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Abstract— Trajectory planning in automated driving typi-
cally focuses on satisfying safety and comfort requirements
within the vehicle’s onboard sensor range. This paper intro-
duces a method that leverages anticipatory road data, such as
speed limits, road slopes, and traffic lights, beyond the local
perception range to optimize energy-efficient braking trajec-
tories. For that, coasting, which reduces energy consumption,
and active braking are combined to transition from the current
vehicle velocity to a lower target velocity at a given distance
ahead. Finding the switching instants between the coasting
phases and the continuous control for the braking phase is
addressed as an optimal trade-off between maximizing coasting
periods and minimizing braking effort. The resulting switched
optimal control problem is solved by deriving necessary op-
timality conditions. To facilitate the incorporation of addi-
tional feasibility constraints for multi-phase trajectories, a sub-
optimal alternative solution based on parametric optimization
is proposed. Both methods are compared in simulation.

Index Terms— Trajectory Planning, Switched Systems, Opti-
mal Control, Automated Driving

I. INTRODUCTION

Adopting an ecologically sustainable driving style, of-
ten termed ’eco-driving’, exerts a considerable influence
on diminishing fuel and energy consumption of passenger
vehicles [1], [2]. General guidelines for a human driver
to minimize energy consumption can be summarized into
shifting up as soon as possible, maintaining a steady speed
at the highest gear and low engine revolutions per minute
(rpm), anticipating traffic flow, traffic lights, speed limits,
and full stops, and maximizing coasting periods [3]–[5].

In the domain of automated driving technology, energy-
efficient driving is intrinsically linked with planning and
following energy-optimized velocity profiles according to
eco-driving principles [6]. Despite the extensive research
and industrial applications of automated eco-driving, several
open topics still remain [7]. Notably, the monolithic structure
prevalent in many energy-optimal formulations presents a
significant computational burden, thereby posing substantial
challenges for the streamlined implementation across a di-
verse fleet of vehicle models, each with distinct powertrain
configurations.

Energy-efficient longitudinal guidance has often been ad-
dressed by formulating an Optimal Control Problem (OCP),
where either a fuel or energy consumption model serves as a

∗ Corresponding author.
1 A. Alvarez Prado is alumnus of the Karlsruhe Institute of Technology.

andres.alvarez@alumni.kit.edu
2V. Nenchev and C. Rathgeber are with the

BMW Group, D-85716 Unterschleissheim, Germany.
{vladislav.nenchev;christian.rathgeber}@bmw.de

cost function to be minimized subject to various constraints.
The constraints may include control input saturation as well
as longitudinal vehicle dynamics. The latter usually considers
driving resistances and relies on a detailed powertrain model.
Road grade information [8] and gear sequences [9] have also
been considered within an optimization problem for eco-
driving. Online implementations based on analytical solu-
tions obtained with Pontryagin’s Maximum Principle (PMP)
for typical longitudinal driving maneuvers were proposed in
[10]–[12]. However, these approaches require conservative
simplifications of the optimization problem to solve the
corresponding OCP’s analytically. Dynamic programming
has also been utilized for energy-optimal motion planning,
showcasing its efficacy in handling non-linearities and dis-
crete decisions, such as gear-shifting [13]–[15]. However,
these approaches often incur high computational costs.

Decelerating earlier [2] and extending coasting phases
[16]–[18] is highly effective at reducing energy consumption.
In light of this, our paper introduces a method for the
energy-efficient trajectory planning problem during braking
maneuvers, specifically focusing on optimizing coasting peri-
ods. Our approach addresses eco-driving by maximizing the
duration of coasting phases while simultaneously minimiz-
ing braking effort, accomplished by solving an OCP. This
facilitates a modular architecture: eco-driving is addressed
as a separate high-level planning problem, where a detailed
powertrain model is not required and its output trajectory can
be used as a reference for low-level planning and control
approaches, as depicted in Fig. 1. The latter are assumed
to be responsible for the safety and comfort requirements
of automated driving functions. We focus on the high-level
OCP, solved by utilizing the PMP for a longitudinal vehicle
model that switches between deceleration trajectories consid-
ering coasting and braking phases depending on anticipatory
road data. Specifically, the road slope profile is considered
to model driving resistances, and upcoming relevant road
signs, traffic lights and road curves are interpreted as lower
target velocities at a pre-defined distance ahead, i.e., as
state constraints. Furthermore, an approximate solution of
the OCP is provided based on a parameterized braking
phase, which eases the inclusion of additional constraints
and yields qualitative similar results to the indirect solution
as shown in simulation. Thus, the main contributions of
this paper encompass the powertrain-agnostic nature of the
OCP formulation, and providing solutions through indirect
and direct approaches possible through readily available
computationally efficient solvers.

The paper is organized as follows: In Sec. II the vehicle
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Fig. 1. Integration of the energy-efficient trajectory planning module into
an existing planning and control stack.

dynamics model and the OCP formulation are introduced.
Then, the resulting switched OCP is solved by means of
the indirect method in Sec. III. In Sec. IV, an approximate
parametric solution for the switched OCP is presented. Then,
simulation results for a braking scenario are shown and both
methods are compared in Sec. V.

II. PROBLEM FORMULATION

Assuming low lateral accelerations, only the longitudinal
dynamics of the vehicle have to be considered. The contin-
uous state of the system x evolving over time t contains the
traveled distance s and the vehicle velocity v, i.e., x(t) =
[s(t), v(t)]

⊺ and x(t) ⊂ X ∈ R2
≥0. Let Fb(t) denote the

braking force, and Fres(s, v) – the force acting on the vehicle
due to the driving resistances depending on the current s and
v. Then, the longitudinal dynamics are described as

ṡ(t) = v(t),

v̇(t) = − 1

m

(
Fb(t) + Fres (s(t), v(t))

)
,

where m is the overall vehicle mass. The driving resistance
force Fres(s, v) takes into account rolling friction, road slope,
air, and engine drag resistance forces, and reads

Fres(s, v) = crmg cos (α(s)) +mg sin (α(s))

+
1

2
ρcdAfv

2(t) + Fdrag,

where cr is the rolling friction coefficient, g is the gravita-
tional acceleration, α(s) is the road slope angle varying over
the distance, ρ is the air density, cd is the aerodynamic coef-
ficient of drag, Af is the cross-sectional area of the vehicle’s
frontal surface, and Fdrag is the engine drag resistance force.
The latter models the coasting phases by

Fdrag =

{
Feng, engaged coasting
0, disengaged coasting

where Feng refers to a feedback or estimated value from
the vehicle’s engine drag potential force. Note that the
vehicle model does not account for predictive gear-shifting
behaviour, but reduces gear-shifting into engaged or disen-
gaged coasting phases, where the braking force Fb(t) is set
to zero. In case of hybrid or electric vehicles, Feng models
the current recuperation force of the electric powertrain.

q1 q2 q3

ẋq1(t) ẋq2(t) ẋq3(t), uq3(t)

t ∈ [t0, ts1) t ∈ [ts1 , ts2) t ∈ [ts2 , tf ]

disengaged
coasting

engaged
coasting

braking

Fig. 2. A switched system for anticipating braking maneuvers.

Due to the discrete nature of the coasting and braking
phases and the difference in the continuous state evolution
within these phases, the longitudinal behavior of the vehicle
is modeled as a switched system. Let q1 denote the dis-
engaged coasting, q2 – the engaged coasting, and q3 – the
braking mode. Then, the set of possible discrete modes is
given by Q = {q1, q2, q3}. Let the control input depending
on the discrete mode q be given by

u(t, q) =


0, q = q1

−aeng, q = q2

uq3(t), q = q3

(1)

where aeng = Feng/m is the vehicle’s engine drag or
recuperation deceleration, and uq3(t) = −Fb(t)/m is the
deceleration command to the system in case of an active
braking phase, where uq3(t) ∈ U ⊂ R≤0. Assuming a
constant road slope angle α(s) ≡ α and using (1), the
simplified longitudinal dynamics ẋq(t) = f q (xq(t), u(t, q))
are described by

ẋq(t) =

[
v(t)

−cairv
2(t)− aα + u(t, q)

]
, (2)

for q ∈ Q, with the air resistance coefficient cair = 1
2mρcdAf

and aα = crg cos (α)+g sin (α) modeling the rolling friction
and gradient resistance deceleration. Since aeng is considered
to be a feedback value from the vehicle’s actuators potential,
it is held constant throughout the state evolution in time.
Therefore, both coasting phases, q1 and q2, can be considered
as autonomous systems, whereas the active braking phase q3
is the only controlled sub-system within our problem for-
mulation. From a comfort perspective, arranging the phases
in ascending order with respect to the absolute deceleration
experienced by the passengers in the vehicle minimizes the
magnitude of the jerk impulses while switching phases.
Thus, the vehicle should start in the disengaged coasting
phase q1 at the initial state x0 = [s0, v0]

⊺ ∈ R2
≥0, and then

optionally switch to engaged coasting q2. To mitigate plant-
model mismatches or disturbances, it is essential to approach
the target states xf = [sf , vf ]

⊺ ∈ R2
≥0 within the controlled

phase q3. The switched system is depicted schematically in
Fig. 2. The trajectory starts at the initial time t0 and ends
at the final time tf . The switching times ts1 , ts2 between
the modes are free to choose and no state jumps should
occur upon switching instants, i.e. xq1(ts1) = xq2(ts1) and
xq2(ts2) = xq3(ts2) holds. Penalizing energy consumption
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can be achieved by the well-known eco-driving heuristics of
minimizing braking effort and maximizing coasting periods.
Thus, the cost function is composed of a cost term Ju that
penalizes the control input energy while braking and a cost
term Jt that penalizes the overall duration of the trajectory.
The total cost is given by

J = Ju + Jt =
wu

2

∫ tf

ts2

u2
q3(t)dt+ wt

∫ tf

t0

dt, (3)

where wu ∈ R>0 and wt ∈ R>0 are the corresponding
weights for each term. While Ju denotes the cost of braking
effort, Jt favours longer coasting periods. During the coast-
ing phases no active braking is applied and the vehicle veloc-
ity decrease results from the driving resistances. Therefore,
the vehicle velocity is kept relatively high in comparison to
an active braking phase and the overall duration is reduced
when using longer coasting periods.

By choosing the switching time instants ts1 and ts2 , as
well as the braking deceleration within the braking phase,
denoted by uq3(t), the goal is to minimize the combined
costs (3) with respect to (2) while moving from an initial
state x0 to the target state xf . Thus, the OCP

min
ts1 ,ts2 ,uq3

(t)
Ju + Jt (4a)

s.t. ẋq(t) = f q (xq(t), u(t, q)) , q ∈ Q, (4b)

xq1(t0) = x0, (4c)
xq2(ts1) = xq1(ts1), (4d)
xq3(ts2) = xq2(ts2), (4e)
xq3(tf ) = xf , (4f)
umin ≤ uq3(t) ≤ 0, (4g)
0 ≤ t0 ≤ ts1 ≤ ts2 ≤ tf , (4h)

where umin ∈ R<0 denotes the minimal allowed deceleration
and the final time tf is free, is addressed in the following.

III. INDIRECT APPROACH

The first approach to solve the switched OCP (4) is
based on applying the Hybrid Minimum Principle (HMP)
presented in [19] to derive necessary optimality conditions.
For switched systems without state jumps, applying the HMP
results in similar optimality conditions as the PMP for each
individual phase, with additional continuity conditions at the
switching instants.

A. Formulation of the Hamiltonians

With the costates defined as λq(t) =
[
λsq (t), λvq (t)

]⊺
,

the family of system Hamiltonians reads

Hq(xq(t),λq(t), uq(t)) = λ⊺
q (t)f q (xq(t), uq(t))

+ lq(uq(t)), (5)

for q ∈ Q, and where lq(uq(t)) denotes the family of cost
functions given by

lq(uq(t)) =

{
wt, q = q1, q2
wu

2 u2
q3(t) + wt, q = q3.

Based on the HMP, the Hamiltonians must be continuous at
the switching instants

Hq2(ts1) = Hq1(ts1), (6)
Hq3(ts2) = Hq2(ts2), (7)

and the free final time condition on the braking phase

Hq3(tf ) = 0 (8)

has to be satisfied. Further, the optimal control input that
minimizes (5) at q3 needs to fulfill the stationary condition
∂Hq3/∂uq3

∣∣
(·)∗ = 0, yielding the optimal continuous control

u∗
q3(t) = − 1

wu
λ∗
vq3

(t). (9)

B. Costate dynamics

The costate dynamics at each phase are described by

λ̇
∗
q(t) = −∂Hq

∂xq

∣∣∣∣
(·)∗

=

[
0

−λ∗
sq (t) + 2cairv

∗
q (t)λ

∗
vq (t)

]
,

for q ∈ Q, with the transition conditions

λ∗
q2(ts1) = λ∗

q1(ts1), (10)

λ∗
q3(ts2) = λ∗

q2(ts2). (11)

Note that since λ̇∗
sq (t) = 0 for all q ∈ Q and conditions

(10), (11) hold, the costate related to traveled distance is
constant throughout the entire trajectory, i.e., λ∗

sq (t) ≡ λs

for all q ∈ Q. Thus, the costate dynamics are reduced to

λ̇∗
vq
(t) = −λs + 2cairv

∗
q1(t)λ

∗
vq1

(t). (12)

Inserting (9) and (4f) into (8) and solving for
λ∗
vq3

(tf ) = λv(tf ), the following condition on the final
costate value arises

λv(tf ) = −wu

(
cairv

2
f + aα

)
+

√
w2

u

(
cairv2f + aα

)2
+ 2wu(wt + λsvf ). (13)

In addition, plugging (4e) and (11) into (7), the following
condition on the costate at the second switching instant
λ∗
vq3

(ts2) = λ∗
vq2

(ts2) = λv(ts2) should be fulfilled

λv(ts2) = 2wuaeng. (14)

Analogously, inserting (4d) and (10) into (6) yields the
transition condition for λ∗

vq2
(ts1) = λ∗

vq1
(ts1) = λv(ts1):

λv(ts1) = 0. (15)

C. State dynamics

Since both coasting phases are autonomous systems, their
state evolution is independent of their respective costates.
However, for the braking phase, the optimal state evolution
is given by using (9) as the optimal control input

ẋ∗
q3(t) =

[
vq3(t)

−cairv
2(t)− aα − 1

wu
λ∗
vq3

(t)

]
. (16)
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D. Solving the switched optimal control problem

To solve the switched OCP, we make use of the fact that
the state evolution from the autonomous coasting phases are
decoupled from their corresponding costates. Since a closed-
form solution for the state dynamics at the coasting phases
exists, the costates are described by non-homogeneous, first-
order Ordinary Differential Equations (ODEs) with time-
varying coefficients. These are also amenable for a closed-
form solution. The corresponding closed-form expressions
for the state evolutions and costates are given in Appendices
I and II.

The optimal braking phase trajectory is described by the
non-linear coupled ODEs given in (16) and (12), whose so-
lution relies on numeric integration. By utilizing the closed-
form expressions of both coasting phases, we can reduce
the switched OCP into a single Boundary-Value Problem
(BVP) described by the state dynamics at braking and its
corresponding costate related to the velocity state. Thus, we
define z(t) =

[
s∗q3(t), v

∗
q3(t), λ

∗
vq3

(t)
]⊺

∈ Z ⊂ R3
≥0 as

ż(t) =

 v∗q3(t)
−cairv

∗2
q3 (t)− aα − 1

wu
λ∗
vq3

(t)

−λs + 2cairv
∗
q3(t)λ

∗
vq3

(t)

 , t ∈ [ts2 , tf ]

(17)
with z(ts2) =

[
s∗q2(ts2), v

∗
q2(ts2), λv(ts2)

]⊺
and

z(tf ) = [sf , vf , λv(tf )]
⊺ as boundary conditions. In

order to solve (17) with an off-the-shelf BVP solver, we
transform the original free end time problem into a fixed
end time configuration via time variable transformation
given by t = (tf − ts2)τ + ts2 , with τ ∈ [0, 1] and

d (·)
dt

=
d (·)
dτ

dτ

dt
=

d (·)
dτ

1

tf − ts2
.

Thus, we define ξ(τ) := z ((tf − ts2)τ + ts2) ∈ Ξ ⊂ R3
≥0,

with dynamics

dξ(τ)

dτ
= h(ξ(τ)) = (tf − ts2)ż(t), τ ∈ [0, 1] ,

the initial condition ξ(0) = z(ts2), and the final
condition ξ(1) = z(tf ). The switching and final
times are gathered in a vector of unknown parameters
t = [ts1 , ts2 , tf ]

⊺ ∈ T ⊂ R3
≥0, which are to be found along

ξ(τ). We describe the still unknown costate λs in depen-
dency of t by evaluating (22) at ts1 . Finally, the BVP reads

Find ξ(τ), t (18a)

s.t.
dξ(τ)

dτ
= h(ξ(τ), t), τ ∈ [0, 1] (18b)

ξ(0) = b0(t), (18c)
ξ(1) = bf (t), (18d)

with b0(t) = z(ts2) and bf (t) = z(tf ).

IV. DIRECT APPROACH FOR APPROXIMATE SOLUTION

In the following, a parametric optimization approach is
presented as an alternative to the indirect approach described

in the previous section. An advantage of using a para-
metric approach is the easier extendability with additional
constraints, which were previously neglected within the
indirect method. Control input saturation constraints (4g)
are important to avoid high decelerations which result in
uncomfortable trajectories and might not be feasible to real-
ize by the vehicle actuators. In addition, constraints on the
discrete switching time instants (4h) avoid negative duration
of the discrete phases, guaranteeing feasible switching and
final times. Motivated by the optimal trajectories obtained
from the indirect approach — shown later in Sec. V — we
approximate the optimal control input u∗

q3(t) with a state
feedback control law described by

ûq3(t) = −umvq3(t) + un, (19)

with control parameters um ∈ R and un ∈ R. The closed-
form solution in time and space domain of the braking
dynamics with a control input from type (19), as well as
the analytical expression for the braking phase duration,
can be found in Appendix III. By inserting (24) and (26)
into the cost function (3) the costs can be reformulated in
the dependency of the switching times and control input
parameters.

Note that the state evolution expressions of the coast-
ing phases q1 and q2 — including initial and transition
conditions on the states — are encoded into the closed-
form expression of the state evolution in the braking phase
q3, which has been inserted into the cost function. Hence,
(4d) — (4e) are always fulfilled and can be neglected.
The final condition on the states (4f) is reformulated
in the space domain by defining the equality constraint
gf = sf − sq3(vf ) = 0, where sq3(vq3) is given in (25). The
saturation on the continuous control input is considered at
critical times by gumax

= [−ûq3(ts2),−ûq3(tf )]
⊺ ≥ 0 and

gumin
= [−umin + ûq3(ts2),−umin + ûq3(tf )]

⊺ ≥ 0. An ad-
ditional constraint gc = u2

m − 4cair (aα − un) ≥ 0 is added
to account for feasibility of the closed-form expressions of
the braking phase. The condition on strictly increasing criti-
cal times (4h) can be simplified using the time transformation
∆tq1 = ts1 − t0, ∆tq2 = ts2 − ts1 , and ∆tq3 = tf − ts2
throughout the entire optimization problem. Finally, by defin-
ing the parameter vector θ = [∆tq1 ,∆tq2 , um, un]

⊺ ∈ R4,
we approximate the original switched OCP by the Nonlinear
Program (NLP)

min
θ

J (θ) (20a)

s.t. geq (θ) = 0, (20b)
gineq (θ) ≥ 0, (20c)

with the equality constraint geq (θ) = gf and the inequality
constraint vector gineq (θ) =

[
gumax

, gumin
, gc, θ1, θ2

]⊺
.

V. CASE STUDY

The switched OCP is solved in a simulation example using
the indirect and direct method. The indirect approach yields
the BVP (18), which is solved using the BVP subroutine of
the SciPy Python library [20]. The direct approach yields the
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TABLE I
PARAMETERS USED IN CASE STUDY.

Parameter Symbol Value Unit

Vehicle mass m 2795 kg
Cross-sectional area Af 2.26 m2

Engine drag deceleration aeng 0.4 m/s2
Coefficient of drag cd 0.25 –
Rolling coefficient of friction cr 0.015 –

Road slope angle α 2 deg
Gravitational acceleration g 9.81 m/s2

Air density ρ 1.29 kg/m3

Weight on overall trajectory duration wt 1.0 –
Weight on control input energy wu 0.1 –

Control input constraint umin -2.0 m/s2

NLP (20) solved using the Interior Point Optimizer (IPOPT)
[21]. A representative parameter set given in Tab. I is used.
The switched OCP plans a multi-phase trajectory which
decelerates the vehicle from an initial velocity of 150 km/h
to 100 km/h in 500 m.

Fig. 3 shows the result of the simulation example.
Both methods show similar qualitative results. The in-
direct approach results in the optimal phase durations(
∆ti.m.

q1 ,∆ti.m.
q2 ,∆ti.m.

q3

)
≈ (7.98 s, 2.86 s, 2.95 s), whereas

the phase durations with the direct approach are given by(
∆td.m.

q1 ,∆td.m.
q2 ,∆td.m.

q3

)
≈ (7.93 s, 2.87 s, 2.98 s). In addi-

tion, the optimal state feedback control parameters are
um ≈ −1.55 · 10−1 s−1 and un ≈ −5.99 m/s2. The cost
from the indirect approach trajectory, J i.m. ≈ 14.01588, is
slightly lower than its direct counterpart, Jd.m. ≈ 14.01591.
The similarity of both trajectories highlights the good ap-
proximation of the optimal braking control given by the
control law from (19). Note that more than half of the
traveled distance is covered by disengaged coasting, followed
by a shorter engaged coasting phase. Finally, the target
states are reached with a moderate braking deceleration
command within the braking phase. Thus, the relevant eco-
driving principles for braking maneuvers are well represented
by the stated OCP, potentially enhancing the energy-saving
capabilities of automated driving vehicles. Note that solving
the OCP in a single shot optimization was sufficient to
reach the target state conditions in simulation. In a practical
realization, the OCP will be solved repetitively in a receding
horizon fashion to consider updated road information and to
account for disturbances.

VI. CONCLUSION AND OUTLOOK

We proposed two solutions for the Optimal Control Prob-
lem (OCP) associated with planning energy-efficient longi-
tudinal braking trajectories with initial and end constraints
based on eco-driving principles and without requiring com-
plex fuel or energy consumption models. Using an indirect
approach, the original switched OCP was transformed into
a single boundary value problem. To ease the extension of
the OCP with additional constraints, a direct approach that
translates the original OCP into a parametric optimization
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Fig. 3. Comparison of optimal multi-phase trajectories computed with the
indirect method (i.m.) and its approximation using the direct method (d.m.).

problem was also presented. The algorithm’s powertrain-
agnostic nature and its compatibility with off-the-shelf nu-
merical solvers make it particularly suitable for integration
into diverse vehicular trajectory planning and control archi-
tectures. In the context of electric vehicles, the method can be
readily adapted by excluding the disengaged coasting phase
and considering the engaged coasting mode as regenerative
braking.

Future work will explore the incorporation of variable road
slope data. In addition, more realistic simulation scenarios
and real-world vehicle testing should be considered to assess
the energy-saving achieved with the proposed methods.

APPENDIX I
CLOSED-FORM STATE EVOLUTION FOR COASTING PHASES

For the coasting phases, the closed-form solution of (2) is
given by

vq(t) = bq,1 tan

(
bq,2 (t− tq,0) + arctan

(
vq,0
bq,1

))
, (21)

and

sq(t) = sq,0 +
1

2cair
ln


(

vq,0

bq,1

)2
+ 1(

vq(t)
bq,1

)2
+ 1


for q ∈ {q1, q2}. Note that the initial and transition
conditions are encoded into the closed-form expressions
as (sq1,0, vq1,0) = (s0, v0) at tq1,0 = t0 for the
disengaged coasting phase, and (sq2,0, vq2,0) =
(sq1(ts1), vq1(ts1)) at tq2,0 = ts1 for the engaged
coasting phase. Furthermore, we define bq1,1 =

√
aα/cair,

bq1,2 = −√
aαcair, bq2,1 =

√
(aα + aeng) /cair, and

bq2,2 = −
√
(aα + aeng) cair as constant terms.
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APPENDIX II
CLOSED-FORM COSTATES FOR COASTING PHASES

Inserting (21) in (12) and considering the transition con-
ditions from (10) and (11), the closed-form expressions for
the coasting phases are given by

λ∗
vq2

(t) = λs

v∗q2(t)− v∗q2(ts2)

cairv∗q2
2(t) + aα + aeng

+ λv(ts2)
cairv

∗
q2

2(ts2) + aα + aeng

cairv∗q2
2(t) + aα + aeng

(22)

for the engaged coasting phase, and

λ∗
vq1

(t) = λs

v∗q1(t)− v∗q1(ts1)

cairv∗q1
2(t) + aα

+ λv(ts1)
cairv

∗
q1

2(ts1) + aα

cairv∗q1
2(t) + aα

,

for the disengaged coasting phase.

APPENDIX III
CLOSED-FORM BRAKING PHASE

In the time domain, the closed-form solution of the braking
phase (2) using the state feedback control (19) is given by

sq3(t) = sq2(ts2) +
bq3,1 − um

2cair
(t− ts2)

+
1

cair
ln

(
1− bq3,2 exp (−bq3,1 (t− ts2))

1− bq3,2

)
(23)

and

vq3(t) =
(um + bq3,1) bq3,2 exp (−bq3,1 (t− ts2))

2cair (1− bq3,2 exp (−bq3,1 (t− ts2)))

− (um − bq3,1)

2cair (1− bq3,2 exp (−bq3,1 (t− ts2)))
, (24)

with

bq3,1 =
√
u2
m − 4cair (aα − un),

bq3,2 =
2cairvq2(ts2) + um − bq3,1
2cairvq2(ts2) + um + bq3,1

.

Integrating in the space domain via dv/dt = (dv/ds)v, we
obtain the expression for the braking phase:

sq3(vq3) = sq2(ts2)

+
1

2cair
ln

(
cairv

2
q2(ts2) + umvq2(ts2) + aα − un

cairv2q3 + umvq3 + aα − un

)

+
um

2cairbq3,1

(
ln

(
2cairvq3 + um − bq3,1
2cairvq3 + um + bq3,1

)
+ ln

(
2cairvq2(ts2) + um + bq3,1
2cairvq2(ts2) + um − bq3,1

))
. (25)

The elapsed time during the braking phase is described by

∆tq3 = − 1

bq3,1

(
ln

(
2cairvf + um − bq3,1
2cairvf + um + bq3,1

)
+ ln

(
2cairvq2(ts2) + um + bq3,1
2cairvq2(ts2) + um − bq3,1

))
. (26)
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[13] E. Hellström, J. Åslund, and L. Nielsen, “Design of an efficient
algorithm for fuel-optimal look-ahead control,” Control Engineering
Practice, vol. 18, no. 11, pp. 1318–1327, 2010.
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