitted using the restricted dataset yield week results.
With the extended dataset, the NLARX model achieves
a lower experimental cost, outperforming NLARX W R
and NLARX W H. The limited extrapolation capability of
NLARX W R is reflected in its results, which remain quite
high and are not suitable for practical usage. NLARX pro-
poses an improvement of around 10% in its cost compared
to NLARX W R.

To conclude this section, using a residual block (or pre-
dicting the discrete derivative) in the NLARX architecture is
essential to compete against a linear model when considering
the operating dataset. Utilizing MPC-RI offers a some im-
provement in closed-loop experiments but yields mitigated
results in extrapolation when considered.

Models
Restricted

Dataset
Extended
Dataset

NLARX 1974.67± 1423.01 70.56± 4.45
NLARX W H 296.76± 177.97 76.49± 3.85
NLARX W R 9063.79± 4446.84 308.24± 176.86

TABLE IV: Closed-loop score based on the ablation study
from Equation 7 (Mean. ± Std.)

VI. CONCLUSION

This study focused on linear black box models and neural
network-based models selected for practical applications and
wide deployment in control. To achieve this, it carried out
experiments on the BOPTEST benchmark. In light of the
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models and results explored, dataset selection has been
shown to be a critical factor for model accuracy. Classically,
linear models have proven to be a viable and satisfactory
solution for the type of process considered, especially when
dealing with limited data sets. NN-based models have shown
improved performance in constrained control when applied
to sufficiently diverse operating datasets. The model’s ar-
chitecture and the selection of a suitable training method
were crucial for achieving high performance in prediction
and closed-loop control. The NLARX architecture with
residuals and the use of the MS-PEM criterion demonstrated
their superiority over other methods. Its results confirm the
possibility of using models based on neural networks in prac-
tical scenarios, provided that care is taken to make choices
adapted to the type of problem considered, consisting here
of improving the control of dynamic industrial processes.

There are opportunities to improve neural network-based
models, particularly when starting from limited training
datasets. One approach is to incorporate fundamental physics
knowledge, as demonstrated in [31]. The main goal is
to achieve a high-performance non-linear MPC, proceed-
ing to continuous and secure improvement starting from
constrained datasets. Future contributions could extend this
comparison by considering diverse setpoints and uncertainty
in identified models.
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