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Abstract— This paper studies the global asymptotic stabiliza-
tion of passive nonlinear systems with finite, countable control
actions. We show that for nonlinear passive systems that are
large-time norm observable and admit a finite control input set
whose convex hull contains the origin, the origin can be globally
asymptotically stabilized and locally exponentially stabilized by
means of relaxed control and nearest-action control approaches.
In particular, we improve on a recent result of practical
stabilization via nearest-action control by utilizing switching
controllers that can synthesize extra control actions from an
existing control input set. Three switching methodologies are
proposed to enlarge the control set and enable global asymptotic
and local exponential stabilization. These three methodologies
vary in the cardinality of the expanded control set. These meth-
ods are validated in numerical simulations where a comparison
of the convergence rate is provided.

I. INTRODUCTION

Modern control theories and methods have often relied on
the assumption that the input space is a continuum that can
be arbitrarily assigned/accessed by any control laws. This
assumption is based on the availability of actuator systems
that can be actuated in a continuous mode. However, it
is no longer applicable for applications where the control
inputs are limited to a finite or infinite countable set. For
example, the Ocean Grazer’s multi-piston-pump systems
[1] are designed to have only a finite number of constant
actuation forces. This limits the device to realize arbitrary
pumping forces, and the control input can only be chosen
from a finite combination of multiple piston pumps. Other
examples include the finite number of thrusters in rocket
systems and the finite number of actions in stepper motors.
Another class of well-studied control systems with countable
control input sets are digital control systems, where the
control inputs must be taken from a finite set obtained via
quantization and zero-order-hold operations.

In the latter context (namely, the digital control systems
and networked control systems), controller design and sta-
bility analysis of linear systems under limited information
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have been studied, for instance, in [2], [3]. In recent years,
the generalization of these results to multi-agent systems
has been presented in literature, such as [4], [5], and [6].
Correspondingly, this paper studies the related control prob-
lem with finite and minimal countable control inputs, that
is, when the control actions are constrained to be from the
finite control set U = {0, u1, . . . , up} ⊂ Rm.

The literature on the design of controllers for systems
with limited control actuation is vast, particularly those that
correspond to quantized or digital control systems. In [7],
[8], [9], [10], the authors analyze the effect of quantized
output feedback on the stability of the closed-loop systems.
The number of control actions required in the above methods
is (2N+1)m, where Rm is the input-output space, and each
dimension has 2N + 1 quantization levels. Passive systems
have also attracted much interest as the presence of storage
functions facilitates the design of control laws, as presented
in [12], [13], and [14]. Using binary control, the papers [4],
[5] present the practical stability property of the resulting
feedback control systems. These controllers require 2m + 1
control actions where m is the dimension of the input space.

For passive systems with large-time norm observability,
the authors of [16] and [17] propose a nearest neighbor
control1 protocol that guarantees practical stability using
m + 2 control actions along with an algorithm to construct
these m+ 2 control actions.

On the one hand, the authors in [16], [17] could only
establish practical stabilization, where the state converges
to a ball close to the origin since it cannot realize an
arbitrary small control signal. On the other hand, in the
networked control systems literature, logarithmic quantizers
have been utilized to guarantee asymptotic stabilization, see,
for example, [2], [11]. Using logarithmic quantizers, one
can realize arbitrary small control signals. Note that the
sufficiency of small control property to design a continuous
stabilizing control law is well-studied, e.g. [19].

Inspired by the use of a logarithmic quantizer in these
works, we extend the works of [16] and [17] by expanding
the minimal countable input set via appropriate switching
strategy, which resembles a pulse-width modulation (PWM)
approach and can be analyzed in the framework of relaxed
control [22]. We present three switching strategies that enable

1Throughout this paper, we will refer to this approach as nearest-action-
control method to avoid the confusion with the term of neighbors that are
commonly used in the multi-agent control systems literature.
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us to construct an arbitrarily large countable control input set
where the globally stabilizing control law can be applied.

Switching controllers have gathered immense interest
since the seminal result of [18], where we can stabilize
nonlinear systems that are not stabilizable using continuous
feedback. We refer interested readers to [20] for a detailed
exposition on switched control systems. To analyze the
stability of the closed-loop system under switching con-
trollers, we employ the relaxed control framework as recently
presented in [21] and [22]. Via this framework, we can study
the systems property of switched passive systems as relaxed
systems where the switching ratio becomes the new control
input.

In summary, the main contributions of this paper are:

1) We propose three switching controllers that achieve
global asymptotic stability instead of practical stability
while only utilizing the existing minimal control actions.

2) The proposed design approaches can decouple the con-
trol design methods to achieve the desired convergence
rate and the region-of-attraction of the closed-loop sys-
tem.

The latter contribution improves upon the control perfor-
mance achieved in the previous works of [21] and [22].

The rest of the paper is organized as follows. Section II
provides the preliminaries on passive systems, on stabiliza-
tion with finite countable control input set, on nonsmooth
analysis, and on relaxed control systems. In Section III, we
present the three switching methodologies and analyze the
stability property of the resulting closed-loop relaxed control
systems. In Section IV, we provide numerical simulations to
validate, compare, and contrast the proposed methodologies.
Finally, we provide the conclusions and future work in
Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

R,R≥0,W,N denote the set of real numbers and the set
of non-negative real numbers, the set of whole numbers and
natural numbers respectively. For a vector x ∈ Rn, or a
matrix A ∈ Rn×m, we denote the Euclidean norm and
the corresponding induced matrix norm by ∥x∥ and ∥A∥
respectively. The inner product of two vectors µ, ν ∈ Rn

is denoted and defined as ⟨µ, ν⟩ ∆
=
∑n

i=1 µiνi. For a set
S, co(S) defines its convex closure. For a discrete set U ,
its cardinality is denoted by card(U). The convex hull of
vertices from a discrete set U is denoted by conv(U). For
a matrix A ∈ Rn×n, A⊤ denotes the transpose of A. A
function γ : R≥0 → R≥0 is of class κ if it continuous, strictly
increasing, and γ(0) = 0. a function γ : R≥0 → R≥0 is of
class κ∞ if γ is of class κ and unbounded. The open ball
of radius ϵ centered around the point x ∈ Rn is denoted by
Bϵ(x). The notation δϵ denotes a Dirac probability measure
centered at ϵ.

B. Passive systems and standing assumptions

Consider the following class of nonlinear systems

Σ :

{
ẋ = f(x) + g(x)u

y = h(x).
(1)

where x ∈ Rn denotes the state, u ∈ Rm denotes the control
input and y ∈ Rm is the observation from the system. The
system dynamics consists of the smooth mappings f : Rn →
Rn, g : Rn → Rn×m, h : Rn → Rm. The system Σ is
called passive if for all pairs of input and output signals∫ T

0
⟨y(t), u(t)⟩dt > −∞ for all T > 0. The passivity of Σ

implies the existence of positive definite storage H : Rn →
R≥0 such that ⟨∇H(x), f(x)⟩ ≤ 0 and ⟨∇H(x), g(x)⟩ =
h⊤(x). We will assume throughout that H is proper, that is,
all level sets are compact.

Definition 1 ( [23]): The system (1) is large-time initial-
state norm observable if there exists τ > 0, and γ, χ ∈ K∞
such that the solution x of (1) satisfies

∥x(t)∥ ≤ γ(∥y∥[t,t+τ ]) + χ(∥u∥[t,t+τ ]) (2)

for all t ≥ 0, x(0) ∈ Rn, and locally essentially bounded
and measurable inputs u : R≥0 → Rm.

The large-time norm observability of the system is used to
ascertain the bounds on the system’s state when the control
input u = 0. Further, we assume the following property.

(A0) The system Σ in (1) is passive with a proper storage
function H and Σ|u=0 is large-time norm-observable
for some τ > 0 and γ ∈ K∞.

C. Practical stabilization problem with finite countable con-
trol input set

As briefly described in the Introduction, using the output
measurements y, we consider the stabilization of the system
Σ in (1) when the control actions can only be chosen from a
finite input set. Correspondingly, we consider a finite control
action set U , satisfying the following assumption

(A1) For a given set U := {0, u1, . . . , up} where ui ∈
Rm, i = 1, . . . , p, there exists a minimal index set
I ⊂ {1, . . . , p} such that the set V := {ui}i∈I ⊂ U
defines the vertices of a convex polytope satisfying,
0 ∈ int(conv(V)).

Let us recall the following result from [16], [17] on the
practical stabilization of Σ to a prescribed ball Bϵ.

Proposition 1 ( [16, Proposition 2]): Consider a nonlin-
ear system Σ as in (1) satisfying (A0), along with a finite
countable control input set U ⊃ V satisfying (A1) and a
scalar CV = max

ν̃∈Ṽ
(∥ν̃∥), where Ṽ is given by

Ṽ := {ν̃ ∈ Rm | [ν1, . . . , νq]⊤ν̃ ≤ 1

2
[∥ν1∥2, . . . , ∥νq∥2]⊤}

and ν1, . . . , νq ∈ V . For a given ϵ > 0 assume that

γ(CV) ≤ ϵ,
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where γ is the large-time norm observability function as in
(A0). Then the control law

u = argmin
ν ∈ U

∥ν + y∥

globally practically stabilizes Σ with respect to Bϵ.

It has also been shown that the minimum number of non-
zero control actions required to achieve the above results is
m+1. The key contribution of this paper is achieving global
asymptotic stability to the origin while choosing control
actions from a finite set of control inputs U . In particular,
we address the following problem.

Asymptotic output-feedback stabilization with limited
control (AOS - LC): For the given system Σ in (1),
determine the finite set U = {0, u1, . . . , up} ⊂ Rm and
design the feedback control law ϕ : Rn → U such that the
closed-loop system of (1) with u = ϕ(y) satisfies x(t) → 0
as t → ∞ for all initial conditions x(0) ∈ Rn.

As mentioned before, using ideas from switching con-
trollers and relaxed control framework, we propose three
methodologies to achieve the desired global asymptotic sta-
bility. The key idea is to switch between the permissible
control actions to generate newer and finer control actions
to achieve stabilization. The three methodologies differ in the
construction of the extended countable control action set.

D. Nonsmooth analysis and differential inclusions

As we can only select control actions from a finite dis-
crete set, the controller mapping is inherently discontinuous.
Therefore, notions of nonsmooth solutions and nonsmooth
stabilization are required. For a discontinuous map F : Rn →
Rm, we can define a set-valued map K(F ) : Rn ⇒ Rn by
convexifying F as follows

K(F (x)) :=
⋂
δ>0

co(F (x+ Bδ)).

In this case, we can analyze the dynamic behaviour of the
original differential equation ẋ = F (x), x(0) = x0 via the
corresponding differential inclusion

ẋ ∈ Φ(x)
∆
= K(F (x)) x(0) = x0. (3)

A Krasovskii solution x(t) on the interval R≥0 is an abso-
lutely continuous function x : R≥0 → Rn such that (3) holds
almost everywhere on R≥0.

E. Relaxed Systems and Relaxed input

Let rpm(U) be the set of all Radon probability measures
defined on U . In a relaxed control framework, one studies
the system’s behavior when the ordinary real-valued control
input (u ∈ U ⊂ Rn) is replaced by a measure-valued
control input (ν ∼ µ ∈ rpm(U)), where the switching
input signals can be embedded. Consider a general nonlinear
system ẋ = f(x, u), x ∈ X ⊆ Rn and u ∈ U , U
is a compact subset of Rn. For a compact metric space

V ⊂ Rq , the space Rf (V, rpm(U)) is the space of all
functions µ : V → rpm(U) such that the function

(x, ν) →
∫
U

f(x, τ)dµν(τ)

is locally Lipschitz on X × V . Here, we consider a class
of probability measure for the input that is parametrized by
ν ∈ V . Let the function fR : X × V → Rn be defined by

fR(x, ν) :=

∫
U

f(x, τ)dµν(τ).

When one can apply the probability measure µν as the input
to the original systems, the corresponding average behavior
is described by

ẋ = fR(x, ν) x(0) = x0. (4)

The system (4) is called a relaxed system, and ν denotes the
relaxed control input.

As a concrete example, consider a switching controller
that switches between two control inputs u and 0 with a
duty cycle denoted by α. Then the switching controller η :
U× [0, 1]× R≥0 × R≥0 → U is defined as,

η(u, α,∆, t) =

{
u n∆ ≤ t < α∆+ n∆

0 α∆+ n∆ ≤ t ≤ (n+ 1)∆.
, n ∈ W

(5)

By switching between the control actions sufficiently fast,
the control input can be equivalently considered to be sam-
pled from a probability measure-valued function µα (which
depends on the duty cycle α) whose domain is defined on
the input space span{0, u} and is defined by µα(E) =∫
E
rα(τ)dτ for all E ⊂ span{0, u}, where

rα = αδu + (1− α)δ0

for all α ∈ [0, 1] and δϵ is the Dirac measure at ϵ ∈ R.
Applying such measure-valued function µα to the ordinary
control input, the corresponding average systems (4) is given
by

Σrel :

{
ẋ = f(x) + g(x)(αu), α ∈ [0, 1]

y = h(x).

This corresponds to applying a control input of αu to the
system Σ. It must be noted that the control action αu might
not necessarily belong to the set of all admissible control
actions U . Thus, by utilizing switching controllers, we can
generate new control actions not available previously. The
admissible control set has been expanded from U = {0, u}
to U ′ = {0, u, αu} which we call the equivalent control set
here on in this paper. The proposed methodologies involve
generating equivalent control sets U ′ to achieve asymptotic
stability.

955



III. METHODOLOGY

A. Methodology A: Minimally Realizable Set with Logarith-
mic Extension

In subsection II.E, it has been shown how to generate
αu given the control actions {0, u}. Considering all pairs
{0, ui}, ui ∈ U , we can generate new control actions in the
set αU using measure-valued control input µv . Correspond-
ingly, if we consider the switching frequency value to be
α, α2, α3, . . . then we can generate control actions in the set
αU , α2U , , . . . respectively. In this case, the effective control
set is given by UA =

⋃
k∈N αkU . Define the nearest action

map as follows

ϕ(y, D) = argmin
d∈D

∥d− y∥

which picks all the points from the set D closest to the point
y. As the system (1) is passive, a linear output feedback
u = −y stabilizes the system. Given that the control action
can only be chosen from the set UA, we propose a nearest
action controller defined as follows

u = ϕA(−y) = ϕ(−y, UA) = argmin
u∈UA

∥u+ y∥. (6)

Although the control actions in UA\ U are not directly real-
izable, it can be achieved by using the switching controller
(5) with an appropriate choice of α ∈ [0, 1] and u ∈ U . It
is first shown that the output of the nearest action control
WA = ϕA(−y) is a finite set, even though UA is a countably
infinite set.

Lemma 1: Let U be a minimal countable set satisfying
(A1). The cardinality of the set WA = ϕA(−y) given by (6)
is upper bounded by 2(m+ 1).

Proof: Firstly we recall that the cardinality of U \ {0}
is given by m + 1 as shown in [16] and [17]. Consider
now three points p1 = αk1ud, p2 = αk2ud, p3 = αk3ud

for some ud ∈ U and all k1 ̸= k2 ̸= k3 ∈ N. Trivially
p1, p2, p3 ∈ UA. The points p1, p2, p3 cannot have a point
z ∈ Rm equidistant from all three of them. Thus, we can
conclude that card(WA) ≤ 2(m+ 1).
Next, we show some desirable properties of the set WA =
ϕA(−y). These properties will be used to show the asymp-
totic stability of the closed-loop system Σ under (6).

Lemma 2: WA = {0} ⇐⇒ y = 0.
Proof: If y = 0, then we can trivially conclude that

WA = {0}. Let us prove the “⇒” part by contradiction. In
this case, consider WA = {0, u}, u ̸= 0, u ∈ UA and y ̸= 0.
This implies that 0 and u are the closest points to −y, i.e.
−y is in the middle-point between 0 and u. However, the
point αu ∈ UA is closer to −y than 0 or u, which is a
contradiction.
In addition to above properties of the effective control set
UA, the following is an important property of the proposed
controller (6).

Lemma 3: Consider the nearest-action mapping ϕA in (6)
and let WA = ϕA(−y) = {wi}i∈I ⊂ UA for some index set
I ⊂ {1, . . . , 2(m+ 1)}. Then the inequality

−∥wi∥∥y∥ ≤ ⟨wi, y⟩ ≤ −1

2
∥wi∥2 (7)

holds for all i ∈ I.
Proof: By the definition of ϕA, the inequality ∥wi +

y∥2 ≤ ∥wj + y∥2 holds for all i ∈ I and for all j ∈
{0, 1, . . . , (m+1)}. By noting that ∥wi+y∥2 = ⟨wi+y, wi+
y⟩ = ∥wi∥2 + 2⟨wi, y⟩ + ∥y∥2 and fixing wj = 0, we have
that ⟨wi, y⟩ ≤ − 1

2∥wi∥2. Moreover ⟨wi, y⟩ ≥ −∥wi∥∥y∥.
Hence, the inequality (12) holds for every y ∈ Rm.
The following proposition shows that the closed-loop system
under the control law (6) is globally asymptotically stable.

Proposition 2: Given an admissible control set U satis-
fying (A1), the control law u = ϕA(−y) given by (6)
asymptotically stabilizes the system Σ in (1) satisfying (A0)
to the origin.

Proof: Let WA = ϕA(y), from Lemma 1 and Lemma 2,
WA can be one of the two cases:

(i) 0 /∈ WA for y ̸= 0. As ϕA(−y) is a non-smooth oper-
ator, we consider instead the following differential inclusion

ẋ ∈ K(f(x) + g(x)ϕ(y)) = f(x) + g(x)K(ϕA(−y)) (8)
y = h(x).

Computing the time derivative of the storage function of the
original system (1), along the solutions of (8),

Ḣ(x) = ⟨∇H(x), ẋ⟩ ∈ ⟨∇H(x), f(x) + g(x)K(ϕ(y))⟩
= ⟨∇H(x), f(x)⟩+ ⟨y, conv(WA).⟩

Consider any x ∈ WA = {wi}j∈J , J ⊂ {1, . . . , 2(m+ 1)}
can be written as,

x =
∑
j∈J

λjwj ,
∑
j∈J

λj = 1, λj ∈ [0, 1],∀ j ∈ J .

Then using Lemma 3, we get∑
j∈J

λj∥wj∥∥y∥ ≤ ⟨y, x⟩ ≤
∑
j∈J

λj∥wj∥2.

Therefore ⟨y, conv(WA)⟩ ∈ [ ∥wy,max∥∥y∥,− 1
2∥wy,min∥2 ],

and ∥wy,max∥ = max
w∈WA

∥w∥, ∥wy,min∥ = min
w∈WA

∥w∥. Giving,

Ḣ(y) < −1

2
∥wy,min∥2 < 0.

(ii) WA = {0}, when y = 0. We obtain

Ḣ(t) = 0.

As H(x(t)) is non-increasing and since H is proper, all
solutions of x(t) are bounded. By the LaSalle invariance
principle, all of such compact trajectories converge to the
largest invariant set M ∈ Rn where h(M) ⊂ Z, where
Z := {y ∈ Rm | 0 = ϕA(−y)}. 0 ∈ ϕA(−y) ⇐⇒ y = 0,
yielding M = Z = {0}. Using the large-time norm-
observability of Σ|u=0, it follows that,

lim
t→∞

∥x(t)∥ = 0.

Remark 1: The proposed method for generating new con-
trol actions requires the duty cycle to become arbitrarily
small to ensure asymptotic stability. The minimum duty cycle
required is calculated if it is sufficient to ensure practical
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stability to a given Bϵ. If the allowed control actions are
given as U = {0, u1 . . . , up}, for a given accuracy level
ϵ > 0, it is sufficient to generate the effective control set
given by

UA,ϵ =

kmax⋃
i=1

αiU

where kmax is calculated as

kmax =

⌈
− logα

(
γ−1(ϵ)

max
ṽ∈Ṽ

∥ṽ∥

)⌉

where Ṽ is defined as follows

Ṽ = {ṽ ∈ Rm | [u1, . . . , up]
⊤ṽ ≤ 1

2
[∥u1∥2, . . . , ∥up∥2]⊤}

The optimization procedure given in (6) returns a control
action in UA. The switching controller is utilized with an
appropriate duty cycle αk and appropriate control action
up to implement this control action. The parameter k and
switching control input up have to be determined such that
u = ϕA(−y) = αkup. The block diagram in Fig. 1 represents
the closed-loop system.

Fig. 1. Block diagram depiction of the closed-loop system under method-
ology A. Block-1 computes the desired control input from the effective
control set UA. Block-2 calculates the parameters up, αk required for the
switching controller. The switching control in Block-3 performs a PWM
between the control inputs up and 0 at a αk frequency. The output of the
switching controller ua(t) ∈ U is then given as feedback control to the
system Σ.

B. Methodology B: Minimally Realizable Rays with Limited
Length

Instead of the duty cycle taking discrete values α, α2, . . .,
we consider in this sub-section a continuum of values in
α ∈ [0, 1]. Thus the effective control set is given by

UB =

p⋃
i=1

{αui : α ∈ [0, 1], ui ∈ U}. (9)

The controller selects the control action closest to −y from
the set UB and is defined as follows.

u = ϕB(−y) := ϕ(−y, UB) = argmin
u∈UB

∥u+ y∥. (10)

Choosing the control input u ∈ UB is equivalent to choosing
α ∈ [0, 1] and up ∈ U where u = αup. The optimization
problem (10) is converted from u ∈ UB to α ∈ [0, 1], up ∈ U .

To ensure α ∈ [0, 1] define the following saturation function
given in (11),

sat[0,1](x) =


1 x ≥ 1

x 0 < x < 1

0 x ≤ 0

. (11)

The solution to the optimization problem (10) is as follows:

up =

 argmin
ui∈ U\{0}

∥∥∥∥∥y + ui sat[0,1]

(
⟨−y, ui⟩
∥ui∥

)∥∥∥∥∥ y ̸= 0

0 y = 0,

α =

sat[0,1]

(
⟨−y, up⟩
∥up∥

)
y ̸= 0

0 y = 0.

Similar to Lemma 1, 2, and 3, we have the following
lemma on the set WB = ϕB(−y).

Lemma 4: Consider the nearest action mapping ϕB in (10)
and let WB = ϕB(−y) = {wi}i∈I ⊂ UB for some index set
I ⊂ {1, . . . , 2(m+ 1)}. Then the following statements hold

i card(WB) ≤ 2(m+ 1)
ii WB = {0} ⇐⇒ y = 0

iii −∥wi∥∥y∥ ≤ ⟨wi, y⟩ ≤ −1
2∥wi∥2 ∀i ∈ I. (12)

Proof: The proof of (i) follows similar arguments as
given in Lemma 1. We can use prove by contradiction to
show (ii) as before. Consider that WB = {0, u} and y ̸= 0,
then the point βu ∈ UB for any 0 < β < 1 is closer to −y
than either 0 or u, which is a contradiction. Therefore we
have W = {0} ⇐⇒ y = 0. Using arguments similar to the
proof of Lemma 3, we can conclude (iii).

Proposition 3: Given an admissible control set U satis-
fying (A1), the control law u = ϕB(−y) given by (10)
asymptotically stabilizes the system Σ in (1) satisfying (A0)
to the origin.

Proof: The set WB = ϕB(−y) satisfies the three
properties in Lemma 4. In this case, we need to analyze two
different cases:
(i) When 0 /∈ WB, proceeding similar to the proof of
Proposition 2 and computing the time derivative of the
storage function along the closed-loop system trajectories,
we obtain Ḣ(t) < 0. Otherwise,
(ii) when y = 0 we have that WB = {0} by Lemma 4. It
implies that Ḣ(t) = 0. Using the same arguments of the
storage function H being proper, H does not increase along
the system trajectories, the application of La-Salle invariance
principle and the large-time norm-observability of the system
imply that the origin is globally asymptotically stable.

Similar to Remark 1, the following remark provides a
lower bound on α if practical stability to Bϵ is sufficient.

Remark 2: If the allowed control actions are given by U =
{0, u1 . . . , um+1}, for a given accuracy level ϵ > 0, generate
the effective control set given by

UB,ϵ = {αu | u ∈ U , α ∈ [α∗
min, 1]}
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where α∗
min is calculated as

α∗
min =

γ−1(ϵ)

max
ṽ∈Ṽ

∥ṽ∥

where Ṽ is defined as follows

Ṽ = {ṽ ∈ Rm | [u1, . . . , um+1]
⊤ṽ ≤
1

2
[∥u1∥2, . . . , ∥um+1∥2]⊤}.

Then the controller defined by

u = ϕ(−y,UB,ϵ)

practically stabilizes the system Σ given in (1) to Bϵ.
The closed-loop block diagram of the system Σ under the

control methodology B is given in Fig. 2

Fig. 2. Block diagram depiction of the closed-loop system under method-
ology A. Block-1 computes the desired control input from the effective
control set UA. Block-2 calculates the parameters up, αk required for the
switching controller. The switching control in Block-3 performs a PWM
between the control inputs up and 0 at a αk frequency. The output of the
switching controller ua(t) ∈ U is then given as feedback control to the
system Σ.

C. Methodology C: Stabilization Using Solid Simplices

The previous two methodologies generated finer control
actions by switching between the control inputs u and 0.
In this subsection, we present another methodology where
the controller switches between all the control actions in
the set U\{0}. This can be thought of as a PWM between
m + 1 control actions {u1, . . . , um+1}. Define the vector-
valued duty cycle α = [α1, . . . , αm+1]

⊤ ∈ [0, 1]m+1 and∑m+1
i=1 αi = 1. The m + 1-switching controller is then

defined as follows

η(α,∆, t) =



u1 0 ≤ {t/∆} < ∆α1

u2 ∆α1 ≤ {t/∆} ≤ ∆(α1 + α2)
...

...

um+1 ∆
m∑
i=1

αi < {t/∆} ≤ ∆.

(13)

Analyzing this through the framework of relaxed control
input as ∆ → 0, the control input can be formulated as sam-
pled from a probability measure-valued function µα (which
depends on the vector-valued duty cycle α). The domain of
µα is the input space span{u1, . . . , um+1} and it is defined

by µα(E) =
∫
E
rα(τ)dτ for all E ⊂ span{u1, . . . , um+1},

where

rα =

m+1∑
i=1

αiδui

for all αi ∈ [0, 1]. Converting the input to (1) from u to α,
computing we get

Σrel :

ẋ = f(x) + g(x)
m+1∑
i=1

αiui,
m+1∑
i=1

αi = 1

y = h(x).

It can be observed that the relaxed control input is any convex
combination of the allowed control inputs. The equivalent
allowed control input set is as follows

UC =

{
m+1∑
i=1

αiui

∣∣∣∣ ui ∈ U \ {0},
m+1∑
i=1

αi = 1

}
= conv(u1, . . . , um+1)

The element in the set UC closest to −y is chosen as
the control input, and the controller is formulated as an
optimization problem,

u = ϕC(−y) := ϕ(−y,UC) = argmin
u ∈ UC

∥u+ y∥. (14)

The solution to this optimization problem is the projection of
the point −y on the compact convex set UC. If −y ∈ UC, then
its projection is −y itself. In order to generate the control
input −y, the vector-valued duty cycle α is calculated as
follows,

m+1∑
i=1

αiui = −y subject to
m+1∑
i=1

αi = 1

which yields

um+1 +

m∑
i=1

αi(ui − um+1) = −y[
(u1 − um+1) . . . (um − um+1)

]
α = −(y + um+1)

Uα = −(y + um+1).

As 0 ∈ int(conv(u1, . . . , um+1)) from (A1), the m vectors
(u1−um), . . . , (um−um+1) ∈ Rm are linearly independent
and span the m-dimensional space Rm, thus the matrix U ∈
Rm×m is invertible. Therefore, the vector duty cycle α is
given by,

α = −U−1(y + um+1).

Define the projection operator of a point d ∈ Rn on a convex
set C ⊂ Rn as follows

P(d, C) = argmin
x∈C

∥x− d∥

If −y lies outside the set UC, then P(−y, UC) solves the
optimization problem (14). The control input is given as

u(y) =

{
−y y ∈ conv(u1, . . . , um+1)

P(−y, UC) otherwise
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and the vector duty cycle is given by α(y(t)) = U−1u(y).
Lemma 5: Consider the nearest-action mapping ϕC in (14)

and let WC = ϕC(−y) = {wi}i∈I ⊂ UB for some index set
I ⊂ {1, . . . , 2(m+ 1)}. Then the following statements hold

i card(WC) = 1
ii WC = {0} ⇐⇒ y = 0

iii if WC = w1 ∈ UC, then

−∥w1∥∥y∥ ≤ ⟨w1, y⟩ ≤ −1

2
∥w1∥2 (15)

is satisfied.
Proof: The projection operation of a point on a compact

convex set is unique; therefore, WC is a singleton. W = −y
if y ∈ conv(u1, . . . , um+1) and from the assumption (A0),
statement (ii) can be concluded. The point w1 is closer to
−y than to zero, giving ⟨w1+y⟩ < ⟨y, y⟩, which, on further
simplification, statement (iii) can be obtained.

Proposition 4: Given an admissible control set U satis-
fying (A1), the control law u = ϕC(−y) given by (14)
asymptotically stabilizes the system Σ in (1) satisfying (A0)
to the origin.

Proof: From Lemma 5, there are two cases:
(i) For y /∈ conv(U), WC = ϕC(−y) = P(−y,UC) = w, is a
singleton set according to Lemma 5. The closed-loop system
is then given by,

ẋ = f(x) + g(x)w

ẏ = h(x). (16)

Using the storage function of the original system (1), its time
derivative along the system trajectories to (16),

Ḣ = −⟨w, y⟩ ≤ −∥w∥2 < 0.

(ii) For y ∈ conv(U), we have WC = ϕC(−y) = −y. In this
case, the closed-loop system is smooth and given by

ẋ = f(x)− g(x)y (17)
y = h(x).

Using the storage function of the original system (1), its
derivative along the solutions of (17), we have

Ḣ(x) = −∥y∥2 ≤ 0.

As H(x(t)) is non-increasing and since H is proper, all
solutions of x(t) are bounded. By the LaSalle invariance
principle, all of such trajectories converge to the largest
invariant set M ∈ Rn where h(M) ⊂ Z, and Z := {y ∈
Rm | 0 = ϕ(y)}. 0 ∈ ϕ(y) ⇐⇒ y = 0, yielding
M = Z = {0}. Using the large-time norm-observability
of Σ|u=0, it follows that,

lim
t→∞

∥x(t)∥ = 0.

Similar to Remark 1, here, a lower bound on the αi is
provided if practical stability is sufficient.

Remark 3: If the allowed control actions are given as U =
{0, u1 . . . , um+1}, for a given accuracy level ϵ > 0, generate
the effective control set given by

UC,ϵ = UC \ int(α∗
minUC),

where α∗
min is calculated as

α∗
min =

γ−1(ϵ)

max
ṽ∈Ṽ

∥ṽ∥
,

and Ṽ be defined by

Ṽ = {ṽ ∈ Rm | [u1, . . . , um+1]
⊤ṽ

≤ 1

2
[∥u1∥2, . . . , ∥um+1∥2]⊤}.

Then the controller defined by

u = ϕ(−y,UC,ϵ)

practically stabilizes the system Σ given in (1) to Bϵ.

IV. EXAMPLE AND SIMULATION RESULTS

In this section, we will apply our main results to an ex-
ample and illustrate the behaviour of the closed-loop system
through a numerical simulation. The following example is
borrowed from [16]. Consider the following nonlinear system

Σex :


ẋ =

 −x2 + x2
3

x1 + x2
3

−x1x3 − x2x3

+

1 0

0 0

0 1

u

y =

[
x1

x3

]
,

(18)

where x := [x1, x2, x3]
⊤ ∈ R3 and y := [y1, y2]

⊤, u :=
[u1, u2]

⊤ ∈ R2. It has been shown in [16] that (18) is passive
with a storage function H(x) = 1

2x
⊤x, and it is long-time

norm observable with the function γ(s) = 4(s + s2) in
(2). For the asymptotic stabilization of the system (18), we
choose the admissible control set to be Uex given in

Uex :=

{
0,

[
sin (0)
cos (0)

]
,

[
sin ( 2π3 )
cos ( 2π3 )

]
,

[
sin ( 4π3 )
cos ( 4π3 )

]}
= {u0, uex,1, uex,2, uex,3, }.

It can been seen at Ṽ = {uex,1, uex,2, uex,3, } ⊂ Uex
satisfies the assumption (A1). For methodology A, α = 0.2
is chosen. The system starts from an initial condition of
x(0) = [−3, 3, 2]⊤, and an Euler forward discretization
method is used for numerical simulations. The numerical
simulation results are summarized in Fig. 3. In this figure,
the trajectories of the closed-loop system using Methodolo-
gies A, B and C converge all to zero as expected. As a
comparison, the trajectory of standard NAC as given in [17]
is shown in solid purple line. For all methods, it can be seen
that the convergence rate at the start is linear due to the use
of ordinary control action taken from U . Once the feedback
control enters the convex hull of U , the use of measure-
valued control input µα is introduced, leading to exponential
convergence for all three methods A, B and C.
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Fig. 3. This figure summarises the numerical simulations performed to
validate the proposed control laws. (i) The evolution of the norm of the
state (∥x(t)∥) is depicted in 3. a. As expected, the proposed control laws
ensure asymptotic stability, whereas the previous method in [16] ensures
practical stability. (ii) 3. b. shows the evolution of αk vs t, and 3. c. shows
the control input selection. At each instant, the switching controller switches
between the control input ui(t) and 0 at a switching frequency of αk(t)
given in Section III.A. (iii) 3. d., shows the evolution of α vs t, and 3 .e.,
shows the control input selection. At each instant, the switching controller
switches between the control input ui(t) and 0 at a switching frequency
of α(t) as given in Section III.B. (iii) 3. f. depicts the evolution of the
vector-valued PWM signal, and the controller switches between the non-
zero control actions at this frequency, as mentioned in Section III.C.

V. CONCLUSIONS AND FURTHER RESEARCH

This paper considers the asymptotic stabilization of a
continuous-time passive nonlinear system under observabil-
ity assumptions, where the control inputs are chosen from
a finite set. This is achieved using switching controllers and
analysed using the theory of relaxed control systems. We are
currently investigating the effects of a minimum dwell time
requirement on the controller, thus ensuring the controller
applies any control for a minimum time. Another direction is
on the set-point regulation for a class of constant incremental
passive nonlinear systems as in [24] via a PI controller.
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