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Abstract— We consider a super-twisting sliding-mode con-
troller with an integral sliding variable. The system is subject to
time- and state-dependent perturbations. Our stability analysis
yields an estimate for the region of attraction as well as bounds
for the control signal and the sliding variables. We demonstrate
the results with a numerical example.

I. INTRODUCTION

The super-twisting algorithm is a well-established exten-
sion to the conventional first-order sliding-mode controller
exhibiting a continuous control signal [2]. In this setup, time-
dependent Lipschitz perturbations are fully compensated in
sliding-mode. Finite-time convergence to the sliding surface is
established by [3], [4] using non-smooth Lyapunov functions.
In [7] stability of well-established parameter settings in the
presence of time-dependent perturbations is proven.

Integral sliding-mode control is a powerful extension to
this concept that allows for the initialisation of the controller
on the sliding manifold such that perturbations can be
fully compensated at initial time if the initial perturbation
is known [12], [14]. However, applying the super-twisting
controller to systems subject to state-dependent perturbations
is challenging, as a bound on the time-derivative of the
perturbation is required prior to design. This requirement
poses a fundamental problem for the super-twisting control
design as the time-derivative may depend on the derivative of
the system state, which again depends on the control signal to
be designed. In [5] and [6] this fundamental problem is called
an algebraic loop. An attempt to avoid this is implied by the
approach in [8], [9], where a global bound for the total time-
derivative of the perturbation is known a priori. An explicit
approach to break this algebraic loop for first-order systems
is presented in [5] and [6]. The gains of the super-twisting
controller are chosen such that global finite-time convergence
is achieved for time- and state-dependent perturbations.

In this contribution we consider systems of arbitrary
order subject to time- and state-dependent perturbations
with bounded derivatives in time and state, respectively.
We combine the super-twisting algorithm with an integral
sliding variable and analyse their local stability properties.
We employ the well-established Lyapunov function of [4]
and exploit the super-twisting controller proposed in [10],
where an augmented parametrisation of the controller is used
for the local stability analysis of a higher-order system with
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state-dependent perturbations. Using this parametrisation and
the bounds of the perturbation’s derivatives we guarantee a
bound on the state-trajectory and determine a set of feasible
initial conditions. Furthermore, we give bounds for the control
signal as well as the sliding variables.

The paper is structured as follows. Section II gives a
formal problem definition and introduces bounds on the
perturbation considered. In Section III we introduce the
integral sliding variable, a conventional sliding variable and
the parametrisation of the super-twisting controller. The main
results are presented in Section IV. In Section IV-A we
formulate a set of initial states for which the solution of
the closed-loop system remains within a compact set if the
sliding variable is bounded. Subsequently, we consider the
dynamics of the integral sliding variable and the controller
state in Section IV-B. Following the approach taken in [10]
we specify bounds for the integral sliding variable and the
controller state. By choosing a sufficiently small scaling
parameter we obtain a compact set bounding the solution of
the closed-loop system. Section IV-C considers the dynamics
of the integral sliding variable to specify a bound on the
conventional sliding-variable. Combining these findings we
obtain our main stability result in Section IV-D. We show
that the bounds on the integral and the conventional sliding
variable established in the previous sections hold for the initial
states of the system specified in Section IV-A. The example in
Section V illustrates the proposed control design of an super-
twisting integral sliding-mode controller and the calculation
of its region of attraction as well as the bounding set of the
closed-loop system state. We summarise our findings in the
conclusions in Section VI.

II. PROBLEM DEFINITION

Consider the nonlinear system in normal form given by

ẋi(t) = xi+1(t), i = 1, ..., n− 1, (1a)
ẋn(t) = u(t) + δ(x, t), (1b)

where x(t) = [x1(t), ..., xn(t)]
⊤ ∈ Rn denotes the system

state with initial value x0 ∈ Rn, and u(t) ∈ R is the input.
The perturbation

δ(x, t) = δt(t) + δx(x) (2)

consists of a time-dependent disturbance δt(t) : R 7→ R
and a state-dependent uncertainty δx(x) : Rn 7→ R. This
decomposition allows for the formulation of the following
assumption.
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Assumption 1. Let D ⊂ Rn be a compact subset of the
state space that contains the origin. The perturbation δ(x, t)
and its first partial derivatives with respect to t and x, are
bounded by positive constants ρ, ρt and ρxi

such that

max
x∈D, t∈R+

|δ(x, t)| ≤ ρ,

max
t∈R+

∣∣∣∣dδt(t)dt

∣∣∣∣ ≤ ρt, max
x∈D

∣∣∣∣∂δx(x)∂xi

∣∣∣∣ ≤ ρxi
, i = 1, . . . , n.

The goal is to design a super-twisting sliding-mode
controller to stabilize the origin x = 0 in presence of the time-
and state-dependent perturbation (2), and provide an estimate
for the region of attraction of the closed-loop system.

III. CONTROL DESIGN

This section introduces our considered control design using
a combination of an integral sliding surface and a super-
twisting controller with parametrisation proposed in [10].
The design of the integral sliding surface follows [11] and
[12]. First a conventional sliding variable

s1 : Rn 7→ R, x 7→ s1(x) =
[
m⊤ 1

]
x, (3)

with m = [m1, ...,mn−1]
⊤ ∈ Rn−1 is chosen such that the

polynomial

λn−1 +mn−1 λ
n−2 +mn−2 λ

n−3 + ...+m2 λ+m1

specifying the dynamics in sliding-mode is Hurwitz.
Based on the conventional sliding variable s1 and the initial

state x0 of (1) an integral sliding variable is designed with

s(x(t), t) = s1(x(t))− s1(x0) + ks

∫ t

0

s1(x(τ)) dτ, (4)

such that s(x0, 0) = 0, and ks is some positive constant.
Taking the time-derivate of s along the solution of sys-

tem (1) yields

ṡ = ṡ1 + ks s1, (5)

where
ṡ1 =

[
0 m⊤]x+ u+ δ(x, t). (6)

We consider the following control law

u = u0 + u1, (7)

which consists of a linear state feedback

u0 = −
[
0 m⊤]x− ks s1(x) (8a)

= −
( [

0 m⊤]+ ks
[
m⊤ 1

] )
x =: k⊤x, (8b)

with k ∈ Rn and a dynamic super-twisting control law

u1 = −α1

µ
|s|1/2 sgn(s) + v, (9a)

v̇ = − α2

2µ2
sgn(s), v(0) = v0 = 0, (9b)

as proposed in [10], where the gains α1, α2 > 0 and the
controller-gain scaling µ > 0 are to be chosen.

Substituting (6) into (5) with the control law in (7), (8),
(9) yields the dynamics of the sliding variable

ṡ = −α1

µ
|s|1/2 sgn(s) + v + δ(x, t), s(x0) = s0, (10a)

v̇ = − α2

2µ2
sgn(s), v(0) = v0. (10b)

Remark 2. Note, if suitable design parameters α1, α2, µ
enforce that s(t) = 0, and thus ṡ(t) = 0, for all t ≥ tr after
a finite time tr > 0, then the dynamics (5) reduce to the
stable scalar differential equation ṡ1 + ks s1 = 0 for t ≥ tr.
Then the solution x in sliding-mode satisfies

s1(x(t)) = e−ks(t−tr) s1(x(tr)), t ≥ tr. (11)

The choice of the coefficient vector m ∈ Rn−1 and the gain
parameter ks specifies the set S = {x ∈ Rn | s1(x) = 0}
and the convergence rate of s1 for t > tr, respectively.

The following stability analysis considers the closed-loop
system consisting of (1), (7) and (10). The solutions x
and (s, v) are trajectories in the sense of Filippov [13].
Following [10] we obtain that the gains α1, α2 > 0 can
be chosen arbitrary. The scaling factor µ > 0 will be selected
such that the local stability of the closed-loop system is
guaranteed while preventing the appearance of the algebraic
loop concerning the control signal, which was outlined in [5].

IV. REGION OF ATTRACTION

Following established approaches, we divide the analysis
of the closed-loop system (1), (7) and (10) into two parts:
the dynamics of the state x of (1) and the dynamics of the
sliding variable (10).

The controller (9) is designed to force the system onto
the sliding manifold in finite time tr such that s(x(t)) = 0
and v(t) = −δ(x(t), t) for all t ≥ tr. In order to achieve
sliding-mode for t0 = 0, and thus a vanishing reaching phase
we require v0 = −δ(x0, 0) as initialisation in (9). However,
δ(x0, 0) is unknown, and thus the sliding motion cannot
be established by the super-twisting integral sliding-mode
controller (7) from the initial time t0 = 0 if v0 ̸= −δ(x0, 0),
as pointed out in [14, Remark 1] and [12, Section 5].

Therefore, a region in D cannot be invariant for arbitrary
v0 ̸= −δ(x0, 0). In order to accommodate this fact we
shall introduce two sets: the set Ωc1 in (17) bounding the
trajectories x for v0 = 0, and the set Ψc0 of feasible initial
states x0 in (19).

A. State space invariance

Consider the reduced state z := [x1, ..., xn−1]
⊤∈ Rn−1.

Using the conventional sliding variable s1 in (3) the dynamics
can be written as

ż = A0 z +B0 s1, (12)

with A0 ∈ R(n−1)×(n−1) and B0 ∈ Rn−1 given by

A0 =


0 1 . . . 0
...

. . . . . .
...

0 0 1
−m1 . . . . . . −mn−1

 and B0 =


0
...
0
1

 .

3670



Since A0 is Hurwitz by design of (3), the Lyapunov equation

A⊤
0 P0 + P0 A0 = −q I (13)

has a unique solution P0 = P⊤
0 > 0 for every q > 0. Along

the solution z the time-derivative of the function

V0(z) =
(
z⊤P0 z

)1/2
is given as

V̇0 =
1

2V0(z)

(
− q z⊤z + 2 z⊤P0 B0 s1

)
≤ ∥z∥2

2V0(z)

(
− q ∥z∥2 + 2 ∥P0 B0∥2 |s1|

)
,

where ∥ · ∥2 denotes the Euclidean norm. Certainly the
derivative is negative if ∥z∥2 ≥ 2 q−1 ∥P0 B0∥2 |s1|. Since

V0(z) ≤ λ1/2
max(P0) ∥z∥2

we obtain the following implication

V0(z) ≥ 2 q−1 λ1/2
max(P0) ∥P0 B0∥2 |s1| ⇒ V̇0 ≤ 0, (14)

where λmax(P0) denotes the largest eigenvalue of P0. Inspired
by the approach in [15] we introduce two constants that will
be used to parametrise the region of attraction of the closed-
loop system (1), (7) and (10) in Section IV-D. Let

c1 = 2 (cs + c0) for cs, c0 > 0, (15)

and

a = 2 q−1λ1/2
max(P0) ∥P0 B0∥2 a1, (16)

with a1 ≥ 1 such that

Ωc1 :=
{
x ∈ Rn

∣∣ |s1(x)| ≤ c1 ∧ V0(z) ≤ a c1
}
⊆ D. (17)

The constants cs and c1 can be considered as the bounds
of the integral- and conventional sliding variable, s and s1,
respectively, along the solution x of (1), i.e.

|s(x(t), t)| ≤ cs and |s1(x(t))| ≤ c1 ∀ t ≥ 0. (18)

Using c0 we further define the set of initial states

Ψc0 :=
{
x0 ∈ Ωc1

∣∣ |s1(x0)| ≤ c0
}
⊂ Ωc1 . (19)

Proposition 3. Consider the closed-loop system (1), (7) and
(10). Given some c1, let there exist α1, α2, µ in (9) such that
limt→∞ s1(x(t)) = 0 and |s1(x(t))| ≤ c1 for all t ≥ 0. Then
for all initial states x0 ∈ Ψc0 it follows that x(t) ∈ Ωc1 for
all t ≥ 0 with limt→∞ x(t) = 0.

Proof. The initial state x0 is an element of the set Ψc0 ⊂ Ωc1 .
Since |s1(x(t))| ≤ c1 for all t ≥ 0, we have V0(z̄) > a c1 for
points x̄ = [z̄⊤, x̄n]

⊤ /∈ Ωc1 satisfying |s1(x̄)| ≤ c1. Thus
with (16) and (14) we have V̇0(z̄) ≤ 0. Therefore Ωc1 is
invariant with respect to initial conditions x0 ∈ Ωc1 . It follows
from (12) that limt→∞ z(t) = 0 for limt→∞ s1(x(t)) = 0
from (11), since A0 is Hurwitz. Therefore, limt→∞ xn(t) =
limt→∞(s1(x(t))−m⊤z(t)) = 0 and thus limt→∞ x(t) = 0.

Remark 4. Note that the above analysis of the state space
by means of the reduced dynamic in z requires A0 to be
Hurwitz. This property is guaranteed by design of the sliding
variable s1 in (3). Since the super-twisting algorithm cannot
establish s ≡ 0 in general, the stability analysis of the
closed-loop system is based on the fact that the asymptotic
convergence limt→∞ s1(x(t)) = 0 resulting from (11) implies
the asymptotic convergence of the state x. Choosing m⊤ = 0,
i.e. s1(x) = xn, as proposed in [16] for first-order integral
sliding-mode control, however, does not yield convergence of
the state x for the super-twisting controller.

Proposition 3 postulates that |s1(x(t))| ≤ c1 holds along
every solution x with initial state x0 ∈ Ψc0 . In the next three
subsections we show that solutions x with initial conditions
x0 ∈ Ψc0 will not leave the set Ωc1 .

B. Bounds for the sliding variable s and the control signal u

To analyse the stability of (10) including the combined
perturbation δ(x, t), we introduce the auxiliary variable

v̄ = v + δ(x, t), (20)

such that (10) can be written as

ṡ = −α1

µ
|s|1/2 sgn(s) + v̄, s(x0) = s0, (21a)

˙̄v = − α2

2µ2
sgn(s) +

dδ(x, t)

dt
, v̄(0) = v̄0. (21b)

With v0 = 0 and Assumption 1 we have

v̄0 = δ(x0, 0) with |v̄0| ≤ ρ for all x0 ∈ Ψc0 ⊂ D. (22)

Following [10] and [17] we consider the state transformation

χ1 = |s|1/2 sgn(s) and χ2 = µ v̄ (23)

and define χ :=[χ1, χ2]
⊤. The dynamics (10) are then given by

χ̇ =
1

µ |χ1|

(
A1 χ+ µ2 B2

dδ(x, t)

dt

)
, (24)

for all times t ≥ 0 with s(x(t), t) ̸= 0, where

A1 =
1

2

[
−α1 1
−α2 0

]
and B2 =

[
0
1

]
. (25)

The matrix A1 is Hurwitz for all α1, α2 > 0 and the Lyapunov
equation A⊤

1 P1 + P1A1 = −I has the unique solution

P1 =

[
p11 p12
p12 p22

]
= P⊤

1 > 0 with p12 = −1. (26)

For the stability analysis of (21) we choose the controller-
gain scaling µ such that we obtain an invariant set in the
s-v̄-plane. Using that we show the finite-time convergence
of the sliding variable s.

Consider the absolutely continuous function

V1(s, v̄) = p11|s|+ 2 p12 µ v̄ |s|1/2sgn(s) + p22 µ
2 v̄2, (27)

which can be written as quadratic form V1(s, v̄) = χ⊤P1 χ
in the coordinates χ.
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By construction we have s(x0, 0) = 0 for all x0 ∈ Rn.
Therefore the initial value V1(s(x0, 0), v̄0) for all x0 ∈ Rn is

V1(s(x0, 0), v̄0) = V1(0, v̄0) = p22 µ
2 v̄20 .

Further we introduce the two level-sets of V1

Γ0 :=

{[
s
v̄

]
∈ R2

∣∣∣ V1(s, v̄) ≤ V1(0, v̄0)

}
, (28)

Γρ :=

{[
s
v̄

]
∈ R2

∣∣∣ V1(s, v̄) ≤ V1(0, ρ)

}
. (29)

The former is defined by the initial value v̄0, whereas the
latter by the bound |v̄0| ≤ ρ, and thus Γ0 ⊆ Γρ.

Lemma 5. Let the controller-gain scaling be bounded by

µ ≤ 1

ρ p22

( (
p11 p22 − p212

)
cs

)1/2

=: µ0. (30)

Then for all points in Γρ we have

max
[s,v̄]⊤∈Γρ

|s| ≤ cs and max
[s,v̄]⊤∈Γρ

|v̄| ≤ 1

µ

√
p11
p22

cs. (31)

Proof. By design of V1 in (27) the level set Γρ is symmetric
with respect to the origin of the s-v̄-plane. Consider the
boundary of the set Γρ with s > 0, where

V1(s, v̄) = p11s+ 2p12µv̄s
1
2 + p22µ

2v̄2 = p22µ
2ρ2. (32)

We shall calculate the points [s⋆, v̄⋆]⊤ with
max[s,v̄]⊤∈Γρ

|s| = s⋆ by considering the derivative
of (32) with respect to v̄

dV1

dv̄
= p11

ds

dv̄
+ 2 p12 µ s

1
2 + 2 p12 µ v̄

ds
1
2

dv̄
+ 2 p22 µ

2 v̄.

At the boundary of Γρ we have dV1

dv̄ = 0. Furthermore, for the
points [s⋆, v̄⋆]⊤ the derivative ds

dv̄ , and thus ds1/2

dv̄ , vanishes.
We obtain

s⋆ =
p222

p11 p22 − p212
µ2 ρ2 and v̄⋆ = − 1

µ

p11
p22

√
s⋆.

Hence, for µ ≤ µ0 we have max[s,v̄]⊤∈Γρ
|s| ≤ cs.

The second inequality of (31) is obtained similarly by
differentiating V1 with respect to s.

Remark 6. Since [s⋆, v̄⋆]⊤ is an extremum of the level-set
Γρ we have equality in (31) only for µ = µ0. Further

max
[s,v̄]⊤∈Γρ

|v̄| = ρ

√
p11 p22

(p11 p22 − p212)
,

which is independent of the parameter cs > 0.

Remark 7. Our approach is inspired by [10] and [18], where
a similar analysis can be found for the s-v-plane associated
with (10). However [10] poses a more conservative estimate
of a level-set defined in the s-v-plane, which is based on the
eigenvalues of the matrix P1. In [18, Section 3] a similar
geometric argument is used to calculate a maximum positive
invariant level-set regarding the phase plane.

Next we shall employ V1 as a Lyapunov function to show
that Γ0 is invariant for the closed-loop system (1), (7) and

(21). However Γ0 is not suitable for an estimate of the region
of attraction in practice as the initial value v̄0 = δ(x0, 0) is
unknown. Therefore we establish invariance of Γρ ⊇ Γ0 for
a sufficiently small µ.

It turns out that the desired analysis of the derivative of V1

requires a known bound for the control signal u(t). With
respect to the sets Ωc1 and Γρ we obtain a maximal value
for the control signal considering (8) and (10). With

|v(t)| ≤ |v̄(t)|+ ρ for x(t) ∈ Ωc1

the absolute value of the control signal u is bounded for
x(t) ∈ Ωc1 and [s(x(t), t), v̄(t)]⊤ ∈ Γρ by

umax = max
x∈Ωc1

∣∣∣k⊤x∣∣∣+ α1

µ
max

[s,v̄]⊤∈Γρ

|s| 12 + max
[s,v̄]⊤∈Γρ

|v̄|+ ρ .

(33)

Using (31) of Lemma 5 we obtain the estimate

umax ≤ max
x∈Ωc1

∣∣∣k⊤x∣∣∣+ 1

µ

(
α1 +

√
p11
p22

)
√
cs + ρ. (34)

Note that (34) retrieves the equality (33) for µ = µ0. For
some µ < µ0, (34) poses a more conservative estimate of the
constant umax.

Based on the estimate (34) of the control signal it is
possible to establish the desired invariance of the set Γρ.

Proposition 8. Let µ < min
{
µ0, µ1

}
with

µ1 :=
1

2 γ ∥P1 B2∥2
(35)

for some γ ≥ γ0 with

γ0 :=
(
ρt+

(
2ρ+ max

x∈Ωc1

∣∣k⊤x∣∣ )ρxn
+

n∑
i=2

max
x∈Ωc1

|xi| ρxi−1

)
µ0

+ ρxn

(
α1 +

√
p11/p22

)√
cs.

If x(t) ∈ Ωc1 for all t ≥ 0, then Γρ in (29) is an invariant
set for the solutions (s, v̄) of (1), (7) and (21). Furthermore,
the solutions (s, v̄) reach the origin in finite time.

Proof. Consider the time-derivative of V1 in (27). For all
times t with s(x(t), t) ̸= 0 we have

V̇1 =
1

µ|χ1|

(
−χ⊤χ+ 2µ2 χ⊤P1 B2 |χ1|

dδ(x, t)

dt

)
(36)

≤ 1

µ|χ1|

(
−∥χ∥22 + 2µ2∥χ∥2 ∥P1 B2∥2|χ1|

∣∣∣∣dδ(x, t)dt

∣∣∣∣).
The time-derivative of the perturbation δ(x, t) is given by

dδ(x, t)

dt
=

dδt(t)

dt
+

∂δx(x)

∂x

[
x2, ..., xn, u+ δ(x, t)

]⊤
.

With Assumption 1 and |u(t)| ≤ umax ∀ t ≥ 0 in (33), we
obtain the following estimate for x(t) ∈ Ωc1 ⊆ D:∣∣∣∣dδ(x(t), t)dt

∣∣∣∣≤ρt+ρxn
(umax+ρ)+

n∑
i=2

max
x∈Ωc1

|xi| ρxi−1
. (37)
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As suggested in [10] there exists a constant γ0 ≥ 0 such that∣∣∣∣dδ(x, t)dt

∣∣∣∣ ≤ γ0
µ

for µ ≤ µ0. (38)

Choosing γ0 as in Proposition 8 above yields a bound for the
closed-loop system (1), (7) and (21), which is readily verified
by substituting the estimate (34) into (37) for µ = µ0.

For γ ≥ γ0 we have γ0

µ ≤ γ
µ . Thus, for (36) we obtain

V̇1 ≤ 1

µ |χ1|

(
−∥χ∥22 + 2µ2 ∥P1 B2∥2 ∥χ∥22

γ

µ

)
≤ 1

µ |χ1|
(
− 1 + 2µ ∥P1 B2∥2 γ

)
∥χ∥22,

and µ < min{µ0, µ1}, with µ1 = (2 γ ∥P1 B2∥2)−1 ensures
that V̇1 is negative definite along the solutions of the closed-
loop system (1), (7) and (21). Thus, the level-set Γρ of V1

is invariant.
To show finite-time convergence, we note that ∥χ∥2 ≥ |χ1|

and ∥χ∥2 ≥ (V1/λmax(P1))
1/2, since

V1(s, v̄) ≤ λmax(P1) ∥χ∥22.

Therefore, we have

V̇1 ≤ −ε V
1/2
1 , with ε =

1− 2µ ∥P1 B2∥2 γ
µ λ

1/2
max(P1)

. (39)

For an initial value [s(x0, 0), v̄0]
⊤ = [0, v̄0]

⊤ the solutions
(s, v̄) of the closed-loop system (1), (7) and (21) reach the
origin in finite time without leaving the set Γ0 ⊆ Γρ.

Remark 9. Note that the standard estimate for the reaching
time is tr ≤ 2 ε−1 V1(0, v̄0). However, v̄0 involves the
combined perturbation, and thus is unknown. With (22) we
obtain

tr ≤ 2 ε−1 V1(0, v̄0) ≤ 2 ε−1 V1(0, ρ). (40)

By construction, the initial value [s(x0, 0), v̄0]
⊤ lies within

the set Γ0 ⊆ Γρ, see (28). Therefore, the choice of the
controller-gain scaling µ < min{µ0, µ1} renders Γ0 invariant,
and thus implies that the solutions s and v̄ along (1), (7) and
(21) are bounded by (31), respectively. Hence, Proposition 8
establishes bounds on the integral sliding variable s as well
as the auxiliary variable v̄ and the controller state v that were
obtained by the geometrical consideration of Lemma 5.

Remark 10. The transformation (23) results in a singularity
of the time-derivative (24) at s = 0. As mentioned in
[10, Remark 3] the change of variables to χ is done only
to facilitate the choice of the Lyapunov function and the
calculation of its derivative. V1 is continuous and continuously
differentiable everywhere except on the set {[s, v̄]⊤ ∈
R2 | s = 0}. In [4, Appendix 1] it is shown that V1 can
still be used as a Lyapunov function of the closed loop.

Remark 11. As pointed out in [10, Remark 2] scaling
the gains α1, α2 of the super-twisting controller (9) in
conjunction with the scaled state χ2 = µ v̄ of the Lyapunov
function (27) results in the definiteness of the time-derivative
V̇1 being independent of the controller-gain scaling µ if

µ < µ0. The scalar µ is chosen small enough to dominate
the time-derivative of the combined perturbation δ(x, t).

C. Bounds of the conventional sliding variable s1

In this section we show that the bounds on the integral
sliding variable s established by Proposition 8 imply the
boundedness of the conventional sliding variable s1.

Recall the definition of the bounds c0 and c1 in (15) and
(18), as well as the definition of the set of initial states Ψc0

in (19). The following result establishes boundedness of s1.

Proposition 12. Given the closed-loop system (1), (7) and
(10), and some c0, cs > 0. Let x0 ∈ Ψc0 and |s(x(t), t)| ≤ cs
for all t ≥ 0. Then

|s1(x(t))| ≤ 2(c0 + cs) = c1 for all t ≥ 0.

Proof. Consider (4) as a BIBO-stable scalar differential
equation in σ(t) :=

∫ t

0
s1(x(τ))dτ with the input s(x(t), t)+

s1(x0) and the initial conditions σ(0) = 0 and σ̇(0) = s1(x0).
Thus

σ̇ + ks σ = s(x(t), t) + s1(x0). (41)

Assuming that |s(x(t), t)| ≤ cs and x0 ∈ Ψc0 the right-hand
side of (41) is bounded by |s(x(t), t)+s1(x0)|≤cs+c0=

c1
2 .

Consider the Lyapunov function Vs1(σ) =
1
2 σ

2. Its time-
derivative along the trajectory σ is given by V̇s1 = σ σ̇.
Substituting σ̇ from (41) yields

V̇s1 = −ks σ
2 + σ (s(x(t), t) + s1(x0))

≤ −ks σ
2 + |σ| (cs + c0).

V̇s1 is negative for |σ| ≥ cs+c0
ks

= c1
2 ks

. Thus,

|σ(0)| ≤ c1
2 ks

⇒ |σ(t)| ≤ c1
2 ks

for all t ≥ 0.

Therefore, the compact set

Σ :=

{[
σ
σ̇

]
∈ R2

∣∣∣ |σ̇ + ks σ| ≤
c1
2

∧ |σ| ≤ c1
2 ks

}
(42)

is invariant with respect to (41). Since |s1(x0)| ≤ c0 < c1
2 ,

the initial value [σ(0), σ̇(0)]⊤ = [0, s1(x0)]
⊤ is in Σ. Thus,

the trajectory (σ, σ̇) remains in Σ. It follows that

|s1(x(t))| ≤ max
[σ,σ̇]⊤∈Σ

|σ̇| = c1 for all t ≥ 0.

D. Main stability statement and discussion

We shall now combine the Propositions 3, 8 and 12 for
our main result.

Theorem 13. Consider the closed-loop system (1), (7) and
(10) satisfying Assumption 1. Given some arbitrary values for
the controller parameters α1, α2 > 0 and µ<min{µ0, µ1}
with µ0 in (30) and µ1 in (35) as well as the bounds
cs, c0, c1>0 in (15) such that Ωc1 ⊆D in (17).

Then x(t) ∈ Ωc1 for all t ≥ 0 and limt→∞ x(t) = 0 for
all initial states x0 ∈ Ψc0 . Further there exists a tr > 0 such
that s(x(t), t) = 0 for all t ≥ tr.
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Proof. By construction of the sets Ψc0 and Σ in (19)
and (42) for x0 ∈ Ψc0 ⊆ Ωc1 , we have x0 ∈ Ωc1

and [0, s1(x0)]
⊤∈Σ. Further, with Assumption 1 we have

δ(x0, 0) ≤ ρ for all x0 ∈ Ψc0 ⊂ D, and thus for Γρ in (29)
we have [s(x0, 0), v̄(0)]

⊤ = [0, δ(x0, 0)]
⊤ ∈ Γρ with µ < µ0

and x0 ∈ Ψc0 .
Note that in the proof of Proposition 3 it is established that

the set Ωc1 in (17) is invariant if |s1(x(t))|≤c1 for all t≥0.
Thus if the continuous solution x with initial state x0∈Ψc0

leaves the set Ωc1 at time t= t1 then |s1(x(t1))|=c1.
To prove the statement of the theorem we show that x(t)

remains in Ωc1 for all t ≥ 0. Applying the Propositions 3, 8
and 12 then yields asymptotic stability.

1) x(t)∈Ωc1 by contradiction: Suppose that there is some
t1>0 such that x(t)∈Ωc1 for all t≤ t1, and |s1(x(t1))|=c1.
For convenience, we consider the case s1(x(t1))= c1 only.
The case s1(x(t1))=−c1 can be handled similarly.

Considering Proposition 8 for the finite time-horizon t ≤ t1
with x(t) ∈ Ωc1 for all t ≤ t1 and µ < min{µ0, µ1}, we
obtain that the solution (s, v̄) satisfies [s(x(t), t), v̄(t)]⊤ ∈ Γρ

for all t ≤ t1. Similarly, we obtain from Proposition 12
that [

∫ t

0
s1(x(τ))dτ, s1(x(t))]

⊤ ∈ Σ for all t ≤ t1 with Σ

in (42). Note that [
∫ t1
0

s1(x(τ))dτ, s1(x(t1))]
⊤ ∈ Σ with

s1(x(t1))=c1 if and only if
∫ t1
0

s1(x(τ))dτ=− c1
2ks

.
Note that, |s1(x0)|≤c0 for x0∈Ψc0 as assumed. Consider

s(x(t1), t1) in (4). With |s1(x0)| ≤ c0, s1(x(t1)) = c1,∫ t1
0

s1(x(τ))dτ = − c1
2ks

, we obtain s(x(t1), t1) ≥ cs,
using the relation of constants c1 = 2(cs + c0) in (15).
With Lemma 5 for [s(x(t1), t1), v̄(t1)]

⊤ ∈ Γρ, we have
|s(x(t1), t1)| ≤ cs. These two requirements are only satisfied
if s(x(t1), t1) = cs. However, [cs, v̄(t1)]⊤ is on the boundary
of Γρ and thus µ = µ0, see Remark 6. This contradicts
µ<min{µ0, µ1}.

Hence, there exists no t1 ≥ 0 for which the solution x
leaves the set Ωc1 and thus we have x(t) ∈ Ωc1 for all t ≥ 0.

2) Asymptotic stability: With solution x bounded in Ωc1

and µ < min{µ0, µ1}, Proposition 8 establishes finite-time
convergence s(x(t), t) = 0 for all t ≥ tr. Using Remark 2
and the boundedness |s1(x(t))| ≤ c1 for all t ≥ 0, we
have limt→∞ s1(x(t)) = 0. Finally, Proposition 3 establishes
limt→∞ x(t) = 0 and x(t) ∈ Ωc1 for all t ≥ 0.

Remark 14. The set Ψc0 can be considered as the region
of attraction of the proposed super-twisting integral sliding-
mode control scheme since limt→∞ x(t)=0 for all x0∈Ψc0 .

The key aspect of the proposed local stability criterion
here lies in the fact that the control signal u can be estimated
by (33) for bounded solutions x, s and v̄, and thus x, s and
v. The choice of the integral sliding variable (4) ensures that
we always start on the v̄-axis in the s-v̄-plane. Moreover, we
have a bound for v̄(0). Lemma 5 and Proposition 8 give a
bound Γρ on the trajectory in the s-v̄-plane.

The boundedness of the integral sliding variable s implies
the boundedness of (3) (see Proposition 12), which in turn
implies x(t) ∈ Ωc1 for the solution (see Proposition 3).

The boundedness of x and (s, v) provides a bound on
d
dtδ(x(t), t) scaled by µ. Thus the choice µ < µ1 dominates
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Fig. 1. Simulation of the second system state x2 and the time derivative
of the perturbation δd(x) for an inappropriate rule of thumb control design.
The closed loop is not stable.

the time-derivate of the combined perturbation δ(x, t). In the
context of higher-order systems this local analysis similar
to [10] prevents the occurrence of the algebraic loop, which
was resolved in [5], [6] for first-order systems globally.

V. ILLUSTRATIVE EXAMPLE

To illustrate the design procedure and the performance of
the proposed control we consider the second-order system

ẋ1 = x2, (43a)
ẋ2 = u+ δx(x) + δt(t), (43b)

with δx(x) = 0.5x3
2 and δt(t) = 3 cos(t/30). Note that we

have δt(0) ̸= 0, such that instantaneous sliding motion does
not occur for arbitrary initialisation x0 = [x10, 0]

⊤ ∈ R2, as
discussed at the beginning of Section IV.

We shall design a super-twisting integral sliding-mode
controller for the system (43) and establish local stability
of the closed-loop system with an estimate of its region of
attraction. For the conventional s1 and the integral sliding
variable s in (3) and (4), respectively, we choose m = 0.25
and ks = 0.5. The linear state feedback u0 in (8) is chosen
as k = [k1, k2]

⊤ = −[0.125, 0.75]⊤.
Note that the perturbation δ(x, t) = δx(x) + δt(t) depends

on system states and thus boundedness of its time-derivative
is difficult to assess. Choosing the gains of the super-twisting
integral sliding-mode controller (9) as proposed in [2], [4]
and [19] may therefore lead to unstable behaviour. Choosing
L = 0.1 certainly bounds the time-derivative of δt for all
t ≥ 0, and we also observe that the time-derivative for t = 0
of the combined perturbation

dδ(x0, 0)

dt
= 3

2 x
2
20 (u0 +

1
2 x

3
20 + 3) ≈ 0.042,

with initial state x0 = [2, −0.1]⊤ is bounded by L. Applying
the well established design rules α1 = 1.5

√
L = 0.47 and

α2 = 1.1L = 0.11 proposed in [2] and studied in [7], yields
the super-twisting controller

u1 = −0.47 |s|1/2 sgn(s) + v, v̇ = −0.11 sgn(s), v(0) = 0.

The simulation of the closed-loop system is carried out in
MATLAB-Simulink using the fixed-step ODE 4 solver with
a step size of 0.1ms. Figure 1 shows the diverging state
trajectory x2 and the time-derivative of the perturbation δx(x)
along the solution of the closed loop. The controller proposed
above does not stabilise the system.
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A. Design of a stabilising control

In order to stabilise the origin of the system (43) consider
the super-twisting controller (9) with the scaling parameter
µ. The gains are selected as α1 = 1 and α2 = 1. To specify
the region of attraction the dynamics of the reduced state
z = x1 in (12) are considered. Choosing q = 2m in (13)
yields the Lyapunov function V0(z) = |x1| for P0 = 1. We
chose cs = 0.15 and c0 = 0.1 resulting in c1 = 0.5. For
a1 = 1 the sets Ωc and Ψc0 from (17) and (19) are given by

Ωc1 =
{
x ∈ R2

∣∣ |0.25x1 + x2| ≤ 0.5 ∧ |x1| ≤ 2
}
,

Ψc0 =
{
x ∈ R2

∣∣ |0.25x1 + x2| ≤ 0.1 ∧ |x1| ≤ 2
}
.

Note that Ψc0 =
{
x ∈ Ωc1

∣∣ |s1(x)| ≤ c0
}

as defined in (19).
In view of Assumption 1 the combined perturbation δ(x, t)

and its partial derivatives with respect to state and time can
be estimated on the compact set D = Ωc1 by

ρ = max
x∈D, t∈R+

|δ(x, t)| = 3.5, ρt = max
t∈R+

∣∣∣∣dδt(t)dt

∣∣∣∣ = 0.1,

ρx1
= max

x∈D

∣∣∣∣∂δx(x)∂x1

∣∣∣∣ = 0, ρx2
= max

x∈D

∣∣∣∣∂δx(x)∂x2

∣∣∣∣ = 1.5.

1) Controller-gain scaling: To determine the upper bound
for the controller-gain considered in Theorem 13 we calculate
the bounds µ0 and µ1 given by (30) and (35). Regarding
the matrices A1 and P1 defined in (25) and (26) it holds
that A⊤

1 P1 + P1A1 = −I for P1 =
[

2 −1
−1 3

]
and A1 =

1
2

[−1 1
−1 0

]
. Evaluating (30) yields µ0 = 0.0825. To calculate

the second bound µ1 the time-derivative of the perturba-
tion is estimated as discussed in Section IV-B. Defining
κ1 := maxx∈Ωc1

|x1| = 2 and κ2 := maxx∈Ωc1
|x2| = 1

we obtain the conservative estimate of the state feedback:
maxx∈Ωc1

|k⊤x| ≤ |k1|κ1 + |k2|κ2. Based on this estimate
we chose γ = 2.05 to satisfy the inequality (38) by calculating

γ = (ρt + ρx1 κ2 + (2ρ+ |k1|κ1 + |k2|κ2) ρx2) µ0

+ρx2

(
α1 +

√
p11/p22

)√
cs.

Evaluation of (35) thus yields µ1 = 0.077. Therefore, µ=
0.95min{µ0, µ1}=0.95µ1=0.073 is chosen, resulting in the
scaled controller-gains α1/µ=13.67 and α2/(2µ

2)=93.43.
2) Estimated reaching time and control effort: In regard

to the stability analysis presented in Section IV, the reaching
time as well as the absolute value of the control signal can
be estimated. The choice µ = 0.95µ1 leads to (39) being
satisfied for ε = 0.36. An estimate of the reaching time
can be obtained as proposed in Remark 9. Evaluating the
second inequality of (40) yields tr ≤ 2 ε−1 V1(0, ρ) = 1.09.
The absolute value of the control signal u is bounded by
the constant umax given in (33). Calculating the set Γρ

from (29) for µ = 0.073 yields max[s,v̄]⊤∈Γρ
|s| = 0.12

and max[s,v̄]⊤∈Γρ
|v̄| = 3.83. We obtain |u| ≤ 13.03 by

evaluating (33) with maxx∈Ωc1
|k⊤x| ≤ |k1|κ1 + |k2|κ2.

Further, we get
∣∣ d
dtδ(x(t), t)

∣∣ ≤ 28.07 for all t ≥ 0 from
(38) with γ = 2.05.
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Fig. 2. System state x in the phase plane. The estimated region of attraction
Ψc0 and the set Ωc1 bounding the trajectory are given for c1 = 0.5,
c0 = 0.1 and m = 0.25.
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Fig. 3. Trajectories of the sliding variables (s, v̄) and (σ, σ̇), respectively.
The invariant sets Γ0,Γρ and Σ are given for µ = 0.073 and c1 = 0.5. It
holds that max[s,v̄]⊤∈Γρ

|s| = 0.11 < 0.15 = cs.

B. Simulation of the closed loop

Figures 2, 3 and 4 show the simulation results for the
closed-loop system (43), (7) and (10) for the initial state
x0 = [2,−0.4]⊤ ∈ Ψc0 and controller design as described in
the previous subsection.

Figure 2 shows the state-space with the sets Ψc0 and Ωc1

representing the specified region of attraction and the bounds
on the trajectories, respectively. Note that the trajectory indeed
leaves the set Ψc0 before converging onto s1(x) = 0 and the
origin asymptotically.

Figure 3 depicts the solution (s, v̄) of the dynamics of
the sliding variable (21) as well as the solution (σ, σ̇) of the
dynamics (41) in their respective phase-planes. The invariant
sets Γ0,Γρ and Σ, given by (28), (29) and (42), are shown. By
definition, the initial value [s(x0, 0), v̄(0)]

⊤ = [0, 2.968]⊤

lies on the boundary of the set Γ0. Since v̄0 < ρ, it follows
that Γ0 ⊂ Γρ. The trajectory converges to the origin without
leaving the set Γ0. Choosing µ < µ0 results in (31) given as
a strict inequality, i.e. max[s,v̄]⊤∈Γρ

|s| = 0.11 < 0.15 = cs
and max[s,v̄]⊤∈Γρ

|v̄| = 3.83 < 4.32 = µ−1
√
p11/p22 cs.

Further it holds that [σ(t), σ̇(t)]⊤ ∈ Σ for all t ≥ 0.
The solutions of the integral and the conventional sliding

variable s and s1 as well as the control signal u and the time-
derivative of the perturbation δx(x) are given in Figure 4. The
reaching time tr≈0.04 marked in each plot is significantly
smaller than its estimate 1.09, calculated above.

Note that the integral sliding variable s is not identically
zero although we initialise on the sliding surface s(x0, 0) = 0.
This prevents s1 from decaying exponentially for all t ≥ 0, i.e.
maxt∈R+ |s1(x(t))| > |s1(x0)| as pointed out in Remark 2,
and causes the state x to leave the set Ψc0 , see detail in
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Fig. 4. Simulation of the sliding variables s, s1 (top) and the control
signal u and the time derivative of δx(x) (bottom) in the time domain. The
absolute values of the trajectories are limited by |s(x, t)| ≤ cs = 0.15,
|s1(x)| ≤ c1 = 0.5, |u| ≤ 13.03 and | d

dt
δx(x)| ≤ 28.07.

Figure 2. For t ≥ tr the conventional sliding variable s1
converges exponentially as in (11), see top right plot in
Figure 4.

We observe that both sliding variables are bounded by the
design parameters cs and c1, respectively as proposed in (18):

max
t∈R+

|s(x(t), t)| = 0.014 < cs = 0.15,

max
t∈R+

|s1(x(t))| = 0.11 < c1 = 0.5.

The time-derivative d
dtδ(x, t) is given by d

dtδ(x, t) =
d
dtδx(x) +

d
dtδt(t) with d

dtδx(x) shown in Figure 4 and
d
dtδt(t) = −0.1 sin(t/30). The control signal u and the time-
derivative d

dtδ(x, t) satisfy the inequalities maxt∈R+ |u(t)| =
4.1 ≤ 13.03 and maxt∈R+

∣∣ d
dtδ(x(t), t)

∣∣ = 0.71 ≤ 28.07
from Section V-A.

In sliding-mode for t ≥ tr we have s(t) = 0 such that
the control signal u(t) = u0(t) + u1(t) = k⊤x(t) + v(t)
compensates the perturbation δ(x(t), t) with the controller
state v(t) = −δ(x(t), t). Thus u(t) converges to −δt(t), and
also d

dtδx(x(t)) → 0 for t → ∞.

VI. CONCLUSION

We propose a super-twisting sliding-mode design based on
an integral sliding variable for systems of arbitrary order with
time- and state-dependent perturbations. The approach does
not required an a priori known bound for the time-derivative
of the control signal. The parametrisation of the super-twisting
controller, proposed in [10], is used to overcome the problem
of an algebraic loop [5] by means of a local stability analysis.
As part of the design process an estimate for the region of
attraction as well as a guaranteed bound of the solution for
the closed-loop system are obtained. The analysis provides
bounds for the integral sliding variable and the controller
state as well as for the control effort needed to compensate
the perturbation.
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