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Abstract— In this article we apply a second-order minimum-
energy filter based on Lie groups to the problem of parking
a truck with a semi-trailer in a docking station. The use of
the filter, that exploits the geometry of Lie groups to estimate
the truck and trailer pose, is useful to improve the precision
of the state and thus perform better controls. We consider two
different types of measurements: the first consists of GPS-like
devices that detect the positions of the front wheels of the truck
and the rear wheels of the trailer, and the second improves the
measurement of the rear wheels with the measurement of the
pose of the trailer with a LIDAR sensor. The accuracy of the
LIDAR is useful for having a better estimate when parking in
reverse. We show two simulations with two different datasets.

I. INTRODUCTION

The problem of tracking and control of vehicles has
received a lot of attention in recent years due to its real-
life applications. Among all the problems that can be ex-
amined, particular attention has to be devoted to the study
of the control of articulated vehicles ([1], [2], [3]). One
difficulty that arises in these approaches is the fact that
they are not described by rigid bodies equations (since they
present pivot points), and thus the dynamics and controls
get complicated. Moreover, the systems become unstable
when the vehicles move to reverse, and this can give rise
to the jackknifing problem. These problems become more
evident in parking maneuvers. The issue of autonomous or
guided parking, facilitated through the measurement of the
external environment or the knowledge of one’s own state,
has been developed in many areas (see e.g. [4]). One of
the most used systems for detecting positions is the GPS,
whose use has been growing since the 1990s ([5]). Another
application that has had major developments in recent years
is autonomous parking with the use of LIDAR sensors ([6],
[7]). Unfortunately, even if these sensors can be very precise,
in real-life applications the accuracy of the measurements are
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(a) Truck and semi-trailer in a real parking area.

(b) Truck and semi-trailer model in Automotive lab.

not perfect due to disturbances and noises. Moreover, they
cannot directly provide information about other components
of the state space. In order to overcome these problems, a
filter can be introduced. The literature presents many types
of different filters. The most famous are the Kalman filter
and its variants ([8], [9], [10]). In [11] the authors, starting
from an idea presented in [12], propose a second-order
optimal filter constructed on Lie groups. This filter has the
advantage of not having to take into account any assumptions
on the nature of the errors and the possibility of considering
nonlinear dynamics. Moreover, it exploits the symmetries in
the state space of the system to produce good estimations.
An application of this theorem for a free rigid body case can
be found in [13], an implementation to a nonholonomic case
is provided in [14], while a comparison with the extended
Kalman filter is given in [15].

In this paper we propose an approach to overcome the
problem of having good state estimates for a truck semi-
trailer system in a parking maneuver. We present an appli-
cation of the second-order optimal filter applied to a scale
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model. The measured trajectories are obtained by adding
noises to the poses provided by a motion capture optical
system to reproduce a real-case scenario. We simulate the
cases where different devices are available or not: in the
first part of the maneuver, when the system is far from
the docking station, only GPS antennas are available; in the
second part, when the system is moving in reverse close to
the station, a LIDAR sensor is added.

The rest of the article is organized as follows. In Section
II we recall the kinematics of a truck semi-trailer system.
In Section III we report the second-order optimal minimum
energy filter structure. Section IV is devoted to the derivation
of the geometric structure that underlies the kinematics. In
Section V and VI we describe the laboratory setting and
provide the results of the simulations, respectively, while
conclusions are presented in Section VII.

II. KINEMATICS
The system under study is an articulated vehicle composed

of a leading truck and a semi-trailer (Fig. 2). We consider
an inertial frame of reference Σi =

{
ei

x,e
i
y
}

attached to the
docking station with the origin in the final target, and a right-
handed body frame Σb =

{
eb

1,e
b
2
}

on the truck, centered in
the position of the midpoint of the rear axle (x,y).

The configuration space of the truck is SE(2) with co-
ordinates (x,y,α) with respect to the inertial frame, where
α is the angle that the truck forms with the inertial frame.
At distance ℓ1 from (x,y), the pair (x0,y0) represents the
midpoint of the front axle.

Also the configuration space of the trailer is given by
SE(2) with coordinates (x2,y2,β ). The pair (x2,y2) repre-
sents the position of the midpoint of the rear axle and β is
the angle with respect to the inertial frame. The semi-trailer
is hooked to the truck through an articulation point (x1c ,y1c)
at distance (ℓ1c) from (x,y), while ℓ2 is the distance between
(x2,y2) and the articulation point. These points are related
by

x0 = x+ ℓ1 cosα,

y0 = y+ ℓ1 sinα,

x1c = x+ ℓ1c cosα,

y1c = y+ ℓ1c sinα,

x2 = x1c − ℓ2 cosβ ,

y2 = y1c − ℓ2 sinβ .

The configuration space is given by SE(2)×SO(2), where
SE(2) denotes the pose of the truck and SO(2) the angle β .

The truck and the semi-trailer are modelled as rigid bodies
with nonholonomic constraints given by:

ẋsinα − ẏcosα = 0,
ẋ2 sinβ − ẏ2 cosβ = 0,

that do not allow orthogonal components of the velocities.
The lateral velocity of the front wheel, expressed in the
chassis frame, is equal to V1 tanδ , where V1 is the vehicle
forward velocity at the rear axle and δ is the front wheel
steering angle.

Fig. 2: Scheme of truck semi-trailer model.

The equations of motion for the truck semi-trailer system
are then given by

ẋ =V1 cosα

ẏ =V1 sinα

α̇ = 1
ℓ1

V1 tanδ

β̇ = 1
ℓ2
(V1 sinγ1 − α̇ℓ1c cosγ1) ,

(1)

where γ1 = α − β is the angle between the truck and the
trailer. The lateral velocity of the attachment point (x1c ,y1c)
is equal to V2 tanα , where V2 = V1 cosγ1 − α̇ℓ1c sinγ1 is the
velocity at the rear axle of the trailer.

III. FILTER
In this section we recall the second-order optimal filter

constructed on Lie groups described in [11]. We assume
the reader is familiar with the terminology of differential
geometry and Lie groups theory (see e.g. [16], [17], [18]).

We denote with G the Lie group that underlies the dynam-
ics, and with g its Lie algebra. The dynamics of our vehicle
is described by the following deterministic system:

ġ(t) = g(t)
(
λ (g(t),u(t), t)+Bξ (t)

)
, g(t0) = g0, (2)

where g(t) ∈ G is the state, u(t) ∈ Rm is the external input,
ξ (t) is the unknown model error, λ : G×Rm ×R → g the
left trivialized dynamics and B : Rd → g a linear map.

The knowledge of the system with respect to the environ-
ment comes through some sensors and tools, and is modelled
with a measurement equation given by:

y(t) = h(g(t), t)+Dε(t), (3)

where h : G ×R → Rp is the output map, ε ∈ Rp is the
unknown measurement error and D :Rp →Rp is an invertible
linear map.

Given the external command u(t) and the measurement
output y(t), the goal of the filter is to find the best estimate
of the state g(·) minimizing the cost functional

J(ξ ,ε,g0, t, t0) := m(g0, t, t0)+
∫ t

t0
l(ξ (τ),ε(τ), t,τ)dτ, (4)
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where l : Rd ×Rp ×R×R → R is the incremental cost
defined by

l(ξ ,ε, t,τ) := 1/2e−c(t−τ)(R(ξ )+Q(ε)), (5)

with c a non-negative scalar and

R : Rd → R, Q : Rp → R,

two quadratic forms that weigh the contribution of model
and measurement errors. The function m : G×R×R→R is
the initial cost and takes the form

m(g0, t, t0) := 1/2e−c(t−t0)m0(g0), (6)

with m0 : G → R a bounded smooth function.
We recall now the main result in [11]:
Lemma 1: ([11, Theorem 4.1]) Consider the system de-

fined by (2) and (3) with the energy cost functional (4)-(6).
Then the second-order-optimal minimum-energy filter yields
the estimation state ĝ given by

ĝ−1 ˙̂g = λt(ĝ,u)+K(t)rt(ĝ), ĝ(t0) = ĝ0,

where K(t) : g∗ → g is a (time-varying) second-order-optimal
symmetric gain operator satisfying the perturbed Riccati
operator (7) given below,

ĝ0 = argmin
g∈G

m0(g),

and the residual rt(ĝ) ∈ g∗ is computed as

rt(ĝ) = TeL∗
ĝ[
(
(D−1)∗ ◦Q◦D−1(y−ht(ĝ))

)
◦dht(ĝ)].

The perturbed Riccati equation for K is

K̇ =−c ·K +A◦K +K ◦A∗−K ◦E ◦K

+B◦R−1 ◦B∗−ωKr ◦K −K ◦ω
∗
Kr,

(7)

with initial condition K(t0)=X−1
0 . The operators X0 : g→ g∗,

A(t) : g→ g, and E(t) : g→ g∗ are given by

X0 = TeL∗
ĝ0
◦Hess m0(ĝ)◦TeLĝ0 ,

A(t) = d1λt(ĝ,u)◦TeLĝ − adλt (ĝ,u)−Tλt (ĝ,u),

E(t) =−TeL∗
ĝ ◦

[(
(D−1)∗ ◦Q◦D−1(y−ht(ĝ))

)TĝG

◦Hessht(ĝ)− (dht(ĝ))∗ ◦ (D−1)∗

◦Q◦D−1 ◦dht(ĝ)
]
◦TeLĝ.

TeLĝ represents the tangent map of the left multiplication
Lĝ applied at the identity e, T ∗

e Lĝ its dual. ω features the
connection function related to the choice of a left-invariant
affine connection ∇ on the Lie group. Hessht(ĝ) is the Hes-
sian operator associated to the twice differentiable function
ht . d1λ (ĝ,u) defines the differentials with respect to the first
argument of the left trivialized dynamics. The adjoint opera-
tor satisfies adλt (ĝ,u)(·) = [λt(ĝ,u), ·], while Tλt (ĝ,u) represents
the torsion function associated to the choice of the connection
function. The symbol ◦ denotes the composition between
maps, Kr is a shorthand notation for K(t)rt(ĝ). R and Q
are two symmetric positive definite matrices representative
of the quadratic forms R and Q, respectively.

IV. GEOMETRIC STRUCTURE

In order to apply the second-order filter to the system (1)
it is necessary to investigate its geometric structure. The state
space that underlies the kinematics (1) is the Lie group

G = SE(2)×SO(2),

whose generic element g ∈ G admits the matrix representa-
tion

g =


cosα −sinα x 0 0
sinα cosα y 0 0

0 0 1 0 0
0 0 0 cosβ −sinβ

0 0 0 sinβ cosβ

 .

Given the Lie algebra g= se(2)×so(2), we introduce the
Lie algebra isomorphism ∧ : R4 → se(2)× so(2)


ηx

ηy

ηα

ηβ


∧

∼=


0 −ηα ηx 0 0

ηα 0 ηy 0 0
0 0 0 0 0
0 0 0 0 −ηβ

0 0 0 ηβ 0

 ,

from the Lie algebra (R4,⋆) to the matrix Lie algebra
(se(2), [·, ·]), where ⋆ : R3 ×R3 → R3 is the Lie bracket
operation defined as

ηx
1

η
y
1

ηα
1

η
β

1

⋆


ηx

2
η

y
2

ηα
2

η
β

2

=


−ηα

1 η
y
2 +ηα

2 η
y
1

ηα
1 ηx

2 −ηα
2 ηx

1
0
0

 ,

and [·, ·] is the usual matrix commutator (see, e.g., [19]).
The left-trivialization dynamics of (1), obtained from λ∧ =

g−1ġ, is given by λ = (λx,λy,λα ,λβ ) where

λx =V1,

λy = 0,

λα =
1
ℓ1

V1 tanδ ,

λβ =
1
ℓ2

V1 sin(α −β )+
ℓ1c

ℓ2

1
ℓ1

V1 tanδ cos(α −β ).

The tangent map and the adjoint representation are given
by

TeLg =


cosα −sinα 0 0
sinα cosα 0 0

0 0 1 0
0 0 0 1

 ,

ad(ηΩ)∧ =


0 −ηα ηy 0

ηα 0 −ηx 0
0 0 0 0
0 0 0 0

 ,

respectively.
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We use the so-called Cartan-Schouten (0)-connection,
characterized by ω(0) = 1

2 ad, that has the following matrix
representation

ω
(0) =

1
2


0 −ηα ηy 0

ηα 0 −ηx 0
0 0 0 0
0 0 0 0

 .

This decision is justified by the fact that it has null torsion
([17]) and, in general, it results in better estimations.

The formulation of the geometric structure through matri-
ces allows to simplify the treatment since all the composi-
tions between the operators are carried out through matrix
multiplications.

V. LABORATORY SETTING

The experimental validations were conducted on truck and
semi-trailer scaled models at the Automotive Lab, Eindhoven
University of Technology, within the project TruckLab. The
operating space in the laboratory is 7m× 7m including a
docking station and tractors and semi-trailers. The laboratory
is equipped with motion capture cameras Primex13 and,
together with markers attached to the scaled vehicles, allows
to have a position accuracy of about ±20mm; so we can
consider such measurements as the ground truth. The scaled
vehicles operate on ROS (Robot Operating System) and are
configured with Turtlebot3 Waffle Pi software architecture.
The scaled model vehicles are a faithful reproduction of real
truck semi-trailer vehicles, with a reduction ratio of 1:13.3.
The model dimensions in Fig. 2 are listed in Table I.

parameter scaled value [cm] real value [m]
ℓ1 28 3.72
ℓ1c 5.5 0.73
ℓ2 56.7 7.54

TABLE I: Model datasheet.

The steering angle is measured with a combination of
odometer and IMU measurements. The steering wheels of
the scale reproductions have a maximum steering angle δ

of ±38deg. Thus, we impose the inequality −38deg ≤ δ ≤
+38deg.

Another constraint is represented by the so-called jackknif-
ing, that is a condition where the articulation angle between
the tractor and the semi-trailer becomes very large. This
problem can arise when driving forward and applying a large
steering angle, or when driving backward (in this case the
vehicle combination is unstable): a small constant steering
input in the articulation angle will start to grow until the
cabin collides with the semi-trailer. This condition results in
the inequality −100deg ≤ γ1 ≤+100deg.

VI. SIMULATIONS

For the simulations, we consider two different measure-
ment equations and apply them in two different moments of
the parking maneuvering.

For the first part of the maneuver, when the truck is far
away of the docking station, we assume to measure the

Fig. 3: LIDAR e GPS devices.

position of two GPS devices settled in (x0,y0) and (x2,y2).
Since the use of GPS is not sufficient during the maneuver
that requires great precision (especially when reversing), we
combine them with other sensors. In the second part of the
maneuver, when the vehicle is sufficiently close to the final
target, we simulate a LIDAR device settled at the docking
station, to help the truck during the reverse (see Fig. 3).
This LIDAR provides the pose of the trailer through a laser
scan, in particular the position of (x2,y2) and the angle β .
This is justified because, when reversing during the parking
maneuver, the LIDAR can spot only the semi-trailer, and
thus it can improve only its pose. Summarizing, the two
measurement equations are the following:

h1(g(t), t) =


x0GPS
y0GPS
x2GPS
y2GPS

 , h2(g(t), t) =


x0GPS
y0GPS

x2LIDAR
y2LIDAR
βLIDAR

 .

To simulate noisy measurements given by these devices,
we add Gaussian white noise to the reference trajectories
provided by the optic cameras. The standard deviations of
these measurement errors are reported in Table II.

measure standard deviation
x0GPS 5 m
y0GPS 5 m
x2GPS 5 m
y2GPS 5 m

x2LIDAR 0.10 m
y2LIDAR 0.10 m
βLIDAR 0.02 rad

TABLE II: Errors added to the real measurement to reduce
the accuracy to behave like a real GPS system.

The linear velocity of the truck is obtained by adding to
the scaled reference velocity a Gaussian white noise with a
standard deviation of 0.1m/s.

The matrix representation of the quadratic forms R, Q in
(4) and of the linear operators B and D of (2) and (3) are
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given by

R :=diag{1,1,1,1} , B :=diag{0.1,0.1,0.1,0.1} ,
Q :=diag{1,1,1,1} , D :=diag{0.5,0.5,0.5,0.5} ,

for the first filter, while for the second they are

R :=diag{1,1,1,1} , B :=diag{0.1,0.1,0.1,0.1} ,
Q :=diag{1,1,1,1,1} , D :=diag{0.5,0.5,0.5,0.5,0.5} .

To solve the differential equations, we use a forward Euler
method with a sample time of Ts = 10ms.

In Fig. 4a and Fig. 5a we show the maneuvers of the truck
semi-trailer system for the two datasets. In Fig. 4b and 5b we
report the reference and measured commands. In Fig. 4c and
5c we show the errors of the measured and filtered trajecto-
ries. The first vertical line corresponds to the instant when
the vehicle starts the reverse maneuver, while the second one
to the instant when the filter uses also the LIDAR sensor.
As can be seen, the filter performs well even if the noises
are large. When the vehicle starts the reverse maneuver the
system becomes unstable. Consequently, the accuracy of the
filter decreases, especially as far as it concerns the semi-
trailer pose. The final errors due to filter approximation are
acceptable if compared with the parking space, the dimension
of the vehicles and the sensors’ accuracy.

The addition of the LIDAR measurements significantly
improves the precision of the filter and allows for better
estimations in the final part of the maneuvering. Furthermore,
a single LIDAR sensor can be installed directly on the
docking station to reduce costs. For these purposes, also other
laser scanner tools can be considered.

VII. CONCLUSION

In this paper we derived a second-order optimal minimum
energy filter for a tractor semi-trailer system model. The
laboratory and model simulated a scaled real case of a
parking area where the trucks maneuver. To simulate GPS-
like and LIDAR sensors, we added Gaussian white noises to
the measurements obtained with an OptiTrack system. In the
first part of the maneuver, when the truck is too far from the
docking station, we consider two GPS-like devices settled
at the midpoint of the front wheels of the truck and at the
midpoint of the rear wheels of the semi-trailer. When the
truck is maneuvering in reverse, close enough to the docking
station, we added the more accurate measures of a LIDAR
sensor.

The filter performs well in both driving parts of the
scenario. Even if the errors of the GPS are large, compared
with the maneuvering space, the filter produces good es-
timations of the state. The addition of the LIDAR allows
to obtain an improvement of the measurements when the
truck is approaching the station. The allowed error, in this
case, should be as small as possible, since when reversing
the control system becomes unstable and a small error in
the estimation might cause big errors in the maneuvering.
Moreover, the final parking target needs big precision to
avoid causing damage to vehicles and structures.

For future works, we plan to insert the proposed filter in a
controlled closed-loop system, to implement a sensor fusion
between the measurements provided by GPS and LIDAR and
to apply it to a real truck and semi-trailer vehicle system.
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(a) Parking maneuver. With red and blue thick segments the
truck and semi-trailer showed at regular intervals. With blue,
red, and yellow dashed lines the reconstructed trajectories for
the front wheels, rear wheels of the truck, and wheels of the
semi-trailer, respectively.

(b) Reference (red) and measured (light blue) commands.

(c) Measured (light blue) and filtered (red) errors.

Fig. 4: Dataset 1.

(a) Parking maneuver. With red and blue thick segments the
truck and semi-trailer showed at regular intervals. With blue,
red, and yellow dashed lines the reconstructed trajectories for
the front wheels, rear wheels of the truck, and wheels of the
semi-trailer, respectively.

(b) Reference (red) and measured (light blue) commands.

(c) Measured (light blue) and filtered (red) errors.

Fig. 5: Dataset 2.
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