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Abstract— Set-theoretic unknown input observer (SUIO) and
set-valued observer (SVO) are two different kinds of robust
state estimation methods, either with respective advantages
in terms of state estimation conservatism. In this paper, we
propose a new optimal design method for set-theoretic unknown
input observer based on zonotopes and F-radius metric. We
prove that the proposed method combines the advantages of
both SUIO and SVO in conservatism without introducing extra
computational complexity. Specifically, under the corresponding
F-radius optimal designs, the worst state estimation outcome
of the proposed method is as precise as the best outcome of
both SUIO and SVO. To further reduce the computational cost,
we establish the existence condition and proposed a computing
method for the constant optimal observer parameters as time
tends to infinity. Finally, we use a numerical example to
illustrate the effectiveness of the proposed methods.

I. INTRODUCTION

The precise estimation of a system state in the presence of
uncertainty, such as disturbance and noise, is a fundamental
problem in many engineering applications. The stochastic
state estimation approaches, such as Kalman filter, have been
extensively studied and applied on various systems. However,
when dealing with systems with unknown but deterministic
behaviors, it is not well-suited to model uncertainties as
the probability distributions required by these filters [1]. To
address this problem, deterministic approaches that do not
rely on probability distributions have been proposed, where
geometric sets such as intervals, polytopes, ellipsoids, zono-
topes, and constrained zonotopes are used to characterize the
boundary of uncertainties.

From a practical point of view, the conservatism (i.e.,
the precision of estimation) and computational complex-
ity are two essential aspects for deterministic approaches.
Theoretically, the set-membership estimation (SME) [2] has
the lowest conservatism among deterministic approaches,
i.e., such method can provide the most compact set that
contains the real state [3]. The basic idea of SME is to
calculate a prediction state set based on the system dynamics
(through set mapping and Minkowski sum) and then correct
this set using another state set that is consistent with the
measurement (through intersection). However, since some
set operations (e.g., the nonlinear mapping, the Minkowski
sum of ellipsoids, and the intersection of ellipsoids and
zonotopes) are not closed, the SME typically needs to be
implemented with overapproximation, which prevents it from
achieving the theoretically lowest conservatism [4]. Although
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this overapproximation can be avoided on linear systems us-
ing constrained zonotopes and polytopes, the computational
complexity is still relatively high or even unacceptable [4],
[5]. Contrary to the SME, the interval observer (IO) [6], [7] is
a deterministic approach with extremely low computational
complexity. Based on the monotone system theory [8], the
IO provides an interval (i.e., the lower and upper bounds)
estimation of the real state. However, compared with other
geometric sets, the interval is naturally with considerable
conservatism [9]. In order to satisfy the cooperativity prop-
erty, the IO needs to sacrifice part of the parametric design
freedom or additionally introduce interval hull approxima-
tions [7], [10], resulting in relatively conservative estimation.

Different from the SME and IO, the set-based observer
[11], [12], [13] effectively balances the computational com-
plexity and the conservatism [4], which constructs a para-
metric set-version observer to calculate a state estimation set
using the system dynamics and the measurement. Except for
intersection, the common set operations (e.g., linear mapping
and Minkowski sum) can be efficiently and exactly computed
using zonotopes [14]. Since the set-based observers do not
require intersection, it is quite suitable for linear systems to
implement such methods using zonotopes without requiring
extra approximations. Based on the Luenberger observer
structure, [11] proposed the SVO and corresponding F-
radius optimal design for linear systems. Following [11],
the SVO was further extended to other areas, including fault
detection [15], human-robot interaction [16], and nonlinear
reachability analysis [17]. As another kind of set-based
observer, the SUIO proposed in [12] adopts set-valued ap-
proaches to extend classical unknown input observers, which
relaxes the severe designing conditions of classical unknown
input observers [18]. Furthermore, [13] proposed an F-radius
optimal design for the SUIO and compared its conservatism
with the SVO under the corresponding optimal designs. As
the conclusion of [13], the SUIO and SVO have respective
advantages in conservatism. In detail, when the disturbance
level of the system is higher than the measurement noise,
the SUIO can obtain a tighter estimation set than the SVO.
But if the disturbance level of the system is lower than the
measurement noise, the SVO can achieve a more precise
estimation result.

This paper aims at the optimal design of SUIO. On
this topic, a pending issue is the robust convergence of
the SUIO under the optimal design. Moreover, there still
exist unexploited parametric freedoms to further improve
the conservatism of SUIO. Due to these points, this paper
proposes a new F-radius optimal design method for SUIO
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and addresses the following issues:
• Propositions 1 and 2 indicate that compared with ex-

isting SUIO [12] and [13], the proposed method has a
milder condition to design a stable observer;

• To transfer the online computational burden, Theorem
1 establishes the solution of optimal parameters under
the metric of F-radius as time tends to infinity, by
which the constant optimal parameters of SUIO could
be conveniently designed offline;

• Theorem 2 proves that the size of state estimation set
obtained by the proposed method is at most as large
as that of both the SUIO [12], [13] and SVO under
the measure of F-radius. Also, Remark 5 shows such
improvement of conservatism is not at the cost of
increased computational complexity. The convergence
of the observer under the proposed optimal design is a
natural corollary of Theorem 2.

The remainder of this paper is organized as follows.
Section II gives some preliminaries. Section III introduces
system model, the SUIO and the SVO. Section IV presents
the main results of this paper. Section V uses a numerical
example to show the effectiveness of the proposed method.
Finally, some conclusions are drawn in Section VI.

II. PRELIMINARIES

In this paper, the notations 0𝑛, 0𝑚×𝑛 and 𝐼𝑛 are denoted as
the 𝑛-dimensional null vector, the 𝑚×𝑛 null matrix and the
𝑛-dimensional identity matrix, respectively. Given a matrix
M, tr(M), rank(M) and | |M| |𝐹 are denoted as its trace, rank
and Frobenius norm, and M � 0 (M � 0) denotes that M is
a positive definite (semidefinite) matrix. Given a set 𝑋 ⊂ R𝑛,
𝑋 is called full-dimensional if the affine dimension of 𝑋 is 𝑛.
Given two sets 𝑋 and 𝑌 , the Minkowski sum of 𝑋 and 𝑌 is
defined as 𝑋 ⊕ 𝑌 = {𝑥 + 𝑦 | 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }. A zonotope 𝑍 ⊂ R𝑛
of order 𝑚/𝑛 is defined as 𝑍 = {𝑧 | 𝑧 = 𝑝 +𝐺b, ‖b‖∞ ≤ 1} and
abbreviated as 𝑍 = 〈𝑝, 𝐺〉, where 𝑝 ∈ R𝑛 is the center vector
of 𝑍 , 𝑔1, 𝑔2, ..., 𝑔𝑚 ∈ R𝑛 are the generators of 𝑍 , and 𝐺 =

[𝑔1, 𝑔2, ..., 𝑔𝑚] is called the generator matrix. A zonotope
𝑍 = 〈𝑝, 𝐺〉 is a full-dimensional set if and only if the matrix
𝐺 is full row rank. For two zonotopes 𝑍1 = 〈𝑝1, 𝐺1〉 and 𝑍2 =
〈𝑝2, 𝐺2〉, the linear transformation of 𝑍1 and the Minkowski
sum of 𝑍1 and 𝑍2 are given by 𝑄𝑍1 = 〈𝑄𝑝1, 𝑄𝐺1〉 and 𝑍1 ⊕
𝑍2 = 〈 𝑝1 + 𝑝2, [𝐺1 𝐺2]〉, where 𝑄 is a matrix with proper
dimensions. Definition 1 introduces a common size metric
of zonotopes used in this paper.

Definition 1 ([2], [11], [13]). Given a zonotope 𝑍 = 〈𝑝, 𝐺〉,
the F-radius of 𝑍 is defined as 𝜙(𝑍) = | |𝐺 | |𝐹 =

√︁
tr(𝐺𝐺𝑇 ).

III. TWO SET-BASED OBSERVERS

A. System Model

The discrete linear time-invariant (LTI) system with pro-
cess disturbances and measurement noises is modeled as

𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘 +𝐸𝜔𝑘 , (1a)
𝑦𝑘 = 𝐶𝑥𝑘 +𝐹[𝑘 , (1b)

where 𝐴 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵 ∈ R𝑛𝑥×𝑛𝑢 , 𝐶 ∈ R𝑛𝑦×𝑛𝑥 , 𝐸 ∈ R𝑛𝑥×𝑛𝜔 and
𝐹 ∈ R𝑛𝑦×𝑛[ are the parametric matrices of the system. 𝑥𝑘 ∈
R𝑛𝑥 , 𝑢𝑘 ∈ R𝑛𝑢 , 𝑦𝑘 ∈ R𝑛𝑦 , 𝜔𝑘 ∈ R𝑛𝜔 , and [𝑘 ∈ R𝑛[ denote the
state, input, output, process disturbances and measurement
noises at the 𝑘-th time instant, respectively. Moreover, the
system (1) satisfies the following two assumptions.

Assumption 1. The initial state 𝑥0, process disturbances
𝜔𝑘 and measurement noise [𝑘 are bounded by zonotopes
𝑋0 =

〈
𝑝𝑋0 , 𝐺

𝑋

0
〉
⊂ R𝑛𝑥 , 𝑊 =

〈
0𝑛𝜔 , 𝐺𝑊

〉
⊂ R𝑛𝜔 and 𝑉 =〈

0𝑛[ , 𝐺𝑉
〉
⊂ R𝑛[ , respectively.

Assumption 2. The pair (𝐴, 𝐶) is detectable.

B. Set-Theoretic Unknown Input Observer

According to [12], the SUIO is designed based on the
classical UIO structure:

𝑧 𝑠𝑢𝑖𝑜𝑘+1 = 𝑁𝑧 𝑠𝑢𝑖𝑜𝑘 +𝑇𝑢𝑘 +𝐾𝑦𝑘 , (2a)

𝑥 𝑠𝑢𝑖𝑜𝑘 = 𝑧 𝑠𝑢𝑖𝑜𝑘 +𝐻𝑦𝑘 , (2b)

where 𝑧 𝑠𝑢𝑖𝑜
𝑘

∈ R𝑛𝑥 is the state of the observer, 𝑥 𝑠𝑢𝑖𝑜
𝑘

∈ R𝑛𝑥
is the estimated state of the system (1), and 𝑁 , 𝑇 , 𝐾 , 𝐻 are
the parameters of the observer to be designed.

According to the design of SUIO proposed in [12], the
unknown input 𝜔𝑘 and corresponding distribution matrix 𝐸
in the system (1) should be divided into

𝜔𝑘 = [𝜔𝑇

1,𝑘 𝜔
𝑇

2,𝑘] 𝑇 , 𝐸 = [𝐸1 𝐸2],
where 𝜔1,𝑘 ∈ R𝑛𝜔1 includes all unknown inputs that can
be actively decoupled, 𝜔2,𝑘 ∈ R𝑛𝜔2 denotes the remaining
unknown inputs, and 𝐸1 and 𝐸2 are the distribution matrices
of 𝜔1,𝑘 and 𝜔2,𝑘 , respectively. Moreover, 𝜔2,𝑘 is bounded by
a known set𝑊2. In order to actively decouple the influence of
𝜔1,𝑘 and some other terms, the parameters of SUIO should
satisfy the following constraints (see [12] for the details):

𝐴−𝐻𝐶𝐴−𝐾1𝐶 −𝑁 = 0𝑛𝑥×𝑛𝑥 , (3a)
𝐾 −𝐾1 −𝐾2 = 0𝑛𝑥×𝑛𝑦 , (3b)

𝐸1 −𝐻𝐶𝐸1 = 0𝑛𝑥×𝑛𝜔 , (3c)
𝐵−𝑇 −𝐻𝐶𝐵 = 0𝑛𝑥×𝑛𝑢 , (3d)

(𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝐻 −𝐾2 = 0𝑛𝑥×𝑛𝑦 . (3e)

Remark 1. According to the existing design of SUIO [12],
[13], the parameter 𝐻 is determined by (3c). Then once
𝐾1 is further designed, the others (i.e., 𝑁 , 𝑇 , 𝐾2 and 𝐾)
are uniquely determined by (3). Furthermore, Lemma 1
introduces conditions for designing an SUIO.

Lemma 1 ([18]). The necessary and sufficient conditions to
design a stable SUIO for the system (1) are

1) rank(𝐸1) = rank(𝐶𝐸1);
2) The pair (𝐴1, 𝐶) is detectable, where 𝐴1 = 𝐴 −

𝐸1 [(𝐶𝐸1)𝑇𝐶𝐸1]−1 (𝐶𝐸1)𝑇𝐶𝐴.

Remark 2. In Lemma 1, the condition 1) ensures the
solvability of the constraint (3c), and the condition 2) is
necessary and sufficient for the existence of a stable SUIO.
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In this paper, the state estimation error for a given observer
is defined as

𝑒𝑘 = 𝑥𝑘 − 𝑥𝑘 , (4)

where 𝑥𝑘 and 𝑒𝑘 are the estimated state and state estimation
error of this observer, respectively. Then let 𝑒 𝑠𝑢𝑖𝑜

𝑘
denote the

state estimation error of SUIO. Based on (1), (2), (3) and
(4), the dynamics of 𝑒 𝑠𝑢𝑖𝑜

𝑘
is derived as

𝑒 𝑠𝑢𝑖𝑜𝑘+1 = (𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝑒 𝑠𝑢𝑖𝑜𝑘 + (𝐸2 −𝐻𝐶𝐸2)𝜔2,𝑘

−𝐻𝐹[𝑘+1 −𝐾1𝐹[𝑘 ,
(5)

where 𝑒 𝑠𝑢𝑖𝑜0 ∈ 𝐸 𝑠𝑢𝑖𝑜
0 and 𝐸 𝑠𝑢𝑖𝑜

0 is the initial state estimation
error set. Based on (5), the state estimation error set 𝐸 𝑠𝑢𝑖𝑜

𝑘

can be computed recursively by

𝐸 𝑠𝑢𝑖𝑜
𝑘+1 = (𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝐸 𝑠𝑢𝑖𝑜

𝑘 ⊕ (𝐸2 −𝐻𝐶𝐸2)𝑊2

⊕ (−𝐻𝐹)𝑉 ⊕ (−𝐾1𝐹)𝑉
(6)

such that 𝑒 𝑠𝑢𝑖𝑜
𝑘

∈ 𝐸 𝑠𝑢𝑖𝑜
𝑘

, ∀𝑘 ≥ 1 hold. After obtaining the state
estimation error set, the set version of (4) can be used to
compute a state estimation set for a given set-based observer
(e.g., SVO and SUIO):

𝑋𝑘 = 𝐸𝑘 ⊕ 𝑥𝑘 , (7)

where 𝐸𝑘 and 𝑋𝑘 are the state estimation error set and state
estimation set of this observer, respectively.

C. Set-Valued Observer

According to [11], the SVO is proposed based on the
following set-propagated dynamics:

𝑋 𝑠𝑣𝑜
𝑘+1 = (𝐴− 𝐿𝐶)𝑋𝑠𝑣𝑜

𝑘 ⊕ 𝐸𝑊 ⊕ (−𝐿𝐹)𝑉 ⊕ 𝐵𝑢𝑘⊕𝐿𝑦𝑘 , (8)

where 𝐿 and 𝑋 𝑠𝑣𝑜
𝑘

are the gain matrix to be designed and the
state estimation set of SVO at time instant 𝑘 , respectively.
Note that, under Assumption 2, there exists a gain matrix 𝐿
which can guarantee the stability of the SVO.

Unlike the SUIO, the SVO does not provide a point
estimate of the state (i.e., the estimated state). To facilitate
the analysis in the following section, we first translate the
SVO into a similar form of the SUIO. Specifically, it is
natural to choose the center of the state estimation set 𝑋 𝑠𝑣𝑜

𝑘

as the the estimated state of SVO. Since 𝑊 =
〈
0𝑛𝜔 , 𝐺𝑊

〉
and 𝑉 =

〈
0𝑛[ , 𝐺𝑉

〉
(as assumed in [11]), based on (8), the

estimated state of SVO can be recursively computed by

𝑥 𝑠𝑣𝑜𝑘+1 = (𝐴− 𝐿𝐶)𝑥 𝑠𝑣𝑜𝑘 +𝐵𝑢𝑘 + 𝐿𝑦𝑘 , (9)

where 𝑥 𝑠𝑣𝑜
𝑘

is both the estimated state of SVO and the
center of 𝑋 𝑠𝑣𝑜

𝑘
. Similar to 𝐸 𝑠𝑢𝑖𝑜

𝑘
, 𝐸 𝑠𝑣𝑜

𝑘
is denoted as the

state estimation error set of SVO. Based on (7) and (9), the
dynamics of 𝐸 𝑠𝑣𝑜

𝑘
is derived as

𝐸 𝑠𝑣𝑜
𝑘+1 =𝑋 𝑠𝑣𝑜

𝑘+1 ⊕ (−𝑥 𝑠𝑣𝑜𝑘+1 )
= (𝐴− 𝐿𝐶)𝐸 𝑠𝑣𝑜

𝑘 ⊕ 𝐸𝑊 ⊕ (−𝐿𝐹)𝑉.

IV. MAIN RESULTS
A. Generalized Set-Theoretic Unknown Input Observer

Motivated by [13], this paper relaxes the constraints of
SUIO to further reduce its conservatism. In order to dis-
tinguish from the existing SUIO in [12] and [13] for later

analysis, we use the following Definition 2 to introduce the
proposed design of this paper.

Definition 2. An observer is a generalized set-theoretic
unknown input observer (GSUIO) for the system (1) if this
observer has the following structure

𝑧
𝑔𝑠𝑢𝑖𝑜

𝑘+1 = 𝑁𝑧
𝑔𝑠𝑢𝑖𝑜

𝑘
+𝑇𝑢𝑘 +𝐾𝑦𝑘 , (10a)

𝑥
𝑔𝑠𝑢𝑖𝑜

𝑘
= 𝑧

𝑔𝑠𝑢𝑖𝑜

𝑘
+𝐻𝑦𝑘 , (10b)

with the parameters satisfying

𝐴−𝐻𝐶𝐴−𝐾1𝐶 −𝑁 = 0𝑛𝑥×𝑛𝑥 , (11a)
𝐾 −𝐾1 −𝐾2 = 0𝑛𝑥×𝑛𝑦 , (11b)

𝐵−𝑇 −𝐻𝐶𝐵 = 0𝑛𝑥×𝑛𝑢 , (11c)
(𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝐻 −𝐾2 = 0𝑛𝑥×𝑛𝑦 . (11d)

Remark 3. Reminded by the reviewers, we have noticed
that a so-called TNL observer has the equivalent structure
with (2) and (10), which was first proposed in [7] and then
developed in [10]. However, the TNL observer is an IO
based on the monotone system theory and optimized by
𝐻∞ technique. Except for the observer structure, the GSUIO
presented in this paper is different from the TNL observer
in terms of focus, usage, and optimization methods.

Let 𝑒 𝑔𝑠𝑢𝑖𝑜
𝑘

and 𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘
denote the state estimation error and

state estimation error set of GSUIO. Based on Definition 2
and (4), the dynamics of 𝑒 𝑔𝑠𝑢𝑖𝑜

𝑘
is derived as

𝑒
𝑔𝑠𝑢𝑖𝑜

𝑘+1 = (𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝑒 𝑔𝑠𝑢𝑖𝑜𝑘
+ (𝐸 −𝐻𝐶𝐸)𝜔𝑘

−𝐻𝐹[𝑘+1 −𝐾1𝐹[𝑘 .
(12)

Then based on (12), 𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘
can be computed by

𝐸
𝑔𝑠𝑢𝑖𝑜

𝑘+1 = (𝐴−𝐻𝐶𝐴−𝐾1𝐶)𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘
⊕ (𝐸 −𝐻𝐶𝐸)𝑊

⊕ (−𝐻𝐹)𝑉 ⊕ (−𝐾1𝐹)𝑉.
(13)

Furthermore, the following proposition presents the neces-
sary and sufficient condition to design a stable GSUIO.

Lemma 2 ([18]). Let �̃� = [(𝐶𝐴)𝑇 𝐶𝑇 ]𝑇 , the detectability
for the pair (𝐴, �̃�) is equivalent to that for the pair (𝐴, 𝐶).

Proposition 1. The GSUIO is stabilizable if and only if the
pair (𝐴,𝐶) is detectable.

Proof. To prove the necessity, let �̃� = [𝐻 𝐾1], the parametric
matrix 𝑁 can be reformulated as 𝑁 = 𝐴− �̃��̃� (see (11a)). If
the dynamics of GSUIO (i.e., (10a)) is stable, the matrix
𝑁 needs to be a Schur matrix, i.e., the pair (𝐴, �̃�) is
detectable. Hence, according to Lemma 2, the pair (𝐴, 𝐶)
is also detectable. Since the reverse process of proof also
holds, the sufficiency is proved as well. �

Then Proposition 2 shows that the existence condition of
the GSUIO (i.e., Proposition 1) is milder than that of the
SUIO (i.e., Lemma 1), as Proposition 1 is a necessary but
not sufficient condition of Lemma 1.

Proposition 2. The pair (𝐴,𝐶) is detectable if the pair (𝐴1,
𝐶) is detectable, where 𝐴1 has been defined in Lemma 1.

Proof. Proof by contradiction. According to Hautus lemma,
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the pair (𝐴, 𝐶) is not detectable if and only if there exists a
complex value _ satisfying |_ | ≥ 1 such that

rank
[
𝐴−_𝐼𝑛𝑥
𝐶

]
< 𝑛𝑥 . (14)

Then the inequality (14) holds if and only if there exists a
vector Z ≠ 0𝑛𝑥 such that[

𝐴−_𝐼𝑛𝑥
𝐶

]
Z = 0𝑛𝑥+𝑛𝑦 . (15)

From (15), we have 𝐴Z = _Z and 𝐶Z = 0𝑛𝑦 , and hence

_Z = 𝐴Z −_𝐸1 [(𝐶𝐸1)𝑇𝐶𝐸1]−1 (𝐶𝐸1)𝑇 0𝑛𝑦
= 𝐴Z −_𝐸1 [(𝐶𝐸1)𝑇𝐶𝐸1]−1 (𝐶𝐸1)𝑇 (𝐶Z)
= 𝐴Z −𝐸1 [(𝐶𝐸1)𝑇𝐶𝐸1]−1 (𝐶𝐸1)𝑇𝐶𝐴Z = 𝐴1Z .

(16)

Similar to the above proof, due to _Z = 𝐴1Z and 𝐶Z = 0𝑛𝑦 ,
we have[

𝐴1 −_𝐼𝑛𝑥
𝐶

]
Z = 0𝑛𝑥+𝑛𝑦 and rank

[
𝐴1 −_𝐼𝑛𝑥

𝐶

]
< 𝑛𝑥 .

Based on Hautus lemma, the pair (𝐴1, 𝐶) is also not de-
tectable. Since the reverse process of the above proof does
not hold (i.e., (16) can not reverse), the detectablility of the
pair (𝐴,𝐶) is only a necessary condition for the detectablility
of the pair (𝐴1,𝐶). �

Then Proposition 3 shows that the existing SUIO and SVO
can be unified under the GSUIO.

Proposition 3. The SUIO and SVO are two special cases of
the GSUIO.

Proof. According to the introduction in Section III. B and
Definition 2, any SUIO can be represented by a GSUIO with
the parameter 𝐻 satisfying 𝐸1 −𝐻𝐶𝐸1 = 0𝑛𝑥×𝑛𝜔1

. Similarly,
any SVO can be represented by a GSUIO with 𝐾 = 𝐿, 𝑁 =

𝐴− 𝐿𝐶, 𝑇 = 𝐵 and 𝐻 = 0𝑛𝑥×𝑛𝑦 . �

B. Optimal Design of GSUIO

In order to obtain a tighter state estimation set for the
GSUIO, the following optimization problem is formulated
to minimize the F-radius of state estimation error set:

min
𝐻𝑘 ,𝐾1,𝑘

𝜙(𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘+1 )2, (17)

where 𝐻𝑘 and 𝐾1,𝑘 are the values of 𝐻 and 𝐾1 of GSUIO
at the 𝑘-th time instant, respectively.

According to Assumption 1 and (7), the initial state
estimation error set of GSUIO is formulated as 𝐸

𝑔𝑠𝑢𝑖𝑜

0 =〈
𝑝𝑋0 − 𝑥0, 𝐺

𝑋

0
〉
. Based on (13), the state estimation error set

at each time instant is also a zonotope, which can be denoted
as 𝐸

𝑔𝑠𝑢𝑖𝑜

𝑘
=
〈
𝑝𝐸
𝑘
, 𝐺 𝐸

𝑘

〉
. Using (13) and the properties of

zonotopes, 𝐺 𝐸

𝑘
(𝑘 ≥ 1) can be recursively computed by

𝐺 𝐸

𝑘+1 =
[
(𝐴− �̃�𝑘�̃�)𝐺 𝐸

𝑘
(𝐸 − �̃�𝑘𝛩)𝐺𝑊 �̃�𝑘𝛬 �̃�𝑘𝛤

]
, (18)

where

𝛬 = −
[

0 𝑛𝑦×𝑛𝑦
𝐼 𝑛𝑦

]
𝐹𝐺𝑉 , 𝛩 =

[
𝐼 𝑛𝑦

0 𝑛𝑦×𝑛𝑦

]
𝐶𝐸,

𝛤 = −
[

𝐼 𝑛𝑦
0 𝑛𝑦×𝑛𝑦

]
𝐹𝐺𝑉 , �̃� =

[
𝐶𝐴

𝐶

]
, �̃�𝑘 = [𝐻𝑘 𝐾1, 𝑘 ] .

To solve (17), let 𝑆𝑘 = 𝐺 𝐸

𝑘
(𝐺 𝐸

𝑘
)𝑇 and 𝐽 = 𝐺𝑊 (𝐺𝑊 )𝑇 .

Using the above expressions and Definition 1, 𝜙(𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘+1 )2

can be formulated as

𝜙(𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘+1 )2 =
𝐺 𝑘+1

𝐸

2
𝐹
= tr(𝑆𝑘+1), (19)

with
𝑆𝑘+1 = (𝐴− �̃�𝑘�̃�)𝑆𝑘 (𝐴− �̃�𝑘�̃�)𝑇 + �̃�𝑘𝛬𝛬

𝑇 �̃�𝑇𝑘

+ (𝐸 − �̃�𝑘𝛩)𝐽 (𝐸 − �̃�𝑘𝛩)𝑇 + �̃�𝑘𝛤𝛤
𝑇 �̃�𝑇𝑘 .

(20)

It is observed that the problem (17) is a convex and un-
constrained optimization problem. Hence, based on (19)
and (20), the time-varying optimal parameter �̃�∗

𝑘
can be

obtained by solving 𝜕𝑆𝑘+1
𝜕�̃�𝑘

= 0𝑛𝑥×2𝑛𝑦 The solution of the
above differential equation is

�̃�∗𝑘 = (𝐴𝑆𝑘�̃�𝑇 + 𝐸𝐽𝛩𝑇 ) (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1, (21)

where 𝑈 = 𝛩𝐽𝛩𝑇 +𝛬𝛬𝑇 +𝛤𝛤𝑇 .
Inspired by Theorem 4.2 in [13], Theorem 1 further gives

the solution of (17) as time tends to infinity.

Theorem 1. Under Assumption 2, if the matrix 𝑈 is nonsin-
gular, the constant optimal parameters of GSUIO as 𝑘 →∞
can be obtained by solving

𝑆∞ = �̃�𝑆∞ �̃�
𝑇 − �̃�𝑆∞�̃�𝑇 (�̃�𝑆∞�̃�𝑇 +𝑈)−1�̃�𝑆∞ �̃�

𝑇

+𝐸𝐽𝐸 𝑇 −𝑃𝑈−1𝑃𝑇 , (22a)

�̃�∗∞ = (𝐴𝑆∞�̃�𝑇 + 𝐸𝐽𝛩𝑇 ) (�̃�𝑆∞�̃�𝑇 +𝑈)−1, (22b)

where 𝑃 = 𝐸𝐽𝛩𝑇 , �̃� = 𝐴−𝑃𝑈−1�̃� , �̃�∗∞ = [𝐻∗
∞ 𝐾∗

1 ,∞] is the
optimal parameter as 𝑘 →∞, and the other parameters (i.e.,
𝑁∗
∞, 𝑇∗

∞ and 𝐾∗
∞) are obtained by solving the equations (11).

Proof. Substituting (21) and 𝑈 = 𝛩𝐽𝛩𝑇 + 𝛬𝛬𝑇 +𝛤𝛤𝑇 into
(20) and eliminating �̃�𝑘 , 𝑆𝑘+1 is derived as

𝑆𝑘+1 = 𝐴𝑆𝑘𝐴
𝑇 +𝐸𝐽𝐸 𝑇 − (𝐴𝑆𝑘�̃�𝑇 + 𝐸𝐽𝛩𝑇 )

× (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1 (𝐴𝑆𝑘�̃�𝑇 + 𝐸𝐽𝛩𝑇 )𝑇 .
(23)

Note that there is no absolute error-free estimation for
real systems, i.e., the state estimation error set 𝐸 𝑔𝑠𝑢𝑖𝑜

𝑘
=〈

𝑝𝐸
𝑘
, 𝐺 𝐸

𝑘

〉
is a full-dimensional zonotope. Hence, 𝐺 𝐸

𝑘
is a

full row rank matrix and 𝑆𝑘 = 𝐺 𝐸

𝑘
(𝐺 𝐸

𝑘
)𝑇 � 0. Then using

Woodbury matrix identity, if the matrix 𝑈 is nonsingular,
we have the following identities:

𝑆𝑘 − 𝑆𝑘�̃�𝑇 (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1�̃�𝑆𝑘 = (𝑆−1
𝑘 + �̃�𝑇𝑈−1�̃�)−1, (24a)

(𝑆−1
𝑘 + �̃�𝑇𝑈−1�̃�)−1�̃�𝑇𝑈−1 = 𝑆𝑘�̃�

𝑇 (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1. (24b)

Substituting 𝑃 = 𝐸𝐽𝛩𝑇 and 𝐴 = �̃� + 𝑃𝑈−1�̃� into (23) and
using the identities (24), after some lengthy algebraic oper-
ations, it yields

𝑆𝑘+1 = �̃�𝑆𝑘 �̃�
𝑇 − �̃�𝑆𝑘�̃�𝑇 (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1�̃�𝑆𝑘 �̃�

𝑇

+𝐸𝐽𝐸 𝑇 −𝑃𝑈−1𝑃𝑇 ,
(25)

which is a Riccati Difference Equation (RDE).
According to Theorem 4.2 in [19], if the pair ( �̃�, �̃�) is

detectable, 𝐸𝐽𝐸 𝑇 −𝑃𝑈−1𝑃𝑇 � 0 and 𝑆0 � 𝑆∞, the sequence
{𝑆𝑘 } obtained by RDE (25) uniquely converges to a constant
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matrix 𝑆∞ satisfying (22a), where (22a) is an ARE.
The remaining proof will show that the above convergence

conditions can all be satisfied. Based on Assumption 2 and
Lemma 2, the pair (𝐴,�̃�) is detectable. By applying the same
proving technique as in Proposition 2, it can be proved that
the detectability of the pairs ( �̃�, �̃�) and (𝐴,�̃�) are equivalent.
Hence, the condition of detectability for the pair ( �̃�, �̃�) is
satisfied. Furthermore, due to 𝑃 = 𝐸𝐽𝛩𝑇 , 𝑈 = 𝛩𝐽𝛩𝑇 +𝛬𝛬𝑇 +
𝛤𝛤𝑇 , 𝛬𝛬𝑇 +𝛤𝛤𝑇 � 0 and 𝐽 = 𝐺𝑊 (𝐺𝑊 )𝑇 , we have[
𝑈 𝑃𝑇

𝑃 𝐸𝐽𝐸𝑇

]
=

[
𝛩𝐺𝑊

𝐸𝐺𝑊

] [
𝛩𝐺𝑊

𝐸𝐺𝑊

]𝑇
︸                    ︷︷                    ︸

� 0

+
[
𝛬𝛬𝑇 +𝛤𝛤𝑇 0

0 0

]
︸                  ︷︷                  ︸

� 0

� 0.

Since the matrix 𝑈 is nonsingular, using Schur complement
lemma, it yields[

𝑈 𝑃𝑇

𝑃 𝐸𝐽𝐸𝑇

]
� 0 ⇔ 𝐸𝐽𝐸 𝑇 −𝑃𝑈−1𝑃𝑇 � 0.

Hence, the condition 𝐸𝐽𝐸 𝑇 −𝑃𝑈−1𝑃𝑇 � 0 is satisfied. Since
the initial state set 𝑋0 is specified by designers, one can
always set a big enough zonotope 𝑋0 =

〈
𝑝𝑋0 , 𝐺

𝑋

0
〉

such that

𝑆0 = 𝐺
𝐸

0 (𝐺 𝐸

0 )
𝑇 = 𝐺 𝑋

0 (𝐺 𝑋

0 )
𝑇 � 𝑆∞.

Then, the convergence conditions are all satisfied. �

Remark 4. Note that 𝑈 is the sum of three positive semidef-
inite matrices (i.e., 𝛩𝐽𝛩𝑇 , 𝛬𝛬𝑇 and 𝛤𝛤𝑇 ), which is singular
if and only if the intersection of null space of the three
matrices is not empty except for the origin. Moreover, since
both 𝑊 and 𝑉 are full dimensional zonotopes, 𝑈 is a singular
matrix as long as the matrices 𝐸 or 𝐹 is full row rank. Hence,
𝑈 is typically a nonsigular matrix for real systems. Moreover,
the ARE (22a) generally can not be solved analytically, but
can be solved numerically with a given precision. In practice,
since we have proven in Theorem 1 that the RDE (25)
converges to the ARE (22a), the solution can be obtained
through iterating the RDE (25) with proper initial values.

C. Conservatism and Convergence Analysis

This subsection will analyze the conservatism of GSUIO,
SVO and SUIO under the corresponding F-radius optimal
design. Before introducing Theorem 2, Proposition 4 is first
presented as the auxiliary for proving Theorem 2.

Proposition 4. Given an arbitrary matrix 𝑂 � 0, (21) is
an optimal solution of the following convex optimization
problem:

min
�̃�𝑘

tr(𝑆𝑘+1𝑂).

Proof. Similar to the solving process of (17), the general
solution of the above problem is

�̃�
†
𝑘
= (𝐴𝑆𝑘�̃�𝑇 + 𝐸𝐽𝛩𝑇 +𝑃𝑏𝑄𝑎) (�̃�𝑆𝑘�̃�𝑇 +𝑈)−1, (26)

where 𝑃𝑏 = [𝑝1, 𝑝2, ..., 𝑝𝑘 ], the group of vectors 𝑝1, 𝑝2, ..., 𝑝𝑘
is the basis of the null space of 𝑂, and the matrix 𝑄𝑎 ∈
R𝑛𝑦×2𝑛𝑦 is arbitrary. Then it is straightforward that (21) is
also one case of (26) with 𝑄𝑎 = 0𝑛𝑦×2𝑛𝑦 . �

Theorem 2. Denote 𝑋
∗,𝑔𝑠𝑢𝑖𝑜
𝑘

, 𝑋∗,𝑠𝑢𝑖𝑜
𝑘

and 𝑋
∗,𝑠𝑣𝑜
𝑘

as the
state estimation sets of GSUIO, SUIO and SVO under the
corresponding F-radius optimal designs, respectively. Given
𝐸

𝑔𝑠𝑢𝑖𝑜

0 = 𝐸 𝑠𝑢𝑖𝑜
0 = 𝐸 𝑠𝑣𝑜

0 , the F-radius of 𝑋∗,𝑔𝑠𝑢𝑖𝑜
𝑘

is not larger
than those of both 𝑋∗,𝑠𝑢𝑖𝑜

𝑘
and 𝑋∗,𝑠𝑣𝑜

𝑘
for arbitrary 𝑘 ≥ 1, i.e.,

𝜙(𝑋∗,𝑔𝑠𝑢𝑖𝑜
𝑘

) ≤ 𝜙(𝑋∗,𝑠𝑢𝑖𝑜
𝑘

)
and 𝜙(𝑋∗,𝑔𝑠𝑢𝑖𝑜

𝑘
) ≤ 𝜙(𝑋∗,𝑠𝑣𝑜

𝑘
), ∀𝑘 ≥ 1.

Proof. Due to space limits, here we only prove 𝜙(𝑋∗,𝑔𝑠𝑢𝑖𝑜
𝑘

) ≤
𝜙(𝑋∗,𝑠𝑢𝑖𝑜

𝑘
), ∀𝑘 ≥ 1. As for 𝜙(𝑋∗,𝑔𝑠𝑢𝑖𝑜

𝑘
) ≤ 𝜙(𝑋∗,𝑠𝑣𝑜

𝑘
), ∀𝑘 ≥ 1,

the proof can be completed in the same way.

According to Proposition 3, the SUIO is reformulated as
the form of GSUIO with an extra constraint 𝐸1 −𝐻𝑘𝐶𝐸1 =
0𝑛𝑥×𝑛𝜔1

. To distinguish the GSUIO and SUIO under the same
form, the notations 𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
and 𝑆 𝑠𝑢𝑖𝑜

𝑘
are used to indicate 𝑆𝑘

corresponding to GSUIO and SUIO, respectively. Similarly,
�̃�
∗, 𝑠𝑢𝑖𝑜
𝑘

and �̃�
∗, 𝑔𝑠𝑢𝑖𝑜
𝑘

are used to denote the correspond-
ing �̃�∗

𝑘
of GSUIO and SUIO, respectively. Next, due to

(19) and 𝜙(𝑋𝑘 ) = 𝜙(𝐸𝑘 ) (see (7)), we will complete the
proof of 𝜙(𝑋 ∗,𝑔𝑠𝑢𝑖𝑜

𝑘
) ≤ 𝜙(𝑋 ∗,𝑠𝑢𝑖𝑜

𝑘
), ∀𝑘 ≥ 1 through proving

tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
) ≤ tr(𝑆 𝑠𝑢𝑖𝑜

𝑘
), ∀𝑘 ≥ 1 by mathematical induction.

According to Proposition 4, we have

�̃�
∗, 𝑔𝑠𝑢𝑖𝑜
𝑘

= arg min
�̃�𝑘

tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘+1 𝑂) (27)

holds for arbitrary 𝑂 � 0. Using the same proof techniques
shown in Proposition 4, we have the similar conclusion for
SUIO, i.e.,

�̃�
∗, 𝑠𝑢𝑖𝑜
𝑘

= arg min
�̃�𝑘

tr(𝑆 𝑠𝑢𝑖𝑜
𝑘+1 𝑂).

𝑠.𝑡. 𝐸1 −𝐻𝑘𝐶𝐸1 = 0.
(28)

At the time instant 𝑘 = 0, based on 𝑆0 = 𝐺 𝐸

0 (𝐺 𝐸

0 )
𝑇 and

𝐸
𝑔𝑠𝑢𝑖𝑜

0 = 𝐸 𝑠𝑢𝑖𝑜
0 , we have 𝑆 𝑔𝑠𝑢𝑖𝑜

0 = 𝑆 𝑠𝑢𝑖𝑜
0 . Since both 𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘

and 𝑆 𝑠𝑢𝑖𝑜
𝑘

are calculated recursively by (20), the optimization
problem (28) is exactly (27) with an extra constraint when
𝑘 = 0, which implies that in this case the problem (28) has
the same objective function but a smaller feasible domain
than (27). Thus, we have tr(𝑆 𝑔𝑠𝑢𝑖𝑜

1 𝑂) ≤ tr(𝑆 𝑠𝑢𝑖𝑜
1 𝑂), ∀𝑂 � 0.

At the time instant 𝑘 , assume that tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
𝑂) ≤

tr(𝑆 𝑠𝑢𝑖𝑜
𝑘

𝑂) holds for arbitrary 𝑂 � 0. According to (20), we
have
tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘+1 𝑂)= tr{[(𝐴− �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

�̃�)𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
(𝐴− �̃�∗,𝑔𝑠𝑢𝑖𝑜

𝑘
�̃�)𝑇

+ �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛬( �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛬)𝑇 + �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛤 ( �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛤)𝑇

+ (𝐸 − �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛩)𝐽 (𝐸 − �̃�∗,𝑔𝑠𝑢𝑖𝑜
𝑘

𝛩)𝑇 ]𝑂}.
Similarly, we have

tr(𝑆 𝑠𝑢𝑖𝑜
𝑘+1 𝑂) =tr{[(𝐴− �̃�∗,𝑠𝑢𝑖𝑜

𝑘
�̃�)𝑆 𝑠𝑢𝑖𝑜

𝑘 (𝐴− �̃�∗,𝑠𝑢𝑖𝑜
𝑘

�̃�)𝑇

+ �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛬( �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛬)𝑇 + �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛤 ( �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛤)𝑇

+ (𝐸 − �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛩)𝐽 (𝐸 − �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛩)𝑇 ]𝑂}.

Note that �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

is only a feasible solution for the optimiza-
tion problem (27). Thus, given a function 𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗, 𝑠𝑢𝑖𝑜
𝑘

)
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defined as
𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗,𝑠𝑢𝑖𝑜
𝑘

)
= tr{[(𝐴− �̃�∗,𝑠𝑢𝑖𝑜

𝑘
�̃�)𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
(𝐴− �̃�∗,𝑠𝑢𝑖𝑜

𝑘
�̃�)𝑇

+ �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛬( �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛬)𝑇 + �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛤 ( �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛤)𝑇

+ (𝐸 − �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛩)𝐽 (𝐸 − �̃�∗,𝑠𝑢𝑖𝑜
𝑘

𝛩)𝑇 ]𝑂},

we have tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘+1 𝑂) ≤ 𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗, 𝑠𝑢𝑖𝑜
𝑘

). On the other
hand, we have

𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗, 𝑠𝑢𝑖𝑜
𝑘

) − tr(𝑆 𝑠𝑢𝑖𝑜
𝑘+1 𝑂)

= tr[(𝐴− �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�) (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
− 𝑆 𝑠𝑢𝑖𝑜

𝑘 ) (𝐴− �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�)𝑇𝑂]
= tr[(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
− 𝑆 𝑠𝑢𝑖𝑜

𝑘 ) (𝐴− �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�)𝑇𝑂 (𝐴− �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�)] .

Let 𝑂𝑛𝑒𝑤 = (𝐴 − �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�)𝑇𝑂 (𝐴 − �̃�∗, 𝑠𝑢𝑖𝑜
𝑘

�̃�). Then it is
derived from 𝑂 � 0 that 𝑂𝑛𝑒𝑤 � 0. Since tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
𝑂) ≤

tr(𝑆 𝑠𝑢𝑖𝑜
𝑘

𝑂) holds for arbitrary 𝑂 � 0, the above formula is
further derived as

𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗, 𝑠𝑢𝑖𝑜
𝑘

) − tr(𝑆 𝑠𝑢𝑖𝑜
𝑘+1 𝑂)

= tr[(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
− 𝑆 𝑠𝑢𝑖𝑜

𝑘 )𝑂𝑛𝑒𝑤 ]
= tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
𝑂𝑛𝑒𝑤 ) − tr(𝑆 𝑠𝑢𝑖𝑜

𝑘 𝑂𝑛𝑒𝑤 ) ≤ 0.
Thus we have

tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘+1 𝑂) ≤ 𝑓 (𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
, �̃�

∗, 𝑠𝑢𝑖𝑜
𝑘

) ≤ tr(𝑆 𝑠𝑢𝑖𝑜
𝑘+1 𝑂).

Through mathematical induction, we have completed the
proof of tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
𝑂) ≤ tr(𝑆 𝑠𝑢𝑖𝑜

𝑘
𝑂),∀𝑘 ≥ 1 for arbitrary 𝑂 �

0. Since 𝐼𝑛𝑥 is one case of 𝑂 � 0, we have tr(𝑆 𝑔𝑠𝑢𝑖𝑜

𝑘
) ≤

tr(𝑆 𝑠𝑢𝑖𝑜
𝑘

),∀𝑘 ≥ 1. �

Remark 5. Since the F-radius optimal designs of GSUIO,
SUIO and SVO are all analytical (see [11], [13] for the
details about SVO and SUIO), the computational complexity
of these methods are commensurate. Moreover, [11, Theorem
12] has indicated the convergence of SVO under the F-radius
optimal design, i.e., 𝜙(𝑋∗,𝑠𝑣𝑜

𝑘
) is bounded as 𝑘→∞. Since it

is shown in Theorem 2 that 𝜙(𝑋∗,𝑔𝑠𝑢𝑖𝑜
𝑘

) ≤ 𝜙(𝑋∗,𝑠𝑣𝑜
𝑘

), ∀𝑘 ≥ 1,
the convergence of the proposed optimal design emerges as
a natural corollary from Theorem 2.

V. ILLUSTRATIVE EXAMPLE

In this example, we will use a numerical example to
illustrate the effectiveness of the proposed method. For
comparison, the SVO from [11] and the SUIO from [13]
are also used to demonstrate the advantage of the GSUIO
in conservatism. Specifically, the parametric matrices of the
LTI system (1) are given by

𝐴 =

[
0.6887 −0.3293
0.0095 0.6969

]
, 𝐵 =

[
1.3905
0.9064

]
, 𝐶 =

[
0.8 0.3
0.2 0.6

]
,

𝐸 =

[
0.67 0.22 0.31 0.27
0.57 0.45 0.53 0.33

]
, 𝐹 =

[
0.97 1.28
0.49 0.91

]
.

Since the SUIO requires to decouple the process distur-
bances, the 1-st component of 𝑤𝑘 is chosen to be actively
decoupled. Hence, the distribution matrix 𝐸 is divided into

𝐸1 =

[
0.67
0.57

]
, 𝐸2 =

[
0.22 0.31 0.27
0.45 0.53 0.33

]
.

Moreover, we assign the initial state 𝑥0 = [0, 0]𝑇 and input
𝑢𝑘 = 𝜋𝑠𝑖𝑛(0.5𝑘)/3. The initial state estimation set, distur-
bance set and noise set are considered as 𝑋0 = 〈0, 𝐼2×2 〉,
𝑊 = 〈0, 0.5𝐼4×4 〉 and 𝑉 = 〈0, 0.5𝐼2×2 〉, respectively.
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Fig. 1: The state estimation results of the SUIO, the SVO and the GSUIO
from 𝑘 = 0 to 𝑘 = 50.
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Fig. 2: The state estimation sets of the SUIO, the SVO and the GSUIO as
𝑘 →∞, where the centers of all sets are moved to the origin.

Let 𝑥𝑘 = [𝑥𝑘 (1), 𝑥𝑘 (2)]𝑇 and denote 𝑋𝑘 (𝑖) as the bound-
ary projection of 𝑋𝑘 on the 𝑖-th component. Fig. 1 shows the
state estimation results of the SUIO, the SVO and the GSUIO
under the corresponding optimal designs from 𝑘 = 0 to 𝑘 = 50.
Since the optimal parameters are all designed analytically,
the average online computation time of the three methods
are all around 0.18 ∼ 0.19ms at each step. Moreover, it is
observed in Fig. 1 that the state estimation bounds of the
GSUIO are the tightest among the three methods.

To exclude contingencies of the above simulations, we
further compare the three methods under different levels of
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(a) F-radius as 𝑘 →∞ with different 𝛼 and 𝛽 = 0.5.
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(b) F-radius as 𝑘 →∞ with different 𝛽 and 𝛼 = 0.5.
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(c) F-radius from 𝑘 = 0 to 𝑘 = 50 with 𝛼 = 0.5 and 𝛽 = 0.5.

Fig. 3: Comparison of conservatism for the SUIO, the SVO and the
GSUIO under the F-radius metric

disturbances and noise in Figs. 2 and 3. Particularly, let
𝑊 = 〈0, 𝛼𝐼4×4 〉, 𝑉 = 〈0, 𝛽𝐼2×2 〉 and keep other parameters
unchanged. Then adjusting the relative magnitudes of 𝛼 and
𝛽 can represent the different levels of disturbances and noise.

Fig. 2 shows the state estimation sets as 𝑘 → ∞ for the
three methods with different values of 𝛼 and 𝛽. In order to
compare the sizes of sets intuitively, the centers of all the sets
in Fig. 2 have been moved to the origin. From Fig. 2, it can
be seen that regardless of the relative levels of disturbances
and noise, the state estimation sets of the GSUIO method
are the smallest among the three methods.

Furthermore, Fig. 3 compares the F-radius of the state
estimation sets for the three methods with different values of
𝛼, 𝛽 and 𝑘 , respectively. Just as indicated in Theorem 2, the
F-radius of the state estimation set for the GSUIO is always
the smallest among the three methods, regardless of the time
instant or the relative levels of noise and disturbances.

VI. CONCLUSIONS

This paper presents a new F-radius optimal design method
of SUIO for robust state estimation, which attains a milder
condition for usage compared with the existing SUIO.
Moreover, it is proved that under the corresponding F-
radius optimal designs, the proposed method achieves a more
precise estimation result than existing SVO and SUIO. To

transfer the online computational burden, we further propose
an offline optimal design method for SUIO to obtain the
constant optimal parameters as time tends to infinity. In the
future work, we intend to explore the application of the
proposed method on other tasks, e.g., robust fault diagnosis.
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