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Abstract— The paper deals with the analysis of a discrete-
time networked competitive bivirus susceptible-infected-
susceptible (SIS) model. More specifically, we suppose that
virus 1 and virus 2 are circulating in the population and are in
competition with each other. We show that the model is strongly
monotone, and that, under certain assumptions, it does not
admit any periodic orbit. We identify a sufficient condition for
exponential convergence to the disease-free equilibrium (DFE).
Assuming only virus 1 (resp. virus 2) is alive, we establish
a condition for global asymptotic convergence to the single-
virus endemic equilibrium of virus 1 (resp. virus 2) - our proof
does not rely on the construction of a Lyapunov function.
Assuming both virus 1 and virus 2 are alive, we establish a
condition which ensures local exponential convergence to the
single-virus equilibrium of virus 1 (resp. virus 2). Finally, we
provide a sufficient (resp. necessary) condition for the existence
of a coexistence equilibrium.

I. INTRODUCTION

Over the last several decades, modeling and analysis of
spreading processes has attracted the attention of researchers
across a wide spectrum ranging from mathematical epidemi-
ology [1] and physics [2] to the social sciences [3]. Various
models have been studied in the literature; see [4] for a
recent overview. This paper focuses on susceptible-infected-
susceptible (SIS) models.

While the (networked) SIS model has been studied in de-
tail (see, for instance, [5], [6]), it is not suitable for studying
scenarios where there are multiple competing, viruses circu-
lating in the population - a scenario that has been witnessed
in the context of spread of gonorrhea and tuberculosis. In
the competitive spreading regime, two viruses, say virus 1
and virus 2, simultaneously circulate in the same population
- an individual can either be infected with virus 1 or with
virus 2 or with neither, but not with both. Competitive bivirus
SIS models have been proposed since [7], [8] and more
recently in, to cite a few, [9]–[13]. The bulk of the literature
on networked competitive bivirus SIS models are focused
on the continuous-time case; with the notable exception of
[12] (whose analysis of endemic behavior is restricted to
providing a lower bound on the number of equilibria) not
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much attention has been given to the discrete-time networked
competitive bivirus SIS model. The present paper aims to
address this gap, specifically by addressing what kinds of
behavior the aforementioned model exhibits and also by
shedding more light on the endemic behavior of the same.
Our contributions are as follows.

i) We show that the model is strongly monotone, and
that, under certain assumptions, it does not admit any
periodic orbit; see Proposition 1 and Theorem 1, respec-
tively.

ii) We provide a condition which guarantees exponential
convergence to the disease-free equilibrium (DFE); see
Theorem 2.

iii) Assuming that only virus 1 (resp. virus 2) is alive, we
secure a condition guaranteeing that for any non-zero
initial infection levels the dynamics would converge to
the single-virus endemic equilibrium of virus 1 (resp.
virus 2); see Theorem 3. The proof of Theorem 3, unlike
that of the single-virus case in [14], does not rely on
the construction of an appropriate Lyapunov function.

iv) Assuming that both virus 1 and virus 2 are alive, we
identify a condition for local exponential convergence
to the single-virus endemic equilibrium of virus 1 (resp.
virus 2); see Theorem 4.

v) We provide a sufficient condition for the existence
(resp. nonexistence) of a coexistence equilibrium, i.e.,
an equilibrium where both viruses are present in a
population node; see Theorem 5 (resp. Theorem 6).

Paper Outline
The paper is organized as follows. The notations are listed
immediately after the present subsection. The model, techni-
cal preliminaries, and formal statements of problems that this
paper will investigate are presented in Section II. A condition
for global exponential convergence to the DFE is provided
in Section IV, while that for global asymptotic (resp. local
exponential) convergence to the single-virus endemic equi-
librium of virus 1 (resp. virus 2) is given in Section V.
Results on existence (resp. nonexistence) of coexistence
equilibirum are provided in Section VI. Numerical examples
illustrating our results are provided in Section VII, and finally
concluding remarks are given in Section VIII.

Notations and Preliminaries
We denote the set of real numbers by R, and the set of
nonnegative real numbers by R+. For any positive integer
n, we use [n] to denote the set {1, 2, ..., n}. We use 0 and
1 to denote the vectors whose entries all equal 0 and 1,
respectively, and use I to denote the identity matrix, the
sizes of the vectors and matrices are specified only if they
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are not clear from the context. For a vector x we denote
the square matrix with x along the diagonal by diag(x). For
any two real vectors a, b ∈ Rn we write a ≥ b if ai ≥ bi
for all i ∈ [n], a > b if a ≥ b and a ̸= b, and a ≫ b if
ai > bi for all i ∈ [n]. Likewise, for any two real matrices
A,B ∈ Rn×m, we write A ≥ B if Aij ≥ Bij for all i ∈
[n], j ∈ [m], and A > B if A ≥ B and A ̸= B. For a
square matrix M , we use σ(M) to denote the spectrum of
M , ρ(M) to denote the spectral radius of M , and s(M) to
denote the largest real part among the eigenvalues of M ,
i.e., s(M) = max{Re(λ) : λ ∈ σ(M)}. For a set M with
boundary, we denote the boundary as ∂M, and the interior
as Int(M) := M \ ∂M. Given a matrix A, A ≺ 0 (resp.
A ≼ 0) indicates that A is negative definite (resp. negative
semidefinite), whereas A ≻ 0 (resp. A ≽ 0) indicates that A
is positive definite (resp. positive semidefinite). A real square
matrix A is called Metzler if all its off-diagonal entries are
nonnegative. If A(= [aij ]n×n) is a nonnegative matrix, then
ρ(A) decreases monotonically with a decrease in aij for any
i, j ∈ [n].

II. PROBLEM FORMULATION

In this section, we first introduce the discrete-time net-
worked competitive bivirus SIS model, which is followed
by assumptions that are either needed for ensuring that the
model is well-defined and/or for paving the way for the main
theoretical findings of the present paper. Finally, we provide
formal statements of problems that the present paper will
focus on.

A. Model
We consider two competing viruses, say virus 1 and virus 2,
spreading over a network of n population nodes. Each node
is a collection of individuals, and has its own healing (resp.
infection) rates with respect to virus ℓ, δℓi (resp. βℓ

i ), for
ℓ = 1, 2. All individuals within a node have the same
infection (resp. healing) rates; individuals across different
nodes possibly have different infection (resp. healing) rates
- that is, homogeneity within a population and heterogeneity
across the meta-population. The spread of the two viruses can
be represented by a 2-layer graph, say G. The vertex set of G
is the set of population nodes; for ℓ = 1, 2, the edge set Eℓ

captures the interconnection between the various nodes in the
context of the spread of virus ℓ. We denote by Aℓ = [aℓij ]n×n

(where aℓij ≥ 0) the weighted adjacency matrix for layer ℓ.
Note that (i, j) ∈ Eℓ if, and only if, aℓij > 0.

We use xℓ
i(t) to denote the fraction of the population in

node i that is infected with virus ℓ at time t. The evolution of
this fraction is represented by the following scalar differential
equation:

ẋℓ
i(t) = −δℓix

ℓ
i(t) +

(
1−

∑m
r=1 x

r
i (t)

)∑n
j=1 β

ℓ
ijx

ℓ
j(t), (1)

where βℓ
ij = βℓ

ia
ℓ
ij , and ℓ = 1, 2. In vector form, equation (1)

can be written as

ẋ1(t) =
((

I − (X1 +X2)
)
B1 −D1

)
x1(t),

ẋ2(t) =
((

I − (X1 +X2)
)
B2 −D2

)
x2(t),

(2)

where x1, x2 ∈ Rn; Dℓ, Bℓ for ℓ = 1, 2 are of appropriate
dimensions, and Xℓ = diag (xℓ) for ℓ = 1, 2.

From an application point of view, the discrete-time
version of (2) is more appealing than the continuous-time
model, since a) it possibly enables an easier comparison of
experimental data with the predictions of a model, and b)
the numerical exploration of discrete-time epidemic models
is fairly straightforward and consequently can be immedi-
ately implemented by non-mathematicians. The latter is of
immense importance in the context of public health [15].

The goal of this paper is to consider a discretized version
of (2); comment on its limiting behavior above the epidemic
threshold; and analyze its various equilibria, viz. existence,
uniqueness and stability. With respect to the former aspect,
the present paper aims to develop and gather a series of
results that could be viewed as the discrete-time counterparts
of (possibly a subset of) the findings in [11], [16].

The discrete-time competitive networked bivirus SIS model
that the present paper focuses on is inspired from [12].
Specifically, by applying Euler’s forward discretization [17]
to (2), we obtain the following:

x1(k + 1) = x1(k) + h
((

I − (X1 +X2)
)
B1 −D1

)
x1(k),

x2(k + 1) = x2(k) + h
((

I − (X1 +X2)
)
B2 −D2

)
x2(k).

(3)

B. Assumptions
We need the following assumptions so as to ensure that our
model is well-defined.

Assumption 1: For all i ∈ [n], and ℓ ∈ [2], xℓ
i(0), (1 −

x1
i (0)− x2

i (0)) ∈ [0, 1].
Assumption 2: For all i ∈ [n], and ℓ ∈ [2], we have δℓi > 0

and βℓ
ij ≥ 0.

Assumption 3: For all i ∈ [n], and ℓ ∈ [2], hδℓi < 1 and
h
∑2

ℓ=1

∑n
j=1 β

ℓ
ij ≤ 1.

We define the set D as follows:

D := {(x1, x2) | xℓ ≥ 0, ℓ = 1, 2,
∑2

ℓ=1 x
ℓ ≤ 1}. (4)

With Assumptions 1-3 in place, we recall the following.
Lemma 1: [12, Lemma 1] Consider system (3) under

Assumptions 1-3. For all i ∈ [n], and ℓ ∈ [2], xℓ
i(k),

(1− x1
i (k)− x2

i (k)) ∈ [0, 1] for all k ≥ 0.
Lemma 1 implies that the set D is positively invariant.

That is, supposing an initial state is in D, then the forward
orbits generated by said initial condition will lie in D. In
other words, Lemma 1 ensures that the model in system 3
is well-defined, in the sense that the state values stay in
the interval [0, 1] for all time instants; otherwise, since the
states represent fractions or approximations of probability,
the state values will not correspond to physical reality.
Throughout this paper, the term ”global” will mean: for all
initial conditions in the set D.
We need the following assumptions for aiding the develop-
ment of the main results of the present paper.

Assumption 4: We have Bℓ ̸= 0, for each ℓ ∈ [2], h ̸= 0,
and n > 1.
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Assumption 4 ensures that we are considering group models,
and that there is at least one pair of nodes that share an
edge in layer ℓ for ℓ = 1, 2; otherwise, Bℓ = 0 for at least
one ℓ ∈ [2]. Consequently, we are assured that, assuming
virus 1 (resp. virus 2) is present in node i (resp. j) for some
i(resp. j) ∈ [n], the spread is non-trivial, i.e., the disease can
spread across the network, and not be localized to just one
node.

Assumption 5: The matrix Bℓ is irreducible, for ℓ = 1, 2.
Assumption 5 is equivalent to insisting that each layer of the
spread graph be strongly connected.

We need a slightly restrictive version of Assumption 3,
presented below.

Assumption 6: For all i ∈ [n], and ℓ ∈ [2], hδℓi +
h
∑2

ℓ=1

∑n
j=1 β

ℓ
ij ≤ 1.

It is immediate that Assumption 6 implies Assumption 3; the
converse is not necessarily true.
System (3) has three kinds of equilibria, viz. healthy state
or disease-free equilibrium (DFE), (0, 0); the single-virus
endemic equilibrium corresponding to virus ℓ (for each
ℓ ∈ [2]), (x̄ℓ, 0), where 0 ≪ x̄ℓ ≪ 1 for ℓ = 1, 2; and
coexistence equilibria, (x̄1, x̄2), where 0 ≪ x̄1, x̄2 ≪ 1,
and, furthermore, x̄1 + x̄2 ≪ 1. The Jacobian associated
with system (3), evaluated at an arbitrary point (x1, x2) in
the state space, is as given in (5).

C. Technical preliminaries
We will be needing the following technical details in the
sequel [18], [19]. A continuous map T : X → X on the
subset X ⊂ Y is

i) monotone if, for any x, y ∈ X , x ≤ y =⇒ Tx ≤ Ty
ii) strongly monotone if x < y =⇒ Tx ≪ Ty

iii) strongly order-preserving (SOP) if T is monotone, and
when x < y there exist respective neighborhoods U, V
of x, y and n0 ≥ 1 such that n ≥ n0 =⇒ TnU ≤
TnV .

iv) type-K monotone if ∀x, y ∈ Rn
≥0 and x < y, it follows

that for each i ∈ [n]

a) xi = yi =⇒ f(xi) ≤ f(yi); and
b) xi < yi =⇒ f(xi) < f(yi).

Consider the system
x(k + 1) = f(x(k)). (6)

Throughout, we will assume that f ∈ C1, where C1

denotes the class of continuously differentiable functions.
Let J(.) denote the Jacobian associated with system (6).
We say that system (6) is monotone if the matrix J(.) has
only nonnegative entries irrespective of the argument [20,
page 141]; if the matrix J(.) is also irreducible, then we say
that system (6) is strongly monotone.

We will also require the notion of sub-homogeneous
systems, introduced in [19]. We say that a positive map
f : Rn → Rn is sub-homogeneous if

αf(x) ≤ f(αx), ∀x ∈ Rn
≥0 and α ∈ [0, 1].

D. Problem Statements
With respect to system (3), we ask the following questions:

i) What kinds of behavior does this system exhibit?

ii) What is a sufficient condition for global exponential
convergence to the DFE?

iii) What is a sufficient condition for global asymptotic
convergence to a single-virus endemic equilibrium?

iv) Can we identify a sufficient condition for the local
exponential stability of the boundary equilibrium?

v) Can we identify a sufficient condition for the existence
of a coexistence equilibrium?

vi) Can we identify a sufficient condition for the nonexis-
tence of a coexistence equilibrium?

III. SYSTEM (3) IS STRONGLY MONOTONE AND DOES NOT
ADMIT PERIODIC ORBITS

In this section, we first investigate whether (or not) sys-
tem (3) is monotone, and subsequently leverage the answer
to said question to draw overarching conclusions about the
typical behavior of the system. We have the following result.

Proposition 1: Under Assumptions 1,2, 4-6, system (3) is
strongly monotone.
Proof: See proof of [21, Proposition 1]. □
Proposition 1 can be viewed as not just the discrete-time
counterpart of [11, Lemma 3.3] but also a stronger version of
the same, since Proposition 1 establishes that the map which
governs the dynamics of system (3) is strongly monotone,
whereas [11, Lemma 3.3] only assures that the flow is
monotone.
Proposition 1 should be understood as follows: suppose
that (x1

A(0), x
2
A(0)) and (x1

B(0), x
2
B(0)) are two initial

conditions in int(D) satisfying i) x1
A(0) > x1

B(0) and ii)
x2
A(0) < x2

B(0). Since system (3) monotone, it follows that,
for all k ∈ Z≥0, i) x1

A(k) ≫ x1
B(k) and ii) x2

A(k) ≪ x2
B(k).

By leveraging the fact that system (3) is monotone, we can
draw overarching conclusions on the kinds of behavior that
system (3) exhibits. Roughly speaking, we are able to say
what happens to the trajectories of system (3) (corresponding
to almost all initial conditions) as time goes to infinity. The
formal details are in the next theorem, prior to which we
define the following map associated with system (3). Define

f(x(t)) : =
[
f1(x(t)) 0

0 f1(x(t))

]
× x(t), (7)

where f1(x(t)) = I + h(I − (x1 +X2)B1 and f2(x(t)) =
I + h(I − (x1 +X2)B2 −D2).

Theorem 1: Consider system (3) under Assumptions 1,2,
4-6. Suppose that there exists a fixed point in int D. Then all
periodic points of system (3) are fixed points. Furthermore,
limx→∞ fk(x) = ¯̄x for all x(0) ∈ D, where ¯̄x is a fixed
point of f(.) in int D.
Proof: See proof of [21, Theorem 1]. □
Note that Theorem 1 excludes the possibility of existence
of limit cycles. Also, note that given that system (3) is
monotone, no other complex behavior is allowed; see [22,
page 70].

Remark 1: Theorem 1 is the discrete-time counterpart of
[11, Theorem 3.6]. The crucial difference is that Theorem 1
relies on the assumption that there exists an equilibrium of
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J(x
1
, x

2
) =

[
I − hD1 + h(I − X1 − X2)B1 − h diag(B1x1) −h diag(B1x1)

−h diag(B2x2) I − hD2 + h(I − X1 − X2)B2 − h diag(B2x2)

]
(5)

system (3) in the interior of D, while [11, Theorem 3.6] does
not need such an assumption.

The result in Theorem 1, as mentioned previously, re-
lies on the assumption that there exists a fixed point in
int D. Indeed, system (3) admits an equilibrium in int D. A
parameter-based condition which ensures the admittance of
such an eequilibrium has been provided in [23, Theorem 12],
while another condition will be provided in Theorem 5 of
the present paper.

IV. ANALYSIS OF THE DFE
By looking at equation (3), and by invoking the definition
of fixed point of a discrete map, it is immediate that the
DFE is always an equilibrium point of system (3); this is
independent of any conditions that the system parameters
may (or may not) fulfil. We recall the following result.

Proposition 2: [12, Theorem 1] Consider system (3)
under Assumptions 1-5. Suppose that ρ(I−hDℓ+hBℓ) ≤ 1
for ℓ = 1, 2. Then, the DFE is asymptotically stable with a
domain of attraction D, where D is as defined in (4).
It turns out that if the inequalities in Proposition 2 are
tightened, then, one obtains exponential convergence to the
DFE, as we detail in the following theorem.

Theorem 2: Consider system (3) under Assumptions 1-3.
Suppose that ρ(I − hDℓ + hBℓ) < 1 for ℓ = 1, 2. Then, the
DFE is exponentially stable with a domain of attraction D,
where D is as defined in (4).
The proof is similar to that of [24, Theorem 1].
Proof: See proof of [21, Theorem 2]. □

V. ANALYSIS OF THE SINGLE-VIRUS ENDEMIC
EQUILIBRIUM

It is known that the conditions in Proposition 2 guarantees
that the DFE is the unique equilibrium of system (3); see
[12, Theorem 2]. If one of these two spectral radii condition
are violated, i.e., , if ρ(I−hDℓ+hBℓ) > 1 for some ℓ ∈ [2],
then it turns out that there exists, besides the DFE, the single-
virus endemic equilibrium (also interchangeably referred to
as boundary equilibrium) corresponding to virus ℓ, namely
(x̄ℓ, 0); see [12, Proposition 2]. Furthermore, (x̄ℓ, 0) is
locally asymptotically stable; see [12, Corollary 1]. However,
[12] makes no comment on the global asymptotic stability of
(x̄ℓ, 0). In this section, we first strengthen [12, Corollary 1]
by establishing global asymptotic stability of (x̄ℓ, 0). Second,
we allow for ρ(I − hDℓ + hBℓ) > 1 for each ℓ ∈ [2], and
establish local exponential convergence to (x̄ℓ, 0).

It turns out that one can leverage a result on discrete
maps from [18] to guarantee global asymptotic stability of
the single-virus endemic equilibrium. Before presenting the
result, we recall the notion of ordered fixed points. Consider
am arbitrary map f(.), let y1 and y2 be its fixed points. We
say that y1 and y2 are ordered if y1 ≫ y2 or if y1 ≪ y2. We
have the following theorem.

Theorem 3: Consider system (3) under Assumptions 1-
2, 4-6. Suppose that ρ(I − hD1 + hB1) > 1 and ρ(I −
hD2 + hB2) ≤ 1. The boundary equilibrium (x̄1, 0) is
asymptotically stable, with a domain of attraction D \ 0,
where D is as defined in (4).
Proof: See proof of [21, Theorem 3]. □

Theorem 3 guarantees global asymptotic stability of the
boundary equilibrium (x̄1, 0). That is, for all non-zero initial
conditions, the dynamics of system (3) converge to (x̄ℓ, 0).
Note that, for the particular case of single virus spread, [14,
Theorem 1] also provides a sufficient condition for GAS of
the equilibrium point x̄1. The proof of [14, Theorem 1] relies
on Lyapunov techniques, whereas that of Theorem 3 uses
results on existence of fixed points in discrete maps, and is
significantly shorter.

Note that Theorem 3 allows for, without loss of generality,
either ρ(I−hD1+hB1) > 1 or ρ(I−hD2+hB2) > 1, but
not both. A natural question of interest, then, would be to
understand what happens when both ρ(I−hD1+hB1) > 1
and ρ(I − hD2 + hB2) > 1. We aim to address the same in
the rest of the present paper.

Theorem 4: Consider system (3) under Assumptions 1-2,
4-6. Suppose that ρ(I − hDℓ + hBℓ) > 1 for ℓ = 1, 2.
The boundary equilibrium (x̄1, 0) is asymptotically stable if
ρ(I−hD2+(I−X̄1)B2) ≤ 1. If ρ(I−hD2+(I−X̄1)B2) >
1, then the boundary equilibrium (x̄1, 0) is unstable.
The proof is inspired from that of [11, Theorem 3.9].
Proof: See proof of [21, Theorem 4]. □

VI. (NON)EXISTENCE OF A COEXISTENCE EQUILIBRIUM

The analysis of system (3) has as yet focused on the existence
and stability of the single-virus endemic equilibria corre-
sponding to virus ℓ for each ℓ ∈ [2]. In this section, we aim
to provide conditions for the existence (resp. nonexistence)
of a (resp. any) coexistence equilibrium.

A sufficient condition for the existence of a coexistence
equilibrium for system (3) has been provided in [23, Theo-
rem 12]. Note that [23, Theorem 12] relies on the assumption
that both the boundary equilibria are unstable, i.e., ρ(I −
hD2+(I−X̄1)B2) > 1 and ρ(I−hD1+(I−X̄2)B1) > 1.
We establish existence of a coexistence equilibrium for a
different stability configuration of the boundary equilibria,
namely ρ(I − hD2 + (I − X̄1)B2) < 1 and ρ(I − hD1 +
(I − X̄2)B1) < 1. We have the following result:

Theorem 5: Consider system (3) under Assumptions 1-
2, 4-6. Suppose that ρ(I − hDℓ + hBℓ) > 1 for ℓ =
1, 2. Let (x̄1, 0) and (0, x̄2) denote the boundary equilibria
corresponding to virus 1 and virus 2, respectively. Suppose
that ρ(I − hD2 + (I − X̄1)B2) < 1 and ρ(I − hD1 + (I −
X̄2)B1) < 1. Suppose further that x̄1 < x̄2. Then, there
exists an unstable coexistence equilibrium (x̂1, x̂2), where
0 ≪ (x̂1, x̂2) ≪ 1.
Proof: See proof of [21, Theorem 5]. □
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Remark 2: Theorem 5 ensures not just the existence of a
coexistence equilibrium but also guarantees that said coex-
istence equilibrium is unstable. In the context of system (2)
(which is the continuous-time counterpart of system (3)),
it is known that the stability configuration of the boundary
equilibria as in (the continuous-time version of) Theorem 5
only ensures that the coexistence equilibrium is either neu-
trally stable (i.e., for the associated Jacobian, there exists
an eigenvalue with real part equal to zero) or unstable; see
[11, Corollary 3.15]. Thanks to [16], where it is shown that
for system (2) the equilibria are hyperbolic, it is known that
generically, i.e., for almost all choices of parameter matrices
D1, D2, B1, B2, the coexistence equilibrium is unstable.

Note that given a discrete-time bivirus system with dy-
namics as in (3), it is straightforward to verify whether said
system fulfills the conditions of Theorem 5. The converse
problem of designing bivirus networks such that the condi-
tions in Theorem 5 are fulfilled is more involved; for the
continuous-time case, see [25].

We identify a sufficient condition for the nonexistence of
a coexistence equilibrium.

Theorem 6: Consider system (3) under Assumptions 1-2,
4-6. Suppose that ρ(I − hDℓ + hBℓ) > 1 for ℓ = 1, 2.
Let (x̄1, 0) and (0, x̄2) denote the boundary equilibria cor-
responding to virus 1 and virus 2, respectively. If x̄1 ≪ x̄2,
then there does not exist any coexistence equilibrium.
Proof: See proof of [21, Theorem 6]. □

For the continuous-time case, if x̄2 ≫ x̄1 then x̄2 is
locally exponentially stable, and x̄1 is unstable. while if
B2 > B1 then, in addition to the aforementioned stability
configuration for the boundary equilibria, it also turns out
that there does not exist a coexistence equilibrium; see [11,
Corllary 3.11, statements 1 and 3]. Moreover, it is also known
that if B2 > B1 then x̄2 ≫ x̄1, whereas the converse is not
necessarily true [11]; this means that for the continuous-time
case it is not known if x̄2 ≫ x̄1 implies that there does not
exist any coexistence equilibrium. For the discrete-time case,
B2 > B1 guarantees the nonexistence of any coexistence
equilibrium; see [23, Theorem 13], whereas no such result
was previously available for the case when x̄2 ≫ x̄1–
Theorem 6 closes this gap.

We next identify a condition which ensures that, under the
hypothesis of Theorem 5, no orbit of system (3) converges to
the boundary of D, ∂D, where D is as defined in (4). To this
end, we need the following Assumption, which is stronger
than Assumption 5.

Assumption 7: The matrix Bℓ is primitive, for ℓ = 1, 2.
Observe that every primitive matrix is irreducible; see [26,
Lemma 2.11]. Therefore, Assumption 7 implies Assump-
tion 5; the converse is false. We have the following result.

Proposition 3: Consider system (3) under Assumptions 1,
2, 4, 6 and 7. Suppose that ρ(I−hDℓ+hBℓ) > 1 for ℓ = 1, 2.
There are no orbits remaining in ∂D.
Proof: See proof of [21, Proposition 3]. □

VII. NUMERICAL EXAMPLES

We illustrate our results on a fully connected network of

(n =)10 nodes. Each entry in the matrix B1 (which is the
weighted adjacency matrix for the spread of virus 1, scaled
by the infection rate of each node with respect to virus 1)
is a random scalar drawn from the uniform distribution in
the interval (0, 1). We set B2 = B1 + I10×10. We choose
D1 = 30 × I , and D2 = 60 × I . We set h = 0.001. With
the aforementioned choice of parameters, it turns out that
ρ(I−hD1+hB1) = 0.975, and ρ(I−hD2+hB2) = 0.946.
Therefore, in line with the result in Theorem 2, virus 1 (resp.
virus 2) gets eradicated exponentially quickly; see blue (resp.
red) line in Figure 1.

For the next simulation, we use the same network and the
sampling rate as for the simulation in Figure 1, with the ex-
ception that every entry in both B1 and B2 is a random scalar
drawn from the uniform distribution in the interval (0, 1).
Entries in D1 and D2 are also chosen in a similar fashion, ex-
cept that each element in D1 is multiplied by 20. We choose
x1(0) = 0.5×1, and x2(0) = 0.4×1. With such a choice of
parameters, we have that ρ(I − hD1 + hB1) = 0.9989, and
ρ(I − hD2 + hB2) = 1.0045. Consequently, consistent with
the result in Theorem 3, the dynamics of the system converge
to the single-virus endemic equilibrium of virus 2 (i.e, x̄2 =
[ 0.842 0.83 0.98 0.85 0.88 0.91 0.89 0.82 0.96 0.89 ]); see the
red line in Figure 2.

For the next simulation, the setup remains the same
as that in the simulation for Figure 2, with the
exception that for a randomly generated choice of
B1 and B2, the healing rates are chosen as fol-
lows: D1 = diag([ 9.19 0.9 2.55 4.27 5.77 8.995 2.18 9.67 4.33 7.84 ]), and
D2 = diag([ 0.01 0.013 0.015 0.016 0.06 0.015 0.011 0.0015 0.005 0.003 ]). We
choose x1(0) = 0.7×1, and x2(0) = 0.8×1. It turns out that
ρ(I−hD1+hB1) = 1.0014, and ρ(I−hD2+hB2) = 1.005;
hence, ρ(I −hD1+hB1) > 1, and ρ(I −hD2+hB2) > 1.
Furthermore, ρ(I − hD1 + (I − X̄2)hB1) = 0.9991, and
ρ(I − hD2 + (I − X̄1)hB2) = 1.005; hence ρ(I − hD1 +
(I − X̄2)hB1) < 1, and ρ(I − hD2 + (I − X̄1)hB2) > 1.
Consequently, in line with our findings in Theorem 4, the
single-virus endemic equilibrium corresponding to virus 1 is
unstable (see blue line in Figure 3), while the single-virus
endemic equilibrium corresponding to virus 2 is asymptoti-
cally stable (see the red line in Figure 3).

Fig. 1: Simulation with two viruses (red and blue), converg-
ing to the DFE.

VIII. CONCLUSION

The paper dealt with the analysis of the discrete-time
networked competitive bivirus SIS model. Specifically, we
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Fig. 2: Virus 1 dies out, while virus 2 becomes endemic.

Fig. 3: Simulation with two viruses (red and blue). The
single-virus endemic equilibrium of virus 1 is unstable,
whereas that of virus 2 is asymptotically stable.

showed that the system is strongly monotone, and that,
under certain assumptions, it does not admit any periodic
orbit. We identified a sufficient condition for exponential
convergence to the DFE. Thereafter, assuming that only one
of the viruses is alive, we identified a sufficient condition for
global asymptotic convergence to the endemic equilibrium of
this virus - the proof does not depend on the construction
of Lyapunov functions. Assuming that both the viruses are
alive, we secured a sufficient condition for local asymptotic
convergence to the boundary equilibrium of one of the
viruses. Finally, we provided a sufficient (resp. necessary)
condition for the existence of a coexistence equilibrium.
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analysis of epidemics over networks: An overview,” Annual Reviews
in Control, vol. 50, pp. 345–360, 2020.

[5] A. Lajmanovich and J. A. Yorke, “A deterministic model for gonorrhea
in a nonhomogeneous population,” Mathematical Biosciences, vol. 28,
no. 3-4, pp. 221–236, 1976.
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[12] P. E. Paré, D. Vrabac, H. Sandberg, and K. H. Johansson, “Analysis,
online estimation, and validation of a competing virus model,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 2556–2561.
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competitive viruses over time-varying networks with mutations and
human awareness,” Automatica, vol. 123, p. 109330, 2021.

[14] F. Liu, C. Shaoxuan, X. Li, and M. Buss, “On the stability of the
endemic equilibrium of a discrete-time networked epidemic model,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 2576–2581, 2020.

[15] F. Brauer, Z. Feng, and C. Castillo-Chavez, “Discrete epidemic mod-
els,” Mathematical Biosciences & Engineering, vol. 7, no. 1, pp. 1–15,
2009.

[16] B. D. Anderson and M. Ye, “Equilibria Analysis of a networked bivirus
epidemic model using Poincar\’e–Hopf and Manifold Theory,” SIAM
Journal on Applied Dynamical Systems, vol. 22, no. 4, pp. 2856–2889,
2023.

[17] K. Atkinson, An introduction to numerical analysis. John wiley &
sons, 1991.

[18] M. W. Hirsch and H. Smith, “Monotone maps: a review,” Journal of
Difference Equations and Applications, vol. 11, no. 4-5, pp. 379–398,
2005.

[19] D. Deplano, M. Franceschelli, and A. Giua, “A nonlinear perron–
frobenius approach for stability and consensus of discrete-time multi-
agent systems,” Automatica, vol. 118, p. 109025, 2020.

[20] M. W. Hirsch, “Attractors for discrete-time monotone dynamical
systems in strongly ordered spaces,” in Geometry and Topology:
Proceedings of the Special Year held at the University of Maryland,
College Park 1983–1984. Springer, 2006, pp. 141–153.
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