
Analysis of a continuous opinion and discrete action model coupled
with an external dynamics∗

A. Couthures1, T. Mongaillard1, V.S. Varma1,2, S. Lasaulce1,3, I.C. Morărescu1,2

Abstract— We consider a set of consumers in a city or town
whose opinion is governed by a continuous opinion and discrete
action (CODA) dynamics model. This dynamics is coupled with
an observation signal dynamics, which defines the information
on the common pollution that the consumers can access. We
show that the external observation signal has a significant
impact on the asymptotic behavior of the CODA model. When
the coupling is strong, it induces either a chaotic behavior or
convergence towards a limit cycle. When the coupling is weak,
a more classical behavior characterized by local agreements in
polarized clusters is observed. In both cases, conditions under
which clusters of consumers don’t change their actions are
provided. Numerical examples are provided to illustrate the
derived analytical results.

I. INTRODUCTION

Opinion dynamics (OD) over social networks attracted a
lot of attention during the last decades. Multi-agent systems
have provided an efficient way to model opinion evolution
under social interactions. The existing OD models consider
that the opinions evolve either in a discrete set [1], [2], [3],
[4] or in a continuous set of values [5], [6], [7], [8]. While
some models naturally lead to consensus [9], [7], some others
yield a network clustering [5], [6], [8], [10]. However, all
the models enumerated above consider that each individual
has access to the opinion values of their neighbors. In order
to more accurately describe the opinion dynamics and to
recover more realistic behaviors, a mix of continuous opinion
with discrete actions (CODA) was proposed in [11]. This
model reflects the fact that even if we often face binary
choices or actions that are visible to our neighbors, our
opinion evolves in a continuous space of values that are
not accessible. A consensus-like dynamics reproducing this
behavior has been proposed and analyzed in [12] where the
preservation and propagation of actions are also characterized
through the notion of robust polarized clusters. While the
model in [12] led to a clustering of the network, a similar idea
was employed in [13] to study the emergence of consensus
under quantized all-to-all communication.

In this paper, we analyze the behavior of the CODA model
introduced in [12] coupled with an external dynamics. Many
models have been developed to characterize the pollution
dynamics in urban areas, considering the fluid dynamics
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approach [14], chemistry-based approach [15], or both [16].
Even if the time constants depend on the chemical compound
considered [17], we introduce a simple linear pollution model
to estimate the local air quality. In this model, the pollution
level depends on the actions of the individuals, who are in
turn influenced both by the actions of their neighbors, and
the pollution level. The coupling of the two dynamics leads
to a complex asymptotic behavior that can be summarized
as follows. When the coupling between the dynamics is
weak, one recovers the asymptotic behavior of the original
CODA model in [12]. A strong coupling between the two
dynamics hampers the convergence towards a steady state
and yields either chaotic oscillations or convergence towards
a limit cycle. It is noteworthy that even in the simplified
case when all the agents have the same initial opinion, the
strong coupling with the external dynamics hampers the
convergence toward a steady state and may lead to chaotic
oscillations.

The main contributions of this paper are: i) the introduc-
tion of a mathematical model capturing the coupling between
the CODA dynamics and an external one; ii) the analysis of
the asymptotic behavior of the aforementioned model; iii)
and the characterization of the coupling strength leading to
different asymptotic behaviors.

The paper is structured as follows. Section II presents the
definitions of the measures that constitute the model. Char-
acteristics of opinion equilibrium and asymptotic behavior
are analyzed in Section III, followed by a focus on the
synchronized behavior in Section IV. Section V illustrates
the different behaviors with numerical simulations. Finally,
Section VI concludes our work.

II. PROBLEM FORMULATION AND PRELIMINARIES

Model description

We consider the classical multi-agent modeling in which
n individuals/agents belong to the set V = {1, . . . , N} and
interact according to a fixed graph G = (V, E) that can be
directed or not. The neighborhood of the agent i is denoted
by Ni and represents the set of agents that influence i
according to the graph G (i.e j ∈ Ni ⇔ (j, i) ∈ E). We
also denote by ni the cardinality of Ni. We assign to each
agent i ∈ V an opinion θi ∈ [−1, 1] that evolves in time
according to a discrete time protocol defined further in (3).
Let θi(k) be the opinion of the agent i ∈ V at time k and
θ(k) the opinion of all individuals at time k. Let us also
introduce the action value qi(k) ∈ {−1, 1} as a quantized
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version of θi(k) defined by

qi(k) =

{
1 if (θi(k) > 0) ∨ (θi(k) = 0 ∧ qi(k − 1) = 1)

−1 if (θi(k) < 0) ∨ (θi(k) = 0 ∧ qi(k − 1) = −1)

We assume that the action of individual i at time k
generates an emission ei(k) ∈ [emin, emax] ⊂ R where
emin and emax are the minimum and maximum emissions,
respectively. The emission is given by the following equation

ei(k) =

{
emin if qi(k) = −1

emax if qi(k) = 1
. (1)

We add an external state p ∈ R, referred to as pollution,
that captures the environment state under the emission of
everyone. The pollution evolves according to the following
discrete-time dynamic:

p(k + 1) = γp(k) +

N∑
i=1

ei(k), (2)

where γ ∈ (0, 1) is an autonomous decay rate.
We assume that individuals cannot observe p(k) but they

can sense a quantized value qp ∈ {−1, 1}. Let us define p(k)
as a function of a threshold p̄ ∈ R as follows:

qp(k) =

{
−1 if (p(k) > p̄) ∨ (p(k) = p̄ ∧ qp(k − 1) = −1)

1 if (p(k) < p̄) ∨ (p(k) = p̄ ∧ qp(k − 1) = 1).

We are now ready to describe the opinion dynamics model
that we consider in this work. This dynamics adapts the
CODA model in [12] to include the external dynamics of
p(k):

θi(k + 1) = θi(k) +
(
1− θi(k)

2
) [

β (qp(k)− θi(k))

+ (1− β)
1

ni

∑
j∈Ni

(qj(k)− θi(k))
]
, (3)

where 0 ≤ β ≤ 1 encapsulates the tradeoff between the
environment state observed through qp(k) and the opinions
of the neighbors. We note that the complete model coupling
CODA and the external dynamics is described by (1)-(3).

We emphasize a natural partition of V in two sub-
sets N−(k) = {i ∈ V | qi(k) = −1} and N+(k) =
{i ∈ V | qi(k) = 1}. In the following, we denote by n−(k)
and n+(k) the cardinality of N−(k) and N+(k), respec-
tively. Similarly, for an agent i we denote by N−

i (k) =
Ni ∩N−(k) and N+

i (k) = Ni ∩N+(k) and by n+
i and n−

i

the cardinalities of these sets.

III. ANALYSIS OF THE MODEL

Before starting the analysis of the model introduced in the
previous section, let us observe that extreme opinion values
θi(0) ∈ {−1, 1} do not evolve in time. We also observe
that the definitions of q and qp are rigorous only if θi(0) ̸=
0,∀i ∈ V and p(0) ̸= p̄. Therefore, the following assumption
is perfectly justified by our setup.

Standing Assumption 1. For all i ∈ V , θi(0) ∈ (−1, 1)\{0}
and p(0) ̸= p̄.

A. Characterization of opinion equilibria

In the following, we analyze the asymptotic behavior of
opinions that follows the dynamics (3). In other words, we
assume that the external signal has an exogenous decoupled
evolution.

To simplify our further reasoning, we introduce the fol-
lowing notation

fi(k) = (1− β)
n+
i (k)− n−

i (k)

ni
+ βqp(k). (4)

Lemma 1. Let i ∈ V , θi(0) ∈ (−1, 1). Then for all k ∈ N,
one of the following relation holds

θi(k) < θi(k + 1) < fi(k), (5)

θi(k) > θi(k + 1) > fi(k), (6)

or,
θi(k) = θi(k + 1) = fi(k). (7)

Proof. Let us first observe that
∑

j∈Ni
qj(k) = n+

i (k) −
n−
i (k) = 2n+

i (k) − ni, since n+
i (k) + n−

i (k) = ni for all
k ∈ N. Then, using (4), one rewrites (3) as:

θi(k + 1) = θi(k) +
(
1− θi(k)

2
) [

β (qp(k)− θi(k))

+ (1− β)
1

ni

(
n+
i (k)− n−

i (k)− niθi(k)
) ]

= θi(k) +
(
1− θi(k)

2
) [

fi(k)− θi(k)
]

(8)

We continue our reasoning by induction. From equation (8) it
is straightforward that if θt(k) < fi(k) then θi(k) < θi(k+1)
and θi(k + 1) < fi(k). Reversely, if θi(k) > fi(k) then
θi(k+1) > θi(k) and θi(k+1) > fi(k). Finally, if θi(k) =
fi(k) then θi(k + 1) = fi(k).

Proposition 1. Let i ∈ V and assume that Assumption
1 holds. If (qp(k))k≥0 and

(
n+
i (k)

)
k≥0

are stationary
sequences with limit q∗p and n+

i
∗, respectively. Then the

sequence of opinion (θi(k))k≥0 converges to

θ∗i = lim
k→∞

θi(k) = (1− β)
2n+

i
∗ − ni

ni
+ βq∗p ∈ Q+ βQ

Proof. Let us note f∗
i := (1− β)

(
2n+

i
∗ − ni

)
/ni + βq∗p ∈

[−1, 1] and remarks that n+
i
∗ and q∗p ∈ N since those

are stationary sequences in N. Then f∗
i ∈ Q + βQ. With

Assumption 1, we have θi(0) ∈ (−1, 1), so that Lemma 1
applies. Then by induction

∀k ≥ k∗, θi(k) ≤ θi(k + 1) ≤ f∗
i ≤ 1

or
∀k ≥ k∗, θi(k) ≥ θi(k + 1) ≥ f∗

i ≥ 1.

Then since (θi(k))k≥0 is a bounded monotonous sequence,
it converges. Let denote θ∗i that limit. Now from above
inequalities, if θ∗i = 1 then f∗

i = 1. Conversely, if θ∗i = −1,
we have that f∗

i = −1. Finally, if θ∗i ∈ (−1, 1) then (8)
rewrite as

θi(k + 1)− θi(k)

(1− θi(k)2)
+ θi(k) = f∗

i .
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Taking the limit of the previous cancel the first term of the
left-hand side and we have that θ∗i = f∗

i .

We will later see that opinions can either have an oscil-
latory chaotic behavior or they converge to a limit cycle.
For a discrete-time system given by x(k + 1) = H(x(k)),
if there is a natural number m > 1 for which there exist
m successive convergent sub-sequences x0(k) = x(mk),
x1(k) = x(mk + 1), ..., xm−1(k) = x(m(k + 1)− 1), then
the overall sequence converges to a limit cycle of length m
defined by the limits of the m sub-sequences.

Corollary 1. Under Assumption 1, if (qp(k))k≥0 is a sta-
tionary sequence and

(
n+
i (k)

)
k≥0

converges to a limit cycle
of length m, then θi also converges to a limit cycle of length
m denoted θ̄i ⊂ Q+ βQ+ · · ·+ βmQ.

B. Asymptotic behavior of the external/pollution dynamics

As pointed out in the previous subsection, the stationarity
of (qp(k))k≥0 plays a major role in the asymptotic behavior
of the opinions θ. Consequently, in this subsection we
provide a sufficient condition ensuring that (qp(k))k≥0 is a
stationary sequence. In this setting, the opinions behave as
in the CODA model provided in [12] since the players are
influenced by the external dynamics uniformly with respect
to time after the sequences become stationary. We can rewrite
the dynamic (2) by injecting (1)

p(k + 1) = γp(k) + n+(k)emax + n−(k)emin (9)

Therefore, the pollution p reaches an equilibrium only if
(n+(k))k≥0 (and implicitly (n−(k))k≥0) is stationary. Let
us suppose that

lim
k→∞

n+(k) = n+, lim
k→∞

n−(k) = n−

In this case the equilibrium p∗ is given by

p∗ =
n+emax + n−emin

1− γ
, (10)

which now only depends on the partition of actions of the
individuals in the social network.

In order to guarantee that (qp(k))k≥0 is stationary one
needs to ensure that (sgn (p(k)− p̄))k≥0 is stationary. In
other words, for k sufficiently large the value of p(k) does
not cross the threshold p̄.

Lemma 2. The sequence (qp(k))k≥0 is stationary for any
graph G with N individuals if there exists k such that either(
p(k) ≤ Nemax

1−γ ∧ Nemax
1−γ ≤ p̄

)
or

(
p(k) ≥ Nemin

1−γ ∧ Nemax
1−γ ≥ p̄

)
.

C. Preservation of action

In the following, we investigate under which condition
we have that qi(k) = qi(k + 1). The following result is
instrumental for our purposes.

Lemma 3. Let i ∈ V , then the following statements hold
true:

1) if fi(k) ≥ 0 and qi(k) = 1 then qi(k + 1) = 1,

2) if fi(k) ≤ 0 and qi(k) = −1 then qi(k + 1) = −1.

Proof. As proven in Lemma 1 one of (5), (6) or (7) holds
true.
1) If (5) is verified one has θi(k + 1) > θi(k) meaning that
qi(k) = 1 implies qi(k + 1) = 1.
If (6) or (7) holds, then θi(k) ≥ fi(k). Consequently, fi(k) ≥
0 ensures θi(k + 1) ≥ 0 or equivalently qi(k + 1) = 1.
2) If (5) or (7) holds, then θi(k) ≤ fi(k). Therefore, if
fi(k) < 0 yields θi(k + 1) < 0 ⇔ qi(k + 1) = −1.
If (6) holds, one has that θi(k + 1) < θi(k) meaning that
qi(k) = −1 implies qi(k + 1) = −1.

When β < 1/(1+ni) Lemma 3 can be refined as follows.

Lemma 4. Let i ∈ V and assume that β < 1/(1 + ni). The
following statements hold:
− if n+

i (k) > n−
i (k) and qi(k) = 1 then, qi(k + 1) = 1,

− if n−
i (k) < n+

i (k) and qi(k) = −1 then, qi(k+1) = −1.

Proof. Notice that β < 1/(1 + ni) implies
β

1− β
<

1

ni
.

Recalling that |qp(k)| = 1 one obtains that
∣∣∣∣niqp(k)β

1− β

∣∣∣∣ < 1.

Notice also that

fi(k) = (1− β)
n+
i (k)− n−

i (k)

ni
+ βqp(k)

=
1− β

ni

(
n+
i (k)− n−

i (k) +
niqp(k)β

1− β

)
Therefore

sgn (fi(k)) = sgn
(
n+
i (k)− n−

i (k) +
niqp(k)β

1− β

)
,

and taking into account that n+
i (k), n

−
i (k) ∈ N the desired

result yields from Lemma 3.

Throughout the paper, we denote by |A| the cardinality
of a set A. We provide a definition for some cluster in the
graph such that the opinion will not change through time

Definition 1. We say that a subset of agents A ⊂ V is a
weakly robust polarized cluster if the following hold:

• ∀i, j ∈ A, qi(0) = qj(0),
• ∀i ∈ A, |Ni ∩A| ≥ |Ni \A| − β/(1− β)|Ni|.

Proposition 2. If A is a weakly robust polarized cluster and
qp(k) = qi(0) for all k ∈ N and i ∈ A, then

qi(k) = qi(0), ∀i ∈ A,∀k ∈ N.

Proof. The proof will be done by induction. Let us suppose
that ∀i ∈ A one has qi(0) = 1. Assume that for a given
k′ ∈ N one has qi(k

′) = 1, ∀i ∈ A. Since the interaction
graph is fixed and A is a weakly robust polarized cluster
the following holds true |Ni ∩ A| ≥ |Ni \ A| − β/(1 −
β)|Ni|. Noticing that Ni ∩ A ⊆ N+

i (k′) one obtains that
n+
i (k

′) ≥ n−
i (k

′) − niβ/(1 − β) which is equivalent to
f(k′) ≥ 0. Applying Lemma 3 one gets qi(k

′ + 1) = 1 and
the induction is complete. Similar reasoning applies when
qi(0) = −1, ∀i ∈ A.
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Fig. 1: Bifurcation diagram of the opinion for 0.5 < β < 1.
N = 20, θ(0) = 0.4, p(0) = 100, p̄ = 15, emin = 0, emax = 1
and γ = 0.5,

The preservation of action in a weakly polarized cluster is
subject to a constant value of qp over the time. In order to
get rid of this constraint, we introduce the following concept.

Definition 2. We say that a subset of agents A ⊂ V is a
strongly robust polarized cluster if the following hold:

• ∀i, j ∈ A, qi(0) = qj(0),
• ∀i ∈ A, |Ni ∩A| ≥ |Ni \A|+ β/(1− β)|Ni|.

Proposition 3. If A is a robust polarized cluster then ∀i ∈ A,
∀k ∈ N, qi(k) = qi(0).

Proof. Apply proof of Proposition 2 while considering
|Ni ∩A| ≥ |Ni \A|+ β/(1− β)|Ni|.

It is worth noting that for β > 1/2 we cannot have robust
polarized cluster since β/(1−β) > 1 and |Ni∩A| ≤ β/(1−
β)|Ni| for any A ⊂ V . This fact will have importance in the
following.

IV. ANALYSIS OF THE SYNCHRONIZED BEHAVIOR

In the case where β > 1/2 the state of the system does not
converge towards a steady state. Instead, one has oscillations
that may be either chaotic or converging to a limit cycle.
This is illustrated in Fig. 1 where we can see that for β
close to one we get a limit cycle while for β > 1/2, in
a wide range, one has a chaotic behavior. For the sake of
simplicity, we assume in the following that all the opinions
are synchronized.

Definition 3. We say that an opinion state θ = (θ1 · · · θN )
⊤

is Fully Synchronized (FS) if ∀i, j ∈ V , θi = θj .

When the opinion state is FS, the opinion of an agent i ∈ V
is equal to the opinion of any other agent in V . Therefore, in
the remainder of this section, we will denote θ(k) and q(k)

the common opinion and action of all the agents at time k.
In other words, we omit the agent index when referring to
its opinion or action.

Proposition 4. The FS property is forward invariant over
time, i.e. if θ(k) is FS at time k ∈ N, then θ(k + 1) is FS.

Remark 1. If θ(k) is FS then f(k) = (1−β)q(k)+βqp(k).

Indeed, under the assumption of FS, one has that for all
i ∈ V , (n+

i (k)− n−
i (k))/ni = qi(k) = q(k).

In the FS regime, the action space reduces to

S = {(q, qp) | q ∈ {−1, 1}, qp ∈ {−1, 1}}
= {(−1,−1), (−1, 1), (1,−1), (1, 1)} .

Notice that each point in S corresponds to a partition of
the state space in four sets. For instance (1, 1) corresponds
to {θi(k) ≥ 0,∀kp ≤ p̄} In order to prove the oscillatory
behavior of the system (2)-(3) we show that in general S
does not contain equilibrium points. This means that the
trajectory of the system cannot remain in a certain partition
which means it cannot converge towards a steady state.

Proposition 5. Assume that β > 1/2 and the opinion state
is FS at time k ∈ N. Then the points {(1,−1), (1,−1)} are
not equilibrium in the action space.

Proof. We proceed by contradiction. The reasoning is similar
for each of the two points so we will focus on the first
one. Let us assume that (1,−1) is an equilibrium point.
This means that if there exists k∗ ∈ N such that q(k∗) =
1, qp(k

∗) = −1 then for any k > k∗ we have q(k) = 1
and qp(k) = −1. We notice that in this case, one has
f(k) = 1− 2β, ∀k > k∗. Then the dynamics (8) becomes

θ(k + 1) = θ(k) +
(
1− θ(k)2

)
(1− 2β − θ(k)) , ∀k > k∗.

Recalling that q(k) = 1, ∀k > k∗ one deduces that θ(k) ≥
0, ∀k > k∗. Consequently, ∀k > k∗ one obtains

θ(k + 1)− θ(k) =
(
1− θ(k)2

)
(1− 2β − θ(k)) ≤ 1− 2β.

Iterating the inequality above for consequtive values of k it
results that for any n ∈ N the following holds:

θ(k + n) ≤ n(1− 2β) + θ(k) ≤ n(1− 2β) + 1. (11)

Let us recall that 1 − 2β < 0. Therefore, if we consider
in (11) a sufficiently large n (i.e. n > 1/(2β − 1)) we get
θ(k + n) < 0 yieldingq(k + n) = −1 which contradicts
the assumption that (1,−1) is an equilibrium in the action
space.

Proposition 6. Assume β > 1/2 and θ being FS. The
following statements hold true.

• (1, 1) is an equilibrium in the action space if and only
if pmax ≤ p̄ where pmax = Nemax/(1 − γ). In this
case (θ, p) = (1n, pmax) is a stable equilibrium of the
coupled dynamics (2)-(3).

• (−1,−1) is an equilibrium in the action space if and
only if pmin ≥ p̄ where pmin = Nemin/(1 − γ). In this
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case (θ, p) = (−1n, pmin) is a stable equilibrium of the
coupled dynamics (2)-(3).

Proof. The reasoning is symmetric and it is sufficient to
focus only on the first statement.
”⇒” We assume that (1, 1) is an equilibrium and show that
pmax < p̄.
Suppose that there exists k∗ ∈ N such that q(k∗) =
1, qp(k

∗) = 1. Then, for all k > k∗, we have q(k) = 1
and qp(k) = 1. Therefore, for all k > k∗ one has p(k) ≤ p̄
and the dynamics (2) becomes

p(k + 1) = γp(k) +Nemax. (12)

Since γ ∈ (0, 1) the dynamics above is asymptotically stable
and p(k) converges to the equilibrium defined in (10) with
n+ = N, n− = 0 i.e. p∗ = pmax = Nemax/(1 − γ). We
conclude that pmax ≤ p̄.

”⇐” We assume that pmax ≤ p̄ and show that (1, 1) is an
equilibrium.
One proves that if k is such that q(k) = 1, qp(k) = 1
then q(k + 1) = 1, qp(k + 1) = 1. Notice first that in the
case under consideration f(k) = 1. Therefore, dynamics (3)
becomes

θ(k + 1) = θ(k) + (1− θ(k)2)(1− θ(k)) ≥ θ(k). (13)

Since q(k) = 1 one deduces from (13) that q(k + 1) = 1 as
well.
On the other hand qp(k) = 1 implies p(k) < p̄ and pmax ≤ p̄
is equivalent to Nemax ≤ (1− γ)p̄. Therefore, (12) becomes

p(k + 1) < γp̄+ (1− γ)p̄ = p̄

yielding q(k + 1) = 1. By recursive reasoning one gets that
(1, 1) is an equilibrium point.

We already noticed that in the case under study pmax is an
asymptotically stable point for (2) that takes the particular
form (12). On the other hand the dynamics (3) simplifies as
(13) whose stable equilibrium is 1n.

In the general case when pmin < p̄ < pmax neither (1, 1)
nor (−1,−1) is an equilibrium in the action space. Since no
equilibrium exists, in this case, the trajectory of (2)-(3) will
switch an infinite number of times between the four sets of
the partition defined by the action space S.

V. NUMERICAL RESULTS

First, we will illustrate the same kind of result as in [12]
over a square lattice. Finally, we will present the different
behaviors we can observe for a complete graph with FS
property.

A. Square lattice

Our study visualizes results with interactions based on a
square lattice topology. In Figure 2, we note the persistence
of resilient clusters even after numerous iterations. The
evolution of opinions and the corresponding state through
iterations is depicted in Figure 3. We can observe that
opinions and state converge fast to a limit cycle. On Figure
2, we see that the opinions are polarized on the graph. There

Fig. 2: Visualization of Opinion Dynamics on a 50 × 50
Square Lattice for β = 0.45: Initial opinions are randomly
distributed as i.i.d. uniform variables between -1 and 1, with
the resultant opinions after 100 iterations represented by each
colored square cell. Agents engage in communication with
their adjacent cells (above, below, left, and right). The cells
marked with crosses indicate the presence of strongly robust
polarized clusters; black crosses correspond to action -1, and
white crosses denote action 1.

Fig. 3: Depiction of Dynamical Evolution in the 50 × 50
Square Lattice from Figure 2: The upper panel showcases
the trajectory of each agent’s opinion over iterations, while
the lower panel illustrates the corresponding state evolution.
The red dashed line marks the state threshold.

are many robust clusters for both action 1 and -1. Each of
them is separated by a frontier that seem to have the same
length between the clusters of opposite action and them. We
can see on Figure 3 that there is no agent with a constant
opinion, the opinions are on a limit cycle. The ones that stay
with a constant action form robust clusters, as illustrated in
Figure 2.

B. Complete graph with FS

In Figures 4, we identify three unique behaviors displayed
by the dynamical systems: stable equilibrium (when β <
0.5), chaotic patterns, and a collection of limit cycles. These
simulations were conducted on a complete graph comprising
20 nodes, all of which possess the FS property at initial time.
The starting opinion is set at θ(0) = 0.4, and the initial
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Fig. 4: Trajectory dynamics. Left: two possible equilibria. Center: no equilibrium or limit cycle. Right: limit cycle.

state is taken at p(0) = 100, with a threshold of p̄ = 15.
For the emission dynamics, the range is between emin = 0
and emax = 1, and the decay rate is defined by γ = 0.5.
We represent the discrete trajectory linking each consecutive
couple (θ(k), p(k)) by a straight line. The color of the line
represents the time when this shift occurs. Moreover, we
present the subsequent vector field of the dynamics illustrated
by the quivers. The speed of the dynamics is given by the
length of the arrows.

A quick observation reveals that, based on the given
parameters, the dynamics of the opinion and state undergo
significant variations in response to the value of β. For
instance, when β < 0.5, both the opinion and state quickly
stabilize at an equilibrium. However, as depicted in Figure
1, given the same initial conditions, when β > 0.5 we
notice two potential behaviors. The first sees β positioned
outside all limit cycle intervals, resulting in chaotic behavior
as illustrated in the center of Figure 4. The second showcases
a limit cycle, as depicted in the right of Figure 4. Specifically,
in the Chaos case of Figure 4, the sequence ((θ(k), p(k)))k≥0

never reiterates, thus forming its unique pattern. Conversely,
when β falls within a limit cycle interval, the sequence
((θ(k), p(k)))k≥0 converge towards a limit cycle.

VI. CONCLUSION

In this paper, we have introduced and analyzed a CODA
model coupled with an external dynamic state. Specifically,
we consider that the external dynamics represent a very
simple pollution model in which the emission level depends
on the actions of the individuals in the social network.
Conversely, the opinions are both influenced by the actions
of the neighbors and the pollution level (above or below
a given threshold). We have shown that different behaviors
are possible, ranging from convergence to a steady state to
the chaotic behavior of the coupled dynamics. Numerical
examples illustrate our theoretical results.
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