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Abstract— Abrupt maneuvers by surrounding vehicles (SVs)
can typically lead to safety concerns and affect the task
efficiency of the ego vehicle (EV), especially with model uncer-
tainties stemming from environmental disturbances. This paper
presents a real-time fail-operational controller that ensures the
asymptotic convergence of an uncertain EV to a safe state, while
preserving task efficiency in dynamic environments. An incre-
mental Bayesian learning approach is developed to facilitate
online learning and inference of changing environmental distur-
bances. Leveraging disturbance quantification and constraint
transformation, we develop a stochastic fail-operational barrier
based on the control barrier function (CBF). With this devel-
opment, the uncertain EV is able to converge asymptotically
from an unsafe state to a defined safe state with probabilistic
stability. Subsequently, the stochastic fail-operational barrier
is integrated into an efficient fail-operational controller based
on quadratic programming (QP). This controller is tailored for
the EV operating under control constraints in the presence
of environmental disturbances, with both safety and efficiency
objectives taken into consideration. We validate the proposed
framework in connected cruise control (CCC) tasks, where SVs
perform aggressive driving maneuvers. The simulation results
demonstrate that our method empowers the EV to swiftly return
to a safe state while upholding task efficiency in real time, even
under time-varying environmental disturbances.

I. INTRODUCTION

With the rapid advancement of autonomous driving tech-
nology, ensuring the safety and reliability of autonomous
vehicles (AVs) has become a paramount concern [1], [2].
One key underlying factor to this concern is the existence of
model uncertainties resulting from unexpected environmental
disturbances in high-speed driving scenarios [3], [4], such
as changing road grade and aerodynamic drag. These factors
necessitate high-speed AVs to continually adapt to inevitable
disturbances to achieve safe and efficient operations. Addi-
tionally, the unpredictable maneuvers of surrounding vehicles
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(SVs), such as sudden deceleration, are challenging to an-
ticipate. These unexpected maneuvers significantly influence
the motion of the ego vehicle (EV), compromising driving
efficiency and potentially leading to safety concerns [5]. This
requires the EV to not only navigate safely under normal
conditions but also promptly and effectively respond to these
disturbances, such that continuous operation can be ensured.
To achieve this target, the EV must react swiftly to sudden
maneuvers of SVs and adapt to time-varying environmental
disturbances in real time. This necessitates the development
of an efficient fail-operational controller that operates at over
50Hz to ensure that the EV reverts to a predefined safe
state in the event of a fault (e.g., a safety violation) while
maintaining its normal operational ability [6].

To effectively respond to hazardous situations, several
works have focused on trajectory repairing for the EV [7]–
[9]. While these works strive to replan infeasible trajectory
segments to enhance safety, they lack formal safety assurance
analysis. Furthermore, the repair frequency is slow, which
is typically below 50Hz. This limitation hinders the EV’s
capacity to react swiftly to abrupt maneuvers executed by
SVs in high-speed scenarios. To address these issues, re-
searchers have employed reachability analysis to ensure the
safety of the EV [10], [11]. For instance, a low-level safety-
preserving controller running at 50Hz has been developed to
minimally intervene in unsafe actions based on the Hamilton-
Jacobi reachability theory [11]. Additionally, control bar-
rier functions (CBFs) have been adopted to ensure formal
safety for safety-critical autonomous driving systems [12]–
[14]. These methods involve the computation of a forward
invariance safe set, serving as a hard constraint to realize
safe interactions between the EV system and dynamic SVs.
Although these works can provide formal safety assurances
for deterministic systems, they may encounter challenges
in ensuring the safety of the EV in the presence of model
uncertainties resulting from environmental disturbances.

To cater to environmental disturbances, robust CBF has
been developed [15]–[17]. In particular, to address the chal-
lenges posed by road and wind disturbances in high-speed
autonomous driving scenarios, a disturbance observer-based
safety-critical controller has been proposed for connected
cruise control (CCC) tasks [16]. However, determining an
appropriate robust bound remains a challenge due to the
need to strike a balance between robustness and feasibility
[17]. On the other hand, researchers have explored Bayesian
learning approaches to quantify environmental disturbances.
These estimated disturbances have been leveraged to develop
stochastic CBFs [18]–[20], which provide formal safety
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analysis for uncertain systems. For instance, an adaptive
CBF has been introduced to enable safety-critical high-speed
Mars rover missions, incorporating tractable Bayesian model
learning [19]. Nonetheless, the learning process necessitates
offline training due to its high computational complexity. To
facilitate learning efficiency, an event-triggered mechanism
is developed to update the Gaussian Process (GP) in model
learning for safety-critical uncertain systems [20]. Despite
these advancements, none of these works addresses safety
recovery for the EV under environmental disturbances. It is
worthwhile to mention that the capability of safety recovery
becomes pivotal in autonomous driving scenarios when sud-
den maneuvers by SVs propel the EV into an unsafe state
in the presence of uncertain environmental disturbances.

In this paper, we propose a real-time fail-operational
controller for the EV in the presence of time-varying envi-
ronmental disturbances. This controller is designed to guide
autonomous vehicles back to a predefined safe state asymp-
totically, while upholding task efficiency. First, we devise an
incremental learning strategy to reduce the online learning
complexity of GPs from O(n3) to O(n2), thereby enabling
the EV to adapt online to changing environmental distur-
bances effectively. Subsequently, a stochastic fail-operational
barrier is developed by utilizing CBF in conjunction with the
estimated environmental disturbances obtained through the
incremental learning process. Rigorous theoretical analysis
of probabilistic asymptotic stability is provided with the
aim of converging the unsafe EV back to a defined safe
set. Finally, we validate the effectiveness of the proposed
fail-operational controller in a CCC task under time-varying
environmental disturbances, demonstrating effective online
learning and safety recovery for the EV.

The remainder of the paper is organized as follows: Sec-
tion II presents the preliminaries and problem statement. In
Section III, we detail the proposed methodology. Section IV
demonstrates the numerical simulation of the proposed al-
gorithm on an uncertain CCC system. Finally, Section V
summarizes the key findings and insights of this study.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this study, we consider the class of uncertain discrete-
time nonlinear systems for the EV described by

xk+1 = F (xk, uk) = f(xk) + ψ(xk)uk + w(xk), (1)

where xk ∈ X ⊂ IRn, uk ∈ U ⊂ IRm and w ∈ W ⊂ IRn

denote the state, control, and uncertain disturbance vectors,
respectively; k ∈ Z+ = {0, 1, · · · }. The system matrix f :
X → IRn and input matrix ψ : U → IRn×m are local
Lipschitz continuous. We make the following assumptions
to tackle the uncertain disturbances in (1).

Assumption 1. The uncertain disturbance vector w has a
bounded norm in the associated Reproducing Kernel Hilbert
Space [21], corresponding to a differentiable kernel k.

Assumption 2. The following collection of state-disturbance

trajectories is available:

DN :=
{(
x(i), w̃(i)

)}N

i=1
, w̃(i) = w(x(i)) + υi, (2)

where N ∈ Z+ denotes the number of samples; w̃(i) =

[w̃
(i)
1 , w̃

(i)
2 , · · · , w̃(i)

n ]T denotes the i-th measured disturbance
vector w(x(i)) = [w1(x

(i)), w2(x
(i)), · · · , wn(x

(i))]T with
independent and identically distributed white noise υi ∼
N
(
0, σ2

noiseIn
)
.

Remark 1. Assumption 1 implies that the uncertain distur-
bance vector w is regular to the kernel and has a certain level
of smoothness. This assumption further indicates the matrix
F is local Lipschitz continuous on X , ensuring the solution
of (1) is unique and exits.

Consider the system (1), we further define the unsafe set,
safe set, safe boundary, and interior safe set by a C1 function
h : IRn → IR as follows:

Out(S) = {x ∈ X | h(x) < 0}, (3a)
S = {x ∈ X | h(x) ≥ 0}, (3b)
∂S = {x ∈ X | h(x) = 0}, (3c)

Int(S) = {x ∈ X | h(x) > 0}. (3d)

Definition 1. The continuous function γ : (−c, d) → (−c, d)
is called an extended class K function for some c, d ∈ R+, if
it is strictly increasing and satisfies the following conditions:

γ(h(x)) = αh(x), α ∈ (0, 1),∀h(x) ̸= 0, (4a)
γ(0) = 0. (4b)

Definition 2. ( [22], [23]) The C1 function h is called a
discrete-time control barrier function (CBF) for the set S
defined in (3a)-(3d), if there exists extend K functions γ
with S ⊂ X , such that

∆h(xk) + γ(h(xk−1)) > 0, (5)

where ∆h(xk) := h(xk)− h(xk−1).

The goal of this work is to design a fail-operational
controller for the uncertain nonlinear EV system (1) to
accomplish specified tasks with the desired functionality,
while satisfying the following two key objectives:

1) Online adaptivity: The EV system (1) can continuously
adapt to time-varying environmental disturbances using
newly collected interaction data in real time.

2) Fail-operational control: The EV system (1) can
asymptotically converge to the safe set S from an
unsafe state Out(S), while upholding task efficiency.

III. METHODOLOGY

In this section, we first introduce an online incremen-
tal Bayesian learning approach to approximate the distur-
bances in the system (1). Then, we develop a stochas-
tic fail-operational control barrier based on the quantified
disturbances learned from interaction data with mathemat-
ical proof. Finally, We design an efficient fail-operational
Quadratic Programming (QP) controller using stochastic
optimization techniques.
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A. Gaussian Process

As a typical Bayesian learning approach, the GP is a
nonparametric method for learning complex functions and
their uncertainty distributions [24]. In this study, we develop
an incremental GP model that leverages Assumption 1 to
learn the disturbance w using collected interaction data from
the environment during operation.

Similar to [25], we assume disturbances are uncorrelated
to train n independent GPs to approximate the nonlinear
function w : X → Rn as follows:

ŵ (x) =


ŵ1 (x) ∼ N (µ1 (x) , σ

2
1(x))

ŵ2 (x) ∼ N (µ2 (x) , σ
2
2(x))

. . .
ŵn (x) ∼ N (µn (x) , σ

2
n(x))

. (6)

Given N collected data pairs DN :=
{(
x(i), w̃(i)

)}N
i=1

,
the mean and variance of the j-th component ŵj(x∗) at the
query state x∗ can be inferred as:

µj(x∗) = kTj (Kσ,j + σ2
noiseIN )−1w̃N,j , (7a)

σ2
j (x∗) = kj(x∗, x∗)− kTN,j(Kσ,j + σ2

noiseIN )−1kN,j ,
(7b)

where w̃N,j = [w̃
(1)
j , w̃

(2)
j , · · · , w̃(N)

j ]T ∈ RN denotes
the observed vector. Kσ,j ∈ RN×N is the covariance
matrix with entries [Kσ,j ](i,q) = kj(xi, xq), i, q ∈ IN

1 =
{1, · · · , N}, and kj(xi, xq) is the kernel function. kN,j =
[kj(x

(1), x∗), kj(x
(2), x∗), · · · , kj(x(N), x∗)]

T ∈ RN .

Lemma 1. ( [26], [27]) Let ς ∈ (0, 1) and the measurement
noise υj is uniformly bounded by σnoise. Then a probability
Pr holds

Pr{∥µ(x)− δ(x)∥ ≤ ∥β∥∥σ(x)∥,∀x ∈ X} ≥ (1− ς)2n,
(8)

where β = [β1, β2, · · · , βn], βj = (2∥δj∥2kj
+

300γj ln
3(N+1

υj
))−2; γj is the maximum information gain

obtained about the GP prior from N noisy samples as
follows:

γj = max
x(1), ..., x(N)∈X

1

2
log(det(IN − Kσ,j(x, x

′)

σ2
noise

)), (9)

where x, x′ ∈ {x(1), . . . , x(N)}.

B. Incremental Learning for Enhanced GPs

A significant challenge in the practical application of GPs
is the computational burden associated with learning from
large datasets. Incremental learning techniques can help to
overcome this challenge through processing data streams in
small increments, instead of processing the entire dataset at
once [28], [29]. This technique enables the efficient updating
of the GP model as new data becomes available, without
retraining the entire model from scratch.

1) Active Learning: To effectively acquire labeled data
points that offer the most valuable information for the
incremental learning process, an active learning strategy is
utilized. This strategy facilitates the selective and strategic
acquisition of labeled data points, optimizing the learning
progress and concurrently reducing the computational load

associated with processing extensive datasets. In the context
of incremental learning, we utilize uncertainty estimates
provided by the GP model to select data points that are
most informative for model updates. At each timestep, we
calculate the uncertainty of each data point of the current
kernel matrix using the covariance matrix provided by the GP
model with the latest data point. Subsequently, we replace the
least relevant data point, measured by the diagonal elements
of the covariance matrix, with the latest data point for train-
ing purposes. This prioritization of labeling uncertain data
points enables the incremental GP to focus on refining its
predictions in regions of the input space where its confidence
is low, thereby enhancing the estimation of disturbances in
the current state.

We measure the relevance of data points using the squared
Euclidean distance between each point and a new point of
interest. To quantify this relevance, we employ a radial basis
function (RBF) formulated as:

k(xi, xnew) = θ exp

(
− 1

2l2
∥xi − xnew∥2

)
, (10)

where xnew denotes the newly acquired data point, while xi
corresponds to the i-th data point in our kernel matrix. The
parameter θ signifies the signal variance, playing a crucial
role in regulating the scale of the kernel’s output. l serves
as the length scale parameter, dictating the rate where the
similarity between data points diminishes with increasing
distance.

2) Incremental Learning: With the informative data point
selected by the active learning strategy , we leverage the
Woodbury matrix identity to efficiently update the GP’s
kernel matrix and its inverse in an incremental way.

We denote the current kernel matrix and its inverse as
Kσ,cur ∈ RN×N and K−1

σ,cur ∈ RN×N , respectively. We
assume the dataset has reached its predefined size. At each
time step, we add a newly collected interaction data point
to the dataset and simultaneously remove the one with the
lowest similarity based on (10) from the current kernel
matrix.

The current kernel matrix Kσ,cur can be represented in
block matrix form as:

Kσ,cur =

[
k0 kTN−1

kN−1 Ω

]
, (11)

where k0 ∈ R and kN−1 ∈ RN−1 represent the variance and
covariance vector of the data point that exhibits the lowest
similarity with the newly collected data point in the dataset,
respectively; Ω ∈ R(N−1)×(N−1) is the sub-matrix at the
right bottom corner.

The inverse matrix of Kσ,cur can be computed as:

K−1
σ,cur =

[
ρ0 ρTN−1

ρN−1 S

]
, (12)

where ρ0 ∈ R, ρN−1 ∈ RN−1, and S ∈ R(N−1)×(N−1).
To derive the updated kernel matrix Kσ,new, the following

procedure is implemented as outlined in [29]: Initially, we
remove the least relevant data point chosen by the active
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learning strategy from the current dataset. Next, we compute
the variance k0,new ∈ R and the covariance vector kN−1,new ∈
RN−1 corresponding to the newly introduced data point. The
resulting new kernel matrix Kσ,new is obtained as:

Knew =

[
Ω kN−1,new

kTN−1,new k0,new + σ2
noiseI

]
, (13)

where σ2
noiseI is the noise covariance matrix.

The inverse matrix of Knew can be computed using the
Woodbury matrix identity as follows:

K−1
new =

[
P + PkN−1,new(PkN−1,new)

TQ −PkN−1,newQ
−(PkN−1,new)

TQ Q

]
,

(14)
where P = Ω − ρN−1 · ρTN−1ρ

−1
0 ∈ R(N−1)×(N−1) and

Q = (k0,new + σ2
noiseI − kTN−1,newPkN−1,new)

−1 ∈ R.
Note that the Woodbury matrix identity involves several

matrix multiplications, resulting in a computational com-
plexity of O(N2) for this increment learning, where N
represents the size of the dataset. Therefore, this approach
is computationally efficient compared to the traditional GP,
which requires the inversion of the entire kernel matrix and
has a computational complexity of O(N3).

To further improve the learning performance, we optimize
the kernel hyperparameters of the RBF kernel kj (7) using
the log-marginal likelihood function of the following form:

log p(w̃N,j |XN ,Θj) =
1

2
w̃T

N,j(KN + θ2f,jIN )−1w̃N,j

+
1

2
log

∣∣KN + θ2f,jIN
∣∣+ N

2
log(2π),

(15)
where w̃N,j = [w̃

(1)
j , w̃

(2)
j , · · · , w̃(N)

j ]T denotes the observed
disturbances vector; XN = [x(1), x(2), · · · , x(N)]T denotes
the corresponding state vector; Θj = [θf,j , lf,j ]

T denotes
the kernel hyperparameters of the following RBF function:

kj(x
(i), x(j)) = θf,j exp

(
− 1

l2f,j
||x(i) − x(j)||2

)
. (16)

This optimization is performed online using a validation
set as follows:(
θ∗f,j , l

∗
f,j

)
= minimize(

θf,j ,lf,j
)
∈R×R

log p(w̃N,j |XN , θf,j , lf,j),

(17)
subject to θf,j(0) = θf,0, (18)

lf,j(0) = lf,0, (19)
θf,min ≤ θf,j ≤ θf,max,(20)
lf,min ≤ lf,j ≤ lf,max,, (21)

where θf,0 and lf,0 represent the initial kernel hyperparam-
eters; θf,min and θf,max represent the minimum and max-
imum value for the kernel hyperparameter θf , respectively;
lf,min and lf,max represent the minimum and maximum
value for the kernel hyperparameter l, respectively.

To solve this bound constrained optimization prob-
lem (17)-(21), we employ the L-BFGS-B optimization al-
gorithm [30]. This iterative method approximates the inverse
Hessian matrix of the objective function, allowing us to find

Fig. 1. The stochastic fail-operational barrier module enables the red
EV to recover from an unsafe state (top subfigure) to a safe state (bottom
subfigure).

the optimal set of hyperparameters while adhering to the
specified bounds for each hyperparameter.

C. Stochastic Fail-Operational Barrier

We aim to design a stochastic fail-operational barrier
module that ensures the uncertain EV converges from the
unsafe state Out(S) to a safe state S and remains in the
safe state after recovery, as depicted in Fig. 1.

Lemma 2. Let Dw = [µ(xk−1) − cσ(xk−1), µ(xk−1) +
cσ(xk−1)], c ∈ R+ represents the high-confidence distur-
bances set approximated by (7) for the uncertain nonlinear
system (1) under Assumptions 1-2. Then the unsafe state
x0 ∈ Out(S) asymptotically converges to safe set S with
probability at least (1− ς)2n by the following constraint:

h(f(xk−1))+h(ψ(xk−1)uk−1 + ϵ(w(xk−1))

> h(xk−1)− γ(h(xk−1),
(22)

where ϵ(w(xk−1)) = h(µ(xk−1))− c∥h(σ(xk−1))∥, and the
barrier function h takes the form of an affine function.

Proof. From Lemma 1, we obtain

Pr{w(xk−1) ∈ Dw} ≥ (1− ς)2n. (23)

Utilizing the properties of the affine barrier function h, we
obtain:

Pr{h(w(xk−1)) ≥ ϵ(w(xk−1))} ≥ (1− ς)2n. (24)

Consequently, the following result holds with a probability
of at least (1− ς)2n:

h(f(xk−1)) + h(ψ(xk−1)uk−1) + h(w(xk−1))

≥ h(f(xk−1)) + h(ψ(xk−1))uk−1 + ϵ(w(xk−1))

> h(xk−1)− γ(h(xk−1)).

(25)

This yields:

Pr{h(xk) > h(xk−1)− γ(h(xk−1)} ≥ (1− ς)2n. (26)

With Definition 1, we deduce the following results with
probability at least (1− ς)2n :

h(xk)− (h(xk−1)− γ(h(xk−1))
= h(xk)− (1− α)h(xk−1) > 0.

(27)

3880



Hence, h(xk) > (1−α)h(xk−1), where α ∈ (0, 1). It yields:

Pr{h(xk) ≥ (1− α)h(xk−1)} ≥ (1− ς)2n. (28)

This result indicates that the state of the EV with h(x0) < 0
will asymptotically converge to the safe set S at a rate of at
least (1− α)k over k steps of evolution.

Remark 2. The constraint presented in (28) has significant
implications for the behavior of the uncertain nonlinear
system (1) when the system is inside the safe set S, where
h(xk) ≥ 0. This constraint ensures that, once the system
enters the safe set, it remains within this region, guaranteeing
the forward invariance of the safe set S. This critical property
has been discussed in detail in [23].

D. Real-Time Fail- Operational Controller

The fail-operational controller aims to achieve the desired
task performance specified by fail-operational control cri-
teria, as outlined in [6]. This requires the fail-operational
controller to repair the undesired state while upholding task
efficiency. Considering the input constraints of the uncer-
tain nonlinear EV system (1), we introduce the following
computational-efficiency fail-operational controller in a QP
formulation:

u∗k =argmin
uk∈Rm

∥uk∥2 + λζζ
2 + λιι

2, (29)

subject to h(f(xk)) + h(ψ(xk))uk + ϵ(w(xk))

> h(xk)− γ(h(xk))− ζ, (30)
∆V (xk) + cvV (xk) < ι, (31)
umin ≤ uk ≤ umax, (32)

where umin and umax denote the minimum and maximum
control input value, respectively; ζ, ι ∈ IR+ are non-negative
slack variables used to ensure the feasibility of the con-
strained optimization problem (29)-(32); λζ and λι ∈ R+ are
corresponding weights; ∆V (xk) = V (xk+1)−V (xk), where
V is a discrete-time exponentially stabilizing control Lya-
punov function (ES-CLF) [31] utilized to encode the desired
state for the EV, and the constraint (31) is specifically crafted
to stabilize the uncertain nonlinear EV system (1) toward
this desired state, which can be further transformed into a
deterministic constraint with the estimated disturbances set
Dw based on [32].

Remark 3. The parameters λζ is assigned a large penal-
ization weight to enforce the constraint ζ to be a negligible
value, thereby minimizing its influence on the stochastic fail-
operational barrier constraint (22). Furthermore, λζ is greater
than λι to prioritize safety over task performance. According
to Lemma 2, when constraint (22) is satisfied, the fail-
operational control obtained by solving the QP problem (29)-
(32) can effectively navigate the EV from an unsafe state
x ∈ Out(S) back to the safe set S with a high probability
of at least (1− ς)2n.

TABLE I
PARAMETERS OF VEHICLE MODEL

kv 0.25 N · s2/m2 αi 30
βi 2000 li 2.91 m
M 1650 kg g 9.81 m/s2

ϕmin -10 deg ϕmax 10 deg
vmax 40 m/s

IV. ILLUSTRATIVE EXAMPLE

In this section, we evaluate the effectiveness of the pro-
posed real-time fail-operational controller in CCC driving
tasks. The CCC system consists of one EV and four human-
driven vehicles (HVs) exhibiting sudden acceleration and
deceleration behaviors in the presence of time-varying en-
vironmental disturbances.

A. Vehicle Model

The uncertain nonlinear EV system dynamics are formu-
lated as follows:

ẋ =

[
ṗ
v̇

]
=

[
vE

−Ff+Fr

M − a(ϕ)

]
+

[
0
1
M

]
uE , (33)

where M denotes the mass of the EV; uE ∈
[−0.3gM, 0.3gM ] denotes the control input, g is the grav-
itational acceleration; p and v represent the position and
velocity of the EV, respectively. Ff , Fr, and a(ϕ) correspond
to the aerodynamic drag, rolling resistance, and road grade,
defined as follows:

Ff = kvv
2, Fr = kf (t)gM cos(ϕ), a(ϕ) = g sin(ϕ),

(34)
where kv and kf represent the coefficients for aerodynamic
drag and road resistance, respectively; ϕ represents the road
grade. The kf is assumed to be a constant value of 0.06,
while kv and ϕ are set to zero to introduce uncertain
disturbances for the EV. We discrete the systems (33) using
the Euler method with a discrete interval of Ts = 0.02 s.

We define the state of the i-th HV as Oi = [si, vi]T , where
si and vi represent the position and velocity of the i-th HV,
respectively. The desired control input of the i-th HV in the
CCC system are adopted from [33]:

uik = αi(Ki(d
i
k)− vik) + βi(v

i+1
k − vik), (35)

where dik = si+1
k − sik − li denotes the headway of the i-th

HV at time step k; li denotes the length of the i-th HV; αi

and βi denote the control gain coefficients of the i-th HV.
The range function Ki is used to describe the target velocity
for the i-th HV as follows:

Ki(d
i
k) =


0 if dik ≤ dimin,

ki(d
i
k − dimin) if dimin < dik < dimax,

vmax if dik ≥ dimax,

(36)

where vmax denotes the maximum velocity and ki =
vmax

di
max−di

min
. The small headway dimin and large headway dimax

indicate where the i-th HV intends to stop and travel,
respectively. The vehicle parameters are listed in Table I.
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TABLE II
AVERAGE COMPUTATION TIME FOR DIFFERENT INITIAL STATES IN THE

CCC TASK UNDER TIME-VARYING ENVIRONMENTAL DISTURBANCES.

Initial State x0 QP solving Learning Inference
[25m, 18m/s]T 2.349 ms 4.696 ms 0.032 ms
[110m, 18m/s]T 3.035 ms 4.241 ms 0.034 ms

(a)

(b)
Fig. 2. The evolution of solving time of the optimization problem (29)-
(32) with two unsafe initial states. (a) Initial state x0 = [25m, 18m/s]T ,
(b) Initial state x0 = [110m, 18m/s]T .

B. Simulation Setup

Our simulation experiments were conducted on an Ubuntu
20.04 LTS system with an AMD Ryzen 7 5800H CPU with
eight cores and sixteen threads. It operates at a base clock
speed of 2.28 GHz, with a maximum boost frequency of 3.20
GHz and a minimum frequency of 1.20 GHz. The system is
equipped with 16 GB of RAM. We utilize the CVXOPT as
the solver for the QP problem (29)-(32) based on Python 3.7.

The initial states of the HVs are set as
O1

0 = [240m, 18m/s]T , O2
0 = [180m, 18m/s]T ,

O3
0 = [120m, 18m/s]T , O4

0 = [0m, 18m/s]T . The EV
between the third and fourth HV aims to cruise at a target
speed vg = 20m/s in a one-direction road while keeping
a desired following distance [d1, d2] with its front HV. To
achieve this goal, we design four independent GPs to model
the state disturbances for the uncertain EV and its front HV.
The following CBF and ES-CLF functions are designed:

h1(xk) = s3k − pk − d1, (37a)

h2(xk) = −s3k + pk + d2, (37b)

V (xk) = ∥v − vd∥2. (38)

The following parameters are used : N = 20, σnoise = 10−6,
θf,0 = 1, θf,min = 10−3, θf,max = 103, lf,0 = 1, lf,min =
10−2, lf,max = 102, c = 3, α = 0.05, cv = 0.8, λζ = 1030,
λι = 1010, d1 = dimin = 25m, d2 = dimax = 100m and

(a) Learning Time

(b) Inference Time
Fig. 3. The evolution of incremental learning and inference time with the
initial state x0 = [110m, 18m/s]T .

(a) Learning Time

(b) Inference Time
Fig. 4. The evolution of incremental learning and inference time with the
initial state x0 = [25m, 18m/s]T .

vd = 20m/s. The simulation duration and control frequency
are set at 15 s and 50Hz, respectively.

C. Results

The initial state x0 of the EV is set as [25,m, 18,m/s]T

and [110,m, 18,m/s]T , leading to two unsafe initial state
configurations with h2 < 0 and h1 < 0 for the EV,
respectively. We assess the real-time and task performance in
achieving a safe following distance and desired cruise speeds
in the presence of time-varying environmental disturbances.

1) Real-Time Performance: Table II and Fig. 2 depict the
average and evolution of the computation time for the fail-
operational controller (29)-(32), with different initial states.
The average solving times are 2.349ms and 3.035ms for
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(a)

(b)

Fig. 5. The evolution of the CBF value for the EV with two different unsafe
initial states. (a) x0 = [25m, 18m/s]T , (b) x0 = [110m, 18m/s]T . The
negative CBF can quickly converge to positive values and remain positive
throughout the CCC task in the presence of environmental disturbances.

Fig. 6. The estimated time-varying disturbance of the EV in the acceleration
aspect, with an initial state of x0 =

[
25m 18m/s

]
. The abrupt disturbance

fluctuations result from a sudden change in the road resistance coefficient.
The embedding figure illustrates the evolution of model disturbance from
0 s to 0.5 s.

initial state x0 = [25m, 18m/s]T and x0 = [110m, 18m/s]T ,
respectively. Regarding the incremental learning process and
inference shown in Fig. 3 and Fig. 4. It is evident that both
learning and inference time remain consistently low, with
averages of less than 5ms and 0.4ms, respectively. Notably,
these durations collectively sum to less than 20ms on aver-
age, thus ensuring the feasibility of real-time optimization,
learning, and inference. Moreover, one can notice that the
optimization time is relatively large during the intervals from
0 s to 1.74 s and 2.54 s, as shown in Fig. 2(a) and Fig. 2(b),
respectively. During these specific time intervals, the fail-
operational controller diligently endeavors to restore the EV
to a safe state within its designated safe set, characterized
by the conditions h1 > 0 and h2 > 0, as depicted in Fig. 5.

2) Task Performance: Consider the EV’s initial state
denoted as x0 = [25m, 18m/s]T as a case in point. The in-
cremental learning performance in modeling the disturbances
is illustrated in Fig. 6. One can notice that the estimated high-
confidence uncertainties (at the 3σ level) exhibit an initial
decrease, maintaining a consistently low value. This indicates

Fig. 7. The evolution of velocity for each vehicle in the CCC system led
by the first HV. The similarities in the velocity profiles indicate how other
vehicles attempt to adjust their speed to follow their front vehicle.

Fig. 8. The headway evolution for other vehicles in the CCC system led by
the first HV, where the two dashed black lines denote the target headway.

that the proposed incremental learning method is capable
of effectively adapting to uncertain disturbances, leveraging
real-time interaction data.

Figure 7 illustrates the temporal evolution of driving
speeds for each vehicle. The EV accelerates to follow its
front vehicle (HV 3) in the very beginning to drive its unsafe
state back to the safe state, as evidenced by the CBF value h2
and the EV’s headway, which are depicted in Fig. 5(a) and
Fig. 8, respectively. In the presence of road and aerodynamic
drag disturbances, as shown in Fig. 6, the distance between
HV 2 and its front leading vehicle (HV 1) falls below the
desired headway threshold of 25m at 3.5 s. Consequently,
the HV 2 promptly reduces its speed to maintain a safe
following distance, causing an urgent deceleration of HV
3 from 3.5 s to 5 s. As expected, the EV also reduces its
speed to ensure a safe following distance. Notably, once it
returns to a safe state, the EV consistently maintains the
desired headway distance, whereas HV 2 and HV 5 struggle
to maintain the desired following distance, as shown in Fig.
8. These observations underscore the capability of the EV
to return to a safe state even in the presence of road and
air drag disturbances and rapid acceleration and deceleration
behaviors exhibited by HVs.

In terms of task accuracy, the EV can quickly achieve a
desired cruise speed vd = 20m/s around 5 s, while keeping
a desired following distance with its front uncertain HV 3.
This accomplishment underscores the effectiveness of the
proposed fail-operational controller, as it ensures that the
primary driving task is not significantly compromised. This
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finding further supports the high task performance for the EV,
aligning with our goal of achieving fail-operational control
while upholding travel efficiency.

V. CONCLUSIONS

This paper proposes a real-time fail-operational con-
troller for autonomous driving systems, which can adapt to
changing environmental disturbances while adhering to state
and input constraints. This controller integrates incremental
Bayesian learning and control theory, enabling the EV to
achieve its desired performance while remaining adaptable to
environmental disturbances. Our simulation results on a CCC
task have substantiated the efficacy of our fail-operational
controller, showcasing its ability to safely guide an unsafe
EV to a safe state while sustaining the desired performance.
This achievement was maintained despite the high-velocity
HV exhibiting urgent acceleration and deceleration behav-
iors, along with road and aerodynamic drag disturbances.
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