2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Comparison of Unscented Kalman Filter Design
for Agricultural Anaerobic Digestion Model

Simon Hellmann*$, Terrance Wilms?, Stefan Streif® and Séren Weinrich7*
*DBFZ Deutsches Biomasseforschungszentrum, Leipzig, Germany, simon.hellmann@dbfz.de
§Chemnitz University of Technology, Chemnitz, Germany, stefan.streif @etit.tu-chemnitz.de
1 Technische Universitit Berlin, Berlin, Germany, terrance.wilms @tu-berlin.de
Miinster University of Applied Sciences, Miinster, Germany, weinrich@fh-muenster.de

Abstract—Dynamic operation of biological processes, such as
anaerobic digestion (AD), requires reliable process monitoring
to guarantee stable operating conditions at all times. Unscented
Kalman filters (UKF) are an established tool for nonlinear
state estimation, and there exist numerous variants of UKF
implementations, treating state constraints, improvements of
numerical performance and different noise cases. So far, how-
ever, a unified comparison of proposed methods emphasizing
the algorithmic details is lacking. The present study thus ex-
amines multiple unconstrained and constrained UKF variants,
addresses aspects crucial for direct implementation and applies
them to a simplified AD model. The constrained UKF consider-
ing additive noise delivered the most accurate state estimations.
The long run time of the underlying optimization could be
vastly reduced through pre-calculated gradients and Hessian of
the associated cost function, as well as by reformulation of the
cost function as a quadratic program. However, unconstrained
UKEF variants showed lower run times at competitive estimation
accuracy. This study provides useful advice to practitioners
working with nonlinear Kalman filters by paying close attention
to algorithmic details and modifications crucial for successful
implementation.

Index Terms—Process monitoring, nonlinear state estimation,
sigma point Kalman filter, biogas technology, ADM1

I. INTRODUCTION

Anaerobic digestion (AD) is an established technology for
the treatment of biogenic waste. In the AD process, organic
matter is converted into biogas [1]. Demand-driven operation
of biological processes such as AD requires reliable process
monitoring to ensure stable operation [2]. As a means of
process monitoring, Kalman filters have been examined in
numerous studies for model-based online state estimation in
various domains [3], [4]. In particular, the Unscented Kalman
Filter (UKF) could be shown to be well suited for state
estimation of nonlinear biological processes [5]-[7].

To this end, Kolas et al. (2009) [8] investigated various
implementations of the UKF, involving different noise cases
(additive and non-additive) as well as state constraints. More
specifically, state constraints were addressed by adopting a
nonlinear program (NLP) proposed by [9], and by reformu-
lating the NLP as a quadratic program (QP) assuming linear
output equations.
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Weinrich and Nelles (2021) have recently proposed simpli-
fied AD models [10] derived from the highly complex Anaer-
obic Digestion Model No. 1 (ADM1) [11]. The potential of
these ADMI simplifications has been demonstrated in case
studies addressing demand-oriented biogas production in lab-
[12] and full-scale [13]. Moreover, the ADM1 simplifications
have been shown to be locally observable, and thus appro-
priate to be applied in state estimation [14].

This paper compares different UKF designs for a simpli-
fied ADMI1 model which is derived from [10]. By demon-
strating multiple UKF implementations, we aim to provide
insights into comparative performance of available algo-
rithms, and thereby offer analytical, numerical and algorith-
mic guidance. The study thus also contributes to realizing
model-based monitoring and control for demand-driven ope-
ration of AD plants.

II. UNSCENTED KALMAN FILTERING

In this work, we consider discrete-time stochastic systems

(1a)
(1b)

Tp1= f (Tk,up) +vg, o — given

yr = h(zk) + wy.

with state variables x € R™, control variables © € RP,
and measurement variables y € R?. f can also represent
the integration of continuous-time differential equations on
a discrete time grid ¢, = kAt with sample time At and
k € Ny, see [9]. Process and measurement noise (v € R"
and w € R?) are assumed Gaussian and zero-mean with

E{v(k)}=0, E{w(k)} =0, Vk (2a)
E{v(k)v" (1)}= Q(k)dk.1. (2b)
E{w(k)w” (1)}= R(k)dx,. (2¢)

@ and R are process and measurement noise covariance
matrices and J; is the Kronecker delta. (1) shows the
additive noise case. In case of non-additive noise, vy and
wy, are direct arguments of f and h, i.e., f (2, uk,vr) and
h (zk,wg). The nominal linear time-variant equivalent of the
nonlinear output equation (1b) is denoted as

yr = Cry. 3)
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Sigma point Kalman filters such as the UKF use scaled copies
of the old estimate Z;_; called sigma points to predict a-
priori estimates &, (time update). These are in turn corrected
with measurements y; to deliver a-posteriori estimates Iy
(measurement update). The analogous procedure is applied
for calculation of the state error covariance matrix P,_1 with
corresponding prior P, and posterior Py. Each time step in-
volves sigma points to be sampled from a scaled multivariate
normal distribution with mean Z;_; and covariance matrix
proportionate to P,y [15].

A. Unconstrained Case

The basic concepts of the conventional unconstrained UKF
are briefly summarized here. Sigma points y; are sampled
around the state estimate £ which involves a scaling factor
~ [15], given by

¥y=+vn+ A with (4a)
A= a?(n+ k) —n. (4b)

For Gaussian noise, nominal tuning parameter values are
recommended by [8] as

[@ B k]=[1 2 0]. (3)

During time and measurement update, sigma points are
aggregated as a weighted average with weights W for states
and W¢€ for the state error covariance matrix [15]

Wi= A/ (n+ ), (62)
W5=A/(n+X) +1—a”+8, (6b)
Wei=W:=1/2(n+A), i=1...2n. (6¢)

Augmentation: Non-additive process noise is incorpo-
rated by extending the matrix P with the process noise
covariance matrix (). Thereby the system state is augmented
with zero-mean process noise [8] (denoted with superscript
index a). This results in an augmented system order L = 2n

a _ Pk,1 0
Pk—l - |: 0 Qk1:| ) (73-)
Tk X7_
CL‘%71 = I: kO 1:| y Xk—1 = I:X§1:| . (7b)

Analogously, non-additive zero-mean process and measure-
ment noise is incorporated by extending P with the process
and measurement noise covariance matrices ) and R. This
results in the fully augmented system order L = 2n + ¢

Pr_1 0 0 T
Plg—l = 0 Qr—1 0 ,JCZ—l = [mg—l 0 O] ,
0 0 Rk 1
(8a)
x T v T w T T
Xk—1 = [(Xk—l) (Xk=1)" (Xk=1) ] . (8b)

The distinction between nominal and augmented system
order n and L is not addressed in [8] and is therefore clar-
ified here. For the augmented and fully augmented version,
computation of the weights (6) must be adjusted for the
increased system order L. This ensures that the aggregation

from sigma points to estimates is maintained properly. By
contrast, computation of the scaling factor (4) must still be
conducted with the nominal system order n. Otherwise the
effect of P, during sampling of sigma points deviates from
the additive noise version.

In [8] a numerically more robust reformulation is proposed
for computing the a-posteriori estimates &, and Pg. This
involves a separate update of the sigma point priors x;~
through the innovation

Xii = Xi7+ Ko (ye = OGT X)) i=0...20 (9)

and then to aggregate them to posteriors &y and P

2L

t=) WXk, (10a)
=0
2L .

Pe=Y Wi (xki— &) (xia—&k) . (10b)
=0

The derivation was conducted for the fully augmented case
in [8]. For additive and augmented noise cases, h(xj, ; , Xk i)
in (9) must be replaced with h(xj ;). Further, computation
of P, must be slightly adjusted for additive noise

2L
Pe=Y Wf(xi,— ) (xii - #)" + Qr + KRe KT
1=0

with K}, according to [8, Tab. 5]. For augmented process
noise, P is correctly computed as

2L
Py, = Z W (XZ@ ) (le - JACk)T + Ky Ry K
i=0

with K} according to [8, Tab. 6].

B. Constrained Case

Upper and lower bounds of a-posteriori estimates can
be accounted for by clipping [8]. To account for nonlinear
inequality constraints [8] adopted the NLP proposed by [9]
but suggested to leave the scaling factor and weights as in
(4) and (6), resulting in

Xi.i= argmin J ¥ (11a)
st. C(xg;) <0, where (11b)
xT T — T
Jli\,[iLP = (yk - h(Xk,z’)) Ry ! (yk - h(Xk,i)) + (12)

x Tr— T —\—1 x Tr—

(Xk,i - Xk,i) (Pk ) (Xk,i - Xk,i) :

The scope of this study is limited to linear inequality con-
straints. Therefore the nonlinear inequalities in (11b) read

C(xi,i) = AXi,i -b<0 (13)

with C and b € R™*! A € R™*" and m as the number of
constraints. Upper and lower bounds on a-posteriori estimates
and sigma points can be included in the linear inequalities
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(13). For linear output equations (3), [8] further showed that
the NLP cost function (12) can be recast into the QP-form

T = )T (CERT G (PD) ) i+

,1 (14)

=2 (W RSOy + ()™ (B0) ™) ks
The NLP was solved in Matlab by using fmincon, and by
using quadprog for the QP.

Remark: Note that (12) was proposed by [9] for the
additive noise case, but [8] adopted it for the augmented
noise cases also. Since (14) was derived in [8] considering
the nominal output equation h(xy) for additive measurement
noise, (14) also holds for additive noise. Lastly, as stated in
[9] the posteriors Z; and P, must be computed from the
solution of the NLP/QP as per (10).

III. IMPROVEMENTS OF NUMERICAL EFFICIENCY

The algorithmic implementations of this study involved
numerically challenging operations, whose efficiency could
be improved through modifications described in the follow-
ing. The code was implemented in Matlab (Version R2022b)
using the System Identification Toolbox (Version 10.0) [16].

A. Cholesky Decomposition

During each iteration of the UKF, the matrix square root of
Py needs to be computed, which is typically done by means
of the Cholesky decomposition [15].

B. Square Root Version

The computational effort associated with computing the
Cholesky factors can be reduced by directly updating the
square root of Py in each iteration. Therefore, the square
root UKF was proposed in [15] for additive noise and is
reported to show improved numerical stability compared with
the conventional UKF [17].

C. Accelerating Optimization Through Gradients and Hes-
sian

In Matlab, the standard solver for NLPs is fmincon,
which by default approximates gradient and Hessian of the
cost function through finite differences [18]. When providing
analytic expressions of gradient and Hessian, computational
efficiency as well as numerical robustness can be vastly
increased. For this reason, these expressions are derived in
the following.

The inequality constraints are merged into the cost function
through Lagrange multipliers u, delivering the Lagrangian

Lig = JNFP + 0" (Axi = b) (15)
with 1 € R™*!, The gradient of the Lagrangian reads
d
— L = — JNLP + u" A (16)
ka,i Xk,i

Further, the gradient of the cost function is computed as

i ]ﬁV,LP: BJ%LP Oh aJé\’[ZLP where (17a)
Xpi Oh  Oxj X 7
oJNEP
5}1 ~2(y—h(xi,) R and (17b)
aJNLP T .
5 =2(xi,i—xz;) (Py) (17¢)
ki
with
oh Oh
o, = o5, (18)

ki
For linear output equations as in (3), (18) reduces to Cj.
Finally, the Hessian of the Lagrangian reads
d2
d(xk,i)?

T
, Oh oh
Xy Xt

IV. MODELLING OF THE ANAEROBIC DIGESTION
PROCESS

Lii=2(P) " +2 (Rk (19)

The model equations are derived from the ADM1-R4 pro-
posed by [10]. Water and nitrogen were omitted because they
are quasi-autonomous states as shown in [14]. Furthermore,
the gas phase was neglected to describe only the core of
AD process, that is the degradation from macro nutrients to
dissolved methane (CH4) and carbon dioxide (CO»).

The state vector comprises the mass concentrations (in
kg m™>) of the six states CHy, COs, carbohydrates (ch),
proteins (pr), lipids (li) and microbial biomass (bac)

T T
T = [T 2223245 T6]" = [Scha Scoz Xch Xpr Xii Xbac” -

The state differential equations read as follows:

&1 = c1 (&1 — 1) U+ a116223 + a12€3T4 + A13C4T5
Ty = c1 (§2 — T2) u + a21C2x3 + azaC3T4 + a23C4Ts
i3 =c1 (§3 — 3) u — c2T3 + A34C5T6

=c1(§a — Ta) U — 374 + Q14C5T6
@5 = c1 (§5 — 5) U — C4T5 + A54C576
t6 = c1 (§6 — 6) U + ag1C223 + AgaC3T4+

+ ag3Caxs — C5T¢.

The dissolved gas concentrations of CHy and CO, as well as
microbial biomass were assumed to be measurable:

100 0 0O
01 0 0 0 Ofa (20)
0 00 0 01

The substrate feed volume flow acts as the control variable
u. Model parameters a, ¢ and £ were derived in the extended
version of this manuscript [19], where the simulation scenario
and the model are also described in more detail.
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TABLE I
MODEL PARAMETERS USED FOR SYNTHETIC MEASUREMENT CREATION
(TRUE VALUE) AND FOR UNSCENTED KALMAN FILTERING (UKF

VALUE).
c2h] [ ca3[h] [ ca [h1] | c5 [h71]
true value 0.25 0.20 0.10 0.020
UKEF value | 0.32 0.26 0.13 0.026
TABLE II

OVERVIEW OF ALL IMPLEMENTED UKF VERSIONS WITH SHORT
DESCRIPTION. EXPLANATIONS ARE GIVEN IN THE TEXT.

Description Unconstrained Constrained
Toolbox? UKF-sysID

Square root UKF-SR UKF-SR-vy

Additive UKF-add UKF-add-y cUKF-add
Augmented UKF-aug UKF-aug-vy cUKF-aug
Fully augm.P || UKF-fully-aug | UKF-fully-aug-y || cUKF-fully-aug

a Matlab System Identification Toolbox, P fully augmented

A. Simulation Scenario

A pilot-scale AD reactor with 100L liquid volume was
fed dynamically for one week with a substrate mix of maize
silage and cattle manure, starting in steady state conditions.

Measurements were assumed to be taken every At = 0.5 h,
resulting in N = 337 samples. Nominal measurements
were superimposed with additive, zero-mean Gaussian noise
with standard deviations o; as stated in [19]. To ensure
comparability among all implemented UKFs, all of them
were equally tuned as follows [20]:

zo= [4.09, 10.52, 11.04, 2.57, 0.96, 2.02]"
Fo=[2.20, 19.30, 24.94, 2.22, 0.31, 2.64]"
Py= diag{(&0 — x0)*}

R = 1.5 - diag{(c:)*}

Q =diag{[1, 1, 1, 1, 1, 1]}.

A plant-model mismatch as stated in Table I was assumed.

B. Normalized Root Mean Squared Error

To evaluate estimation accuracy, the normalized root mean
squared error (NRMSE) between estimated and true values
was used:

VUNS, (- a0

This ratio can be computed both for states x and outputs ,
and is denoted accordingly as NRMSE, or NRMSE,.

NRMSE = 1)

V. SIMULATION STUDIES

Manifold UKF variants have been implemented as sum-
marized in Table II. They are classified as unconstrained and
constrained UKFs. The former are described in Section V-A,
the latter in Section V-B. Section V-C summarizes the per-
formance of all implemented UKF variants.

o
o

L
A
Jo1 &
=]
= 3
>
L 0 "8
noisy measurements —-—-- UKF-add &
true value — - -UKF-aug
UKF-sysID ~ ——-— UKF-fully-aug
- - -UKF-SR feeding =
20 ; ‘ : 025
— o
7 A
g 15} .
= 40.1 &
2 =
2 10 —~
g 3
0 ‘ >
5 . . . . . 0 g
0 1 2 3 4 5 6 7T &
time [d]
Fig. 1. Comparison of state estimation quality through different UKFs

with nominal sigma point scaling. Top: Concentration of carbohydrates
and corresponding estimations. Bottom: Concentration of dissolved CO,,
measurements and corresponding estimations.

TABLE III
COMPARISON OF UNCONSTRAINED UKF PERFORMANCE WITH DEFAULT
SIGMA POINT SCALING (v = 2.4495) ACCORDING TO (4) AND (5).

Algorithm NRMSE? NRMSEyb Run time [s]
UKF-sysID 0.4888 0.1152 1.73
UKF-SR 0.8533 0.1157 2.16
UKF-add 0.8533 0.1157 2.29
UKF-aug 0.3599 0.0934 3.66
UKF-fully-aug | 0.3599 0.1081 4.14

aaverage value of all non-measurable states Paverage value of all
measurable states

A. Unconstrained Case

Unconstrained UKF implementations using the default
sigma point scaling are discussed first. Then the effect of
reduced sigma point scaling is analyzed. UKF-sysID denotes
the UKF implemented with the Matlab System Identification
Toolbox assuming additive noise. It serves as a benchmark.

1) Nominal Sigma Point Scaling: The following algo-
rithms were implemented and compared with the benchmark
UKF-sysID, all considering nominal sigma point scaling
(4) with default UKF tuning parameters (5), see Table II:
square root UKF according to [21] (UKF-SR), as well as the
unconstrained UKFs according to [8] assuming additive noise
(UKF-add), non-additive process noise (UKF-aug) and non-
additive process and measurement noise (UKF-fully-aug).
Note that although the model used in this study assumes
additive process and measurement noise, the augmented and
fully augmented algorithm variants can still be applied.

Figure 1 compares state estimation performance of the
unconstrained UKF variants by means of carbohydrates and
CO, concentrations.

Smoothing of measurable states, such as dissolved CO;
in the bottom of Figure 1, is very similar for all UKF
versions. This is reinforced through nearly identical values of
NRMSE,, see Table III. The noise-free output is not met ex-
actly, but the filters clearly smooth the noisy measurements,
underlined by low NRMSE;.

For the non-measurable states, such as carbohydrates in the
top of Figure 1, all filters approach the true trajectory despite
the initial estimation error. As of ¢ ~ 4 d, estimations agree
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TABLE IV
COMPARISON OF UNCONSTRAINED UKF PERFORMANCE WITH
MODIFIED SIGMA POINT SCALING (y = 1).

Algorithm NRMSE?* NRMSEyb Run time [s]
UKF-SR-y 0.3733 0.0657 2.18
UKF-add-vy 0.3733 0.0657 2.15
UKF-aug-y 0.3691 0.0647 3.84
UKF-fully-aug-y | 0.3695 0.1046 4.40

aaverage value of all non-measurable states Paverage value of all
measurable states

well with true values. In light of a plant-model mismatch, it
is plausible that they do not match exactly.

Nevertheless, convergence behavior of the algorithms dif-
fers. UKF-add and UKF-SR deliver identical results, and
hence show overlapping graphs and the same NRMSE,.
They both do not involve augmentation, so essentially their
flow of algorithmic operations is the same. Their identical
performance emphasizes that the square root formulation
of the additive UKF derived in [21] is equivalent to the
conventional additive UKF. However, both UKF-add and
UKF-SR show a slower convergence than UKF-sysID, clearly
visible before the first feeding, and reflected in a higher
NRMSE,. Since UKF-sysID and UKF-SR are both based
on the square root UKF [22], their graphs should match.
However, they may deviate because UKF-sysID internally
uses slightly different sigma point scaling and weighting than
stated in [21]. Another reason might be different numerical
performance. This is likely the case, especially because all
three additive UKFs delivered negative state estimates for
the lipids concentration (x5) before the first feeding. To this
end, UKF-add exhibited the lowest estimates of z5. Since
negative concentrations are beyond the physically meaningful
domain of the model, these negative estimates of x5 might
also influence the other state estimates.

By contrast, the augmented versions UKF-aug and
UKF-fully-aug deliver no negative and much less noisy state
estimates, see Figure 1. They approach the true trajectory
faster and yield a lower NRMSEy than UKF-sysID, see Ta-
ble III. Run times of all additive UKF versions over the entire
simulation horizon are in the same range of about 2 s. Among
them, UKF-sysID is the fastest. This is plausible since it
is a commercial implementation optimized for numerical
efficiency. By comparison, run times of UKF-aug and UKF-
fully-aug are clearly higher, reflecting the higher resulting
system order, cf. (7) and (8).

2) Reduced Sigma Point Scaling: For all unconstrained
UKEF variants, except the benchmark, the sigma point scaling
was reduced by changing the scaling factor + from 2.4495
(according to nominal UKF scaling (4)) to 1. The resulting
performance is illustrated in Figure 2, with corresponding
graphs indicated by the name extension -y. Performance
improves especially for the additive variants UKF-add-y and
UKF-SR-v. This manifests in lower NRMSE values than for
nominal scaling and also than UKF-sysID. At the same time,
about the same run times are maintained, as illustrated in
Tables IIT and IV. Moreover, no negative values for estimated
lipids concentrations (x5) are obtained anymore.

027

= IS &
L, 20F \\\ A
g .y -3
015 S 40.1 &
= e S = - =
k? 10 \ \ /// S
L . P . 0=

- noisy measurements —---- UKF-add-y 8

true value — — -UKF-aug-y
UKF-sysID ~ ——-- UKF-fully-aug-y

- - -UKF-SR-vy feeding =

20 : : 025

P
A

Jo1 &

=

7 ks E

. . . 0z

3 4 5 6 7T &

time [d]

Fig. 2. Comparison of state estimation quality through different UKFs
with modified sigma point scaling (reduced scaling factor v = 1). For
the benchmark UKF-sysID, conventional tuning was retained for compar-
ison. Top: Concentration of carbohydrates and corresponding estimations.
Bottom: Concentration of dissolved CO,, measurements and corresponding
estimations.

For the augmented versions, the positive effect of redu-
cing v is not as clear: NRMSE, reduces for UKF-aug-v,
whereas NRMSE; slightly increases. For the fully augmented
version both NRMSE values remain almost unchanged at
an acceptable level. We conclude that for the given model
and simulation scenario, sigma point scaling according to
[15] does not necessarily deliver the best possible estimation
performance. This especially holds for the additive noise
case.

B. Constrained Case

The algorithms presented so far did not explicitly account
for state constraints. [8] suggested to introduce clipping in
various locations of the unconstrained UKFs to address state
estimates beyond physically meaningful bounds. However,
clipping diminished the estimation quality in our case (results
not shown). This behavior appears to be reasonable: abrupt
clipping without simultaneously adapting the sigma point
distribution distorts the unscented transformation. A remedy
may lie in applying the truncation method [23] proposed for
linear Kalman filters and extending it for UKFs. This was,
however, not further pursued here.

By contrast, accounting for state constraints through sol-
ving the optimization problem (1la) could be shown to
improve estimation performance especially for additive noise,
which is explained in the following.

The constrained UKFs were implemented for all three
noise cases, delivering additive (cUKF-add), augmented
(cUKF-aug) and fully augmented cUKFs (cUKF-fully-aug).
Note that nominal sigma point scaling (4) was applied. Fur-
thermore, the optimization of each cUKF could be described
by either the NLP (12) or the QP formulation (14) since
the model output (20) is linear [8]. For the NLP, gradients
and the Hessian were either approximated by finite differ-
ences (cCUKF-NLP); by providing analytic expressions for the
gradients (CUKF-NLP-grad); or both gradients and Hessian
(cUKF-NLP-grad-hess). All setups of the optimization prob-
lems for a given noise case delivered the same estimations.
Therefore, Figure 3 shows the cUKF performances only
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TABLE V
COMPARISON OF CONSTRAINED UKF PERFORMANCE. RUN TIMES
APPLY FOR NLP FORMULATION WITHOUT GRADIENTS AND HESSIAN.

Algorithm NRMSE?* NRMSEyb Run time [s]
cUKF-add 0.2897 0.1040 54.17
cUKF-aug 0.6746 0.0902 129.57
cUKF-fully-aug | 0.6345 0.0843 158.06

aaverage value of all non-measurable states Paverage value of all
measurable states

T

— 0.2
T gl T A
52007~ :':“w\ =
=2 TVTIa e 1012
£10F ~= —
> 0 \ | \ 0 £
true  --- cUKF-fully-aug _g

- - =cUKF-add feeding -

----- cUKF-aug n

7 7 T 023
£

3

=

3

3

k]

E

time [d]

Fig. 3. Comparison of state estimation quality through different constrained
UKFs. Top: Concentration of carbohydrates and corresponding estimations.
Bottom: Concentration of lipids and corresponding estimations.

with respect to a given noise case. Furthermore, Table V
summarizes corresponding NRMSE values. The stated run
times apply for the NLP setup with finite differences.

The measurable states are smoothed comparably well as
for the unconstrained UKFs, mirrored by NRMSE, values
in the same range as for nominal and reduced sigma point
scaling, cf. Tables III, IV and V. For this reason, the graphs
of CO, measurements and smoothed estimates are not shown
here again.

Instead, Figure 3 illustrates estimation performance for
the (non-measurable) carbohydrates and lipids concentrations
X and Xj;. The latter exhibited negative values for all
additive, unconstrained UKFs with nominal values of ~, see
Section V-Al. It is clear that for carbohydrates, estimates of
all three algorithms do not differ much, and they all approach
the true trajectory well. This is reflected in very similar values
of NRMSE, for carbohydrates between 0.44 and 0.54.

By contrast, the lipids estimations differ significantly,
Figure 3 bottom. This might, on the one hand, be attributed
to the lower order of magnitude of Xj;. [9] mentioned
that for estimates close to the constraints (i.e. very low
concentrations in our case), the optimization might result
in a biased estimate. On the other hand, closely inspecting
the algorithms of cUKF-aug and cUKF-fully-aug reveals a
crucial aspect not addressed in [8]. Therein the authors adopt
the NLP from [9] and apply it to the augmented cases,
while in [9] it was formulated for the additive noise case.
To this end, it remains unclear how cUKF-aug and cUKF-
fully-aug effectively differ from each other aside from the
augmentation, since the intermediate steps for computing the
estimated output ¢ and the corresponding covariance matrix
P,, 4, donot come into effect in the constrained case. Instead,
the outputs resulting from the updated sigma points 2(xj ;)

— 150 [ [EEINLP 1
=z B NLP-grad
= 100 |- IBENLP-grad-hess i
E Ll
o 50 8
g

0

add aug fully-aug

Fig. 4. Run times of cUKF versions with all three noise cases in different
optimization setups.

are computed in each iteration of the optimization, (12).
Additionally, [8] apply the nominal output h(zy) in the cost
function of the fully augmented noise case, neglecting the
non-additive formulation h(zy,vy) used in the unconstrained
UKFs.

We thus conclude that the NLP formulation (12) might
only deliver reliable state estimates for the additive noise case
(cUKF-add) for which it was originally proposed, especially
for state estimates close to the bounds. This may also explain
why the graphs of cUKF-aug and cUKF-fully-aug both show
similarly poor lipids estimates in Figure 3. The poor estimates
of Xj; through cUKF-aug and cUKF-fully-aug also dominate
the comparably high values of NRMSE in Table V.

Estimation results of all optimization setups for a given
noise case are identical. This emphasizes that for linear
output equations the QP reformulation of the NLP by [8]
is indeed equivalent, and that the provision of gradients and
Hessian increases numerical efficiency without jeopardizing
accuracy.

Run times of the constrained UKFs are generally higher
than for the unconstrained versions. However, they can be
vastly reduced through a) analytic expressions of gradient
and Hessian for the NLP, and b) through the QP formulation
in case of linear outputs, as emphasized in Figure 4. Given
the higher resulting system order caused by augmentation,
it is plausible that numerical effort for cUKF-aug and
cUKF-fully-aug is higher than for cUKF-add. In case run
time is critical, a UKF formulation specifically designed for
real-time applications was recently proposed by [4] and might
present an alternative to the UKF designs discussed in this
work.

C. Summary

Figure 5 compares the best versions of the different classes
of implemented algorithms with respect to run time and esti-
mation accuracy, expressed as the average NRMSE over both
measurable and non-measurable states. The unconstrained
UKFs showed faster run times than the constrained UKFs.
The best accuracy was achieved with cUKF-add. However,
the unconstrained UKFs UKF-aug-v as well as the equivalent
UKF-add-vy and UKF-SR-~ deliver almost the same accuracy
with lower run times. Among the constrained UKFs, the
augmented cUKF versions cUKF-aug and cUKF-fully-aug
could not compete with the additive variant cUKF-add with
respect to both run time and accuracy.
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Fig. 5. Comparison of best-in-class implementations of UKFs by means of
run time and estimation error.

VI. CONCLUSION

This study examined various UKF implementations and
applied them to a simplified AD model. Crucial details
of the underlying algorithms as well as modifications to
leverage improved numerical performance were addressed.
This provides useful hints for practitioners working with
Kalman filters.

The best estimation accuracy was achieved with
cUKF-add. The QP reformulation of the underlying NLP
massively reduced the run time without compromising es-
timation accuracy. However, it is only applicable for models
with linear output equations. For models involving nonlinear
output equations, cUKF-NLP-add-grad-hess presents a useful
alternative although the associated run time is much higher,
see Figure 4.

If run time is critical, the unconstrained variants UKF-
SR-v, UKF-add-y and UKF-aug-v with reduced sigma point
scaling represent competitive alternatives. The most conve-
nient implementations might be the augmented unconstrained
UKF-aug and UKF-fully-aug, which deliver acceptable es-
timations at low run times, even for nominal sigma point
scaling.

As a last note, the present study was limited to simulation
data and a reduced AD model with linear outputs. In future
studies, the presented UKFs must therefore be applied to
real measurement data and higher-order AD models involving
nonlinear output equations such as those proposed by [10] or
[24].
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