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Abstract— This paper presents a method for learning Hamil-
tonian dynamics from a limited set of data points. The Hamil-
tonian vector field is found by regularized optimization over
a reproducing kernel Hilbert space of vector fields that are
inherently Hamiltonian, and where the vector field is required
to be odd or even. This is done with a symplectic kernel, and
it is shown how this symplectic kernel can be modified to be
odd or even. The performance of the method is validated in
simulations for two Hamiltonian systems. The simulations show
that the learned dynamics reflect the energy-preservation of the
Hamiltonian dynamics, and that the restriction to symplectic
and odd dynamics gives improved accuracy over a large domain
of the phase space.

I. INTRODUCTION

Data-driven techniques have been shown to be powerful
in system identification of dynamical systems. When a set
of measurements is given, machine learning techniques can
be used to identify the dynamics of the underlying system
[1]. The performance of data-driven methods depends on the
quality of the data that is used for learning. Data-driven
methods may fail to generalize beyond the given data set
[2], and may suffer from overfitting if the data set is limited
or noisy [3]. In practice it can be can be labor-intensive to
assemble a viable data set and this can be impractical in
applications. As the data set grows, the computational cost
of learning the model increases, and the inference time of
the final learned model can be high [2] [4]. Producing stable
and robust models for safety-critical and control applications
is also vital [5]. To deal with these challenges, researchers
have deployed various methods to improve or constrain the
learning of dynamical systems using priors, which can lead
to good results even when the data set is limited [3] [4].

Related work: Price prediction for financial futures con-
tracts was studied in [6] using a data-driven approach with
functions in a reproducing kernel Hilbert space (RKHS).
Odd symmetric price action was assumed, and a reproducing
kernel was proposed so that the learned functions in the
RKHS satisfied this constraint. The odd symmetry constraint
improved prediction and reduced overfitting compared to an
unconstrained implementation.

Kernel-based methods with an RKHS were used in [7] to
learn the inverse dynamics of a manipulator by learning the
Lagrangian of the system. Polynomial basis functions were
used in [8] for control-oriented learning of Lagrangian and
Hamiltonian functions from trajectory data. This allowed for
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accurate and generalized learning from a limited number of
trajectories. The learning-from-demonstrations problem was
addressed in [2], where a dynamical system was learned
to copy human demonstrations. Human-drawn shapes were
imitated using a data-driven approach, and a dynamical
system with the desired equilibrium points was found using
an RKHS formulation with random Fourier features for
dimensionality reduction. Point-wise contraction constraints
were enforced along the trajectories to create a contraction
region around the desired trajectory and to condition the
learned vector field.

The Hamiltonian dynamics of energy-conserving systems
were learned in [9] by learning the Hamiltonian function
using neural nets. This significantly improved the predictive
accuracy of the learned system. This work was further devel-
oped in [10], where the need for higher-order derivatives of
the generalized coordinates was eliminated, and the option
for energy-based control was included. In [11], the work in
[9] was further developed by using the symplectic Leapfrog
integrator to integrate the partial derivatives of the learned
Hamiltonian and by back-propagating the loss through the
integrator over multiple time steps. This improved the learn-
ing of more complex and noisy Hamiltonian systems.

The learning of nonlinear dynamics with stabilizability
as a side constraint was investigated in [4]. The nonlinear
dynamics were learned under a contraction constraint and
the method was validated using a planar drone model.
The contraction constraint improved the learned trajectory
generation and tracking while making the learning process
more data efficient. The model was learned in an RKHS,
and random Fourier features were used for dimensionality re-
duction. Nonlinear system identification using a data-driven
approach was investigated in [12] by including constraints
that enforce prior knowledge of the region of attraction. The
stability region was enforced using a Lyapunov function,
and the hypothesis space for the learned system was an
RKHS. In [13], they learned dynamical systems with prior
knowledge in an RKHS, with the addition of a bias term in
the regularized least squares cost. The bias term was used
to embed prior knowledge of the underlying system to aid
the learning process, improving data efficiency and out-of-
sample generalization.

A method for optimization-based learning of vector fields
with side constraints from a limited number of trajectories
was presented in [3]. Polynomial basis functions were used,
and it was shown how to include side constraints in semidef-
inite programming, which improved learning accuracy. Side
constraints for the vector fields included interpolation at a
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finite set of points, sign symmetry, gradient and Hamiltonian
dynamics, coordinate non-negativity, directional monotonic-
ity, and invariance of sets.

Contribution: In this paper, we show how Hamiltonian
dynamical systems with odd vector fields can be learned in
an RKHS setting by selecting a kernel that ensures that the
learned vector fields are Hamiltonian and odd symmetric.
By learning the dynamical system with the Hamiltonian
formalism, energy conservation is enforced in the model [9].
The odd symmetry constraint further prunes the hypothesis
space to improve the predictive performance of the learned
model across the domain of the learned model [6]. Encoding
the constraints in the kernel improves learning time as the
straightforward closed-form solution of the learning prob-
lem is retained. It is shown with two examples that the
generalization properties of the learned model when using
out-of-sample data points are greatly improved through the
additional constraints.

The paper is organized as follows: Section II presents
the problem investigated in this work. Section III reviews
the relevant theory for reproducing kernel Hilbert spaces,
learning dynamical systems, and Hamiltonian mechanics.
The proposed method is presented in Section IV as an
odd symplectic kernel is developed. Section V presents the
numerical experiments used to verify the proposed method.
Finally, Section VI presents the conclusion and future work.

II. PROBLEM FORMULATION

The problem that is investigated in this paper is how to
learn the Hamiltonian dynamics of an unknown system from
a limited set of data. The system dynamics are given by

ẋ = f(x) (1)

where x ∈ R
n is the state vector, ẋ ∈ R

n is the time
derivative of the state vector, and f : Rn → R

n are the
system dynamics. It is assumed that y = ẋ is available as a
measurement or from numerical differentiation. Given a set
of N data points {(xi,yi) ∈ R

n × R
n}Ni=1 from simulations

or measurements, the aim is to learn a function f∗ ∈ F ,
where the class of functions F is a reproducing kernel
Hilbert space (RKHS) with inner product 〈·, ·〉F and norm
‖f‖2F = 〈f ,f〉F [14]. In that case the function f∗ is found
by the regularized minimization problem [15]

f∗ = argmin
f∈F

1

N

N
∑

i=1

‖f(xi)− yi‖
2 + λ‖f‖2F (2)

where the regularization parameter λ > 0 controls the
smoothness of the learned function [16]. This approach may
fail to generalize beyond the data set used to learn the
dynamical model, which can cause the learned model to
diverge significantly from the true system. Furthermore, if the
trajectories in the data set are limited and noisy, the learned
dynamical model may fail to capture the dynamics of the
underlying system due to overfitting.

It is assumed that there is some information about the
physical properties of the dynamical system. In particular, we

will study systems that are Hamiltonian, and where the func-
tion f(x) may be odd or even. This type of side information
about the system was treated in [3] where the function class
F was polynomial functions. The additional information
on the dynamics was then included as side constraints by
defining a subset Si ∈ F for each side constraint i, so that the
function f∗ satisfies the side constraint whenever f∗ ∈ Si.
The minimization including the side constraints can then be
formulated as the learning problem

f∗ = argmin
f∈F∩S1∩···∩Sk

1

N

N
∑

i=1

‖f(xi)− yi‖
2 (3)

In this paper the side constraints are instead handled
by defining a reproducing kernel which ensures that the
RKHS function class F inherently satisfies the relevant side
constraints. It is well-known that this can be done to have an
RKHS where the vector field f∗ is curl-free, divergence-free
[17], Hamiltonian [18], odd or even [6]. It is also possible
to impose additional side constraints like contraction [2] or
stabilizability [4] along the trajectories of the dataset, but
this will not be addressed in this paper.

In this paper the function class F will be a reproducing
kernel Hilbert space (RKHS). The side constraints are that
the state dynamics are Hamiltonian and therefore symplectic,
and, in addition, odd in the sense that f(−x) = −f(x),
and this is ensured by selecting an appropriate reproducing
kernel.

III. PRELIMINARIES

A. Reproducing kernel Hilbert space

This paper deals with the learning of functions in a
reproducing kernel Hilbert space (RKHS) [14]. Real-valued
scalar functions f : Rn → R are considered first. An RKHS
Hk is then defined in terms of a function k : Rn × R

n → R.
Let the function kx : Rn → R be defined by kx(z) = k(x, z)
for all x, z ∈ R

n. The kernel function k is then a reproducing
kernel and Hk is an RKHS if

span{kx : kx(z) = k(x, z)} ⊆ Hk (4)

and the reproducing property f(x) = 〈f, kx〉Hk
holds. It is

noted that the reproducing property implies that

〈kx, kz〉Hk
= kx(z) = k(x, z) (5)

According to the Moore-Aronszajn theorem [14] a func-
tion k : Rn × R

n → R is a reproducing kernel if and only
if it is a positive definite kernel, which is the case whenever
k(x, z) = k(z,x) for all x, z ∈ R

n, and

N
∑

i=1

N
∑

j=1

cicjk(xi,xj) ≥ 0 (6)

for any set of points x1, . . . ,xN ∈ R
n and any set of real

numbers c1, . . . , cN ∈ R. A function f ∈ Hk in the RKHS
defined by the reproducing kernel k is given by

f(x) =

N
∑

i=1

aik(x,xi) ∈ R (7)
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The extension to vector-valued functions can be found
in [15] and [19]. In this case the vector-valued function
f : Rn → R

n is to be learned. Let the matrix-valued kernel
function K : Rn × R

n → R
n×n be a positive definite kernel,

which means that

K(x, z) = K(z,x)T, ∀ x, z ∈ R
n (8)

and, in addition,

N
∑

i=1

N
∑

j=1

〈

yi,K(xi,xj)yj

〉

≥ 0 (9)

for every set of vectors {xi}
N
i=1 ∈ R

n and {yi}
N
i=1 ∈ R

n.
Then K is a reproducing kernel, and HK is an RKHS. This
corresponds to the Moore-Aronszajn theorem in the scalar
case. Define the function Kxy : Rn → R

n as

(Kxy)(z) = K(z,x)y ∈ R
n, ∀ z ∈ R

n (10)

Then HK is the closure of

span{Kxy | x ∈ R
n,y ∈ R

n} ⊆ HK (11)

and the reproducing property is given by

〈f(x),y〉 = 〈f ,Kxy〉HK
, ∀ f ∈ HK (12)

The reproducing property implies that

〈Kzw,Kxy〉HK
= 〈Kzw(x),y〉 = 〈K(x, z)w,y〉 (13)

Then functions in the RKHS HK can be defined as

f =
N
∑

i=1

Kxi
yi ∈ HK , g =

N
∑

j=1

Kzjwj ∈ HK (14)

with inner product

〈f , g〉HK
=

N
∑

i=1

N
∑

j=1

〈yi,K(xi, zj)wj〉HK
(15)

and norm ‖f‖2HK
= 〈f ,f〉HK

.
It is noted that (12) gives 〈f(x),y〉 = 〈K∗

xf ,y〉, where
K∗

x is the adjoint of Kx. It follows that f(x) = K∗
xf , and

‖f(x)‖ = ‖K∗
xf‖ ≤ ‖K∗

x‖‖f‖HK
≤

√

‖K(x,x)‖‖f‖HK

(16)
where

√

‖K(x,x)‖ is bounded [15]. This implies

‖f(x)− g(x)‖ ≤
√

‖K(x,x)‖‖f − g‖HK
(17)

which shows that if ‖f − g‖HK
converges to zero, then

‖f(x)− g(x)‖ converges to zero for each x.

B. Learning dynamical systems with RKHS

In this paper we aim to learn vector fields given by (1)
where y = ẋ is available. The estimation of the vector
field is done using the vector-valued regularized least-squares
problem [15]

f∗ = argmin
f∈HK

1

N

N
∑

i=1

‖f(xi)− yi‖
2 + λ‖f‖2HK

(18)

where Z = {(xi,yi) ∈ R
n × R

n}Ni=1 is the data used to
learn the vector field, and λ > 0 is the regularization
parameter. The function is given according to the representer
theorem [20] as

f∗ =
N
∑

i=1

K(·,xi)ai ∈ HK (19)

where the optimal solution is given with the coefficients
ai ∈ R

n found from [15]

N
∑

j=1

K(xi,xj)aj +Nλaj = yi (20)

The function value of the optimal vector field is

f∗(x) =
N
∑

i=1

K(x,xi)ai ∈ R
n (21)

A matrix formulation of (20) is found in [19].

C. Hamiltonian dynamics

Consider a holonomic system with generalized coordinates
q = [q1, . . . , qm]T and Lagrangian [21]

L(q, q̇, t) = T (q, q̇, t)− U(q) (22)

The Lagrangian equation of motion is given by

d

dt

(

∂L(q, q̇, t)

∂q̇

)

−
∂L(q, q̇, t)

∂q
= τ (23)

The momentum vector p = [p1, . . . , pm]T is defined by

p =
∂L(q, q̇, t)

∂q̇

T

(24)

A change of coordinates from (q, q̇) to (q,p) is introduced
with the Legendre transformation [21]

H(q,p, t) = pTφ(q,p, t)− L(q,φ(q,p, t), t) (25)

where q̇ = φ(q,p, t). Hamilton’s equations of motion are
then given by

q̇ =
∂H

∂p

T

(26)

ṗ = −
∂H

∂q

T

+ τ (27)

The time derivative of the Hamiltonian is seen to be

dH

dt
=

∂H

∂p
ṗ+

∂H

∂q
q̇ +

∂H

∂t
= q̇Tτ +

∂H

∂t
(28)

If the Hamiltonian does not depend on time t and τ = 0,
then

dH(q,p)

dt
= 0 (29)

The numerical value of the Hamiltonian H will depend on
the definition of the zero level of the potential U(q).
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D. Hamiltonian dynamics in the phase space

The phase space is defined as a 2m-dimensional space
with state vector x =

[

qT,pT
]T

∈ R
2m. The Hamiltonian

dynamics (26), (27) with τ = 0 can be given in the phase
space as

ẋ = f(x) = J∇H(x) (30)

where

J =

[

0 I

−I 0

]

∈ R
2m×2m (31)

is the symplectic matrix. The flow in the phase space with
initial condition x(0) = x0 is given by

φt(x0) = x(t) (32)

where x(t) is the solution of the Hamiltonian dynamics (30)
at time t given the initial value x0.

E. Symplectic property of Hamiltonian dynamics

Consider any dynamic system

ẋ = f(x) (33)

where x ∈ R
2m. Define the Jacobian Ψ(t) = ∂φt(x0)/∂x0.

Then the system (33) is said to be symplectic if

Ψ(t)TJΨ(t) = J (34)

for all t ≥ 0. The system (33) is Hamiltonian if and only if
it is symplectic [22].

IV. METHOD

This section presents the main theoretical results of the
paper.

A. Gaussian kernel

The Gaussian reproducing kernel is widely used in appli-
cations. In the scalar case it is defined as

kσ(x, z) = e−
‖x−z‖2

2σ2 ∈ R (35)

where σ > 0. The Gaussian kernel is shift-invariant, since
kσ(x, z) = gσ(x−z), where gσ(x) = exp−‖x‖2

2σ2 . It is noted
that the Gaussian kernel satisfies kσ(x, z) = kσ(−x,−z).

In the case of RKHS for vector-valued functions a separa-
ble Gaussian kernel can be used [2]. The separable Gaussian
kernel is defined by

Kσ(x, z) = kσ(x, z)In ∈ R
n (36)

B. Odd kernel

Consider a reproducing kernel which satisfies k(x, z) =
k(−x,−z). Then

kodd(x, z) =
1

2
(k(x, z)− k(−x, z)) ∈ R (37)

is an odd reproducing kernel with an associated RKHS [6].
Any function f(x) =

∑N
i=1 aikodd(x,xi) in the RKHS

defined by kodd will then be odd, since kodd(−x, z) =
−kodd(x, z) and therefore f(−x) = −f(x).

C. Curl-free kernel

In the learning of a vector field f(x) ∈ R
n a curl-

free reproducing kernel Kc(x, z) = Gc(x − z) ∈ R
n×n

can be derived from a shift-invariant reproducing kernel
k(x, z) = g(x− z) ∈ R, where k is typically the Gaussian
kernel [23]. This is useful if it is required that the vector
field is known to be curl-free.

The starting point for the derivation is the observation
that the elements ∂g(x)/∂xi for i = 1, . . . , n of the gradient
vector

∇Tg(x) =
[

∂g(x)
∂x1

. . . ∂g(x)
∂xn

]

(38)

are scalar functions which can be regarded as scalar fields.
Then each column −∇∂g(x)

∂xi
of the matrix

Gc(x) = −∇∇Tg(x) =
[

−∇∂g(x)
∂x1

. . . −∇∂g(x)
∂xn

]

(39)

is the gradient of a scalar field. The curl of the gradient of a
scalar field is always zero, which implies that each column
of Gc is curl-free. Any function in the RKHS of Gc will
then be given by

f(x) =

N
∑

i=1

Gc(x− xi)ai (40)

where f(x) is a linear combination of the n columns of the
N matrices Gc(x − xi). Since each of these nN columns
are curl-free it follows that the vector field f(x) is curl-free.

If g is selected as the Gaussian kernel, then the curl-free
kernel is given by [23]

Gc(x) = −∇∇Tgσ(x) =
1

σ2
e−

x
T
x

2σ2

(

I −
xxT

σ2

)

(41)

which is the curl-free kernel used in [2].

D. Symplectic kernel

In [18] a symplectic kernel was presented for adaptive
prediction of Hamiltonian dynamics. The symplectic kernel
is based on the curl-free kernel in (39), and is given by

Ks(x, z) = Gs(x− z) = JGc(x− z)JT (42)

To verify that functions in the resulting RKHS are symplectic
it is used that a function in the RKHS of Gs is given by

f(x) =

N
∑

i=1

Gs(x− xi)ai (43)

which gives

f(x) = −

N
∑

i=1

J∇∇Tg(x− xi)J
Tai (44)

= −J∇

N
∑

i=1

∇Tg(x− xi)ci (45)

where ci = JTai. This results in the Hamiltonian dynamics

f(x) = J∇H(x) (46)
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where the Hamiltonian is

H(x) = −

N
∑

i=1

∇Tg(x− xi)ci (47)

In [18], the function g was the Gaussian kernel (35).
Then the curl-free kernel is given by (41), and the resulting
symplectic kernel is

Gs(x) =
1

σ2
e−

x
T
x

2σ2 J

(

I −
xxT

σ2

)

JT (48)

E. Odd symplectic kernel

Next, we propose an odd symplectic kernel to ensure that
the resulting dynamics are Hamiltonian and odd symmetric.
The starting point is an odd Gaussian kernel

kσ,odd(x, z) =
1

2

(

e−
‖x−z‖2

2σ2 − e−
‖−x−z‖2

2σ2

)

(49)

=
1

2

(

e−
‖x−z‖2

2σ2 − e−
‖x+z‖2

2σ2

)

(50)

The odd curl-free kernel is then derived from

Kc,odd(x, z) = −∇∇Tkσ,odd(x, z) (51)

The first partial derivative is

∂kσ,odd

∂xi

= −
1

2σ2

(

(xi − zi)e
−

‖x−z‖2

2σ2 − (xi + zi)e
−

‖x+z‖2

2σ2

)

The second partial derivative is

∂2kσ,odd

∂xi∂xj

=

−
1

2σ2

(

e−
‖x−z‖2

2σ2 δi,j − e−
‖x−z‖2

2σ2
(xi − zi)(xj − zj)

σ2

− e−
‖x+z‖2

2σ2 δi,j + e−
‖x+z‖2

2σ2
(xi + zi)(xj + zj)

σ2

)

(52)

where δi,j = 1 when i = j and 0 otherwise. Finally, the
expression for the odd symmetric curl-free kernel is written
as

Kc,odd(x, z) =
1

2σ2

(

e−
‖x−z‖2

2σ2

(

I −
(x− z)T(x− z)

σ2

)

− e−
‖x+z‖2

2σ2

(

I −
(x+ z)T(x+ z)

σ2

))

(53)

This could also be found from (41) as

Kc,odd(x, z) =
1

2
(Kc(x, z)−Kc(−x, z)) (54)

Finally, the odd symplectic kernel is written by combining
(42) and (54), which gives

Ks,odd(x,z) = JKc,odd(x, z)J
T (55)

=
1

2
J (Kc(x, z)−Kc(−x, z))JT (56)

=
1

2

(

JKc(x, z)J
T − JKc(−x, z)JT) (57)

=
1

2
(Ks(x, z)−Ks(−x, z)) (58)

where Ks is defined as in (48).

V. EXPERIMENTS

In this section, the results of two numerical experiments
are presented. The Hamiltonian dynamics were learned for
two different Hamiltonian systems with odd vector fields.
The regularized least-squares problem in (18) was solved
using (20), and the resulting learned vector field was given
by (21). The Gaussian separable kernel in (36) and the odd
symplectic kernel in (58) were compared for the two systems.

A. Hyperparameter tuning

The hyperparameters σ and λ were tuned for each model
by minimizing the cross-validation error [24] over the data
set Z = {(xi,yi) ∈ R

n × R
n}Ni=1. The data set Z was split

into mutually exclusive subsets Z1, . . .Zk, and for each
iteration i ∈ {1, . . . , k}, the model was trained on the subset
Ẑi = Z \ Zi and evaluated on Zi. Formally, the hyperpa-
rameter optimization is written as [6]

min
σ,λ

1

k

k
∑

i=1

MSE
(

f Ẑi
,Zi

)

(59)

where f Ẑi
is the learned functions trained on the training set

Ẑi = Z \ Zi, using the hyperparameters σ and λ, Zi is the
test set, and MSE is the empirical mean square error between
the learned model and the test set. The optimization problem
was solved using a grid search.

B. Harmonic oscillator

A harmonic oscillator is given as the undamped mass-
spring system

ẋ = v, v̇ = −
k

m
x (60)

where m is the mass, k is the spring constant, x is the
position of the mass, and v is the velocity of the mass.
The kinetic energy is T = 1

2mẋ2 and the potential energy is
U = 1

2kx
2. The generalized coordinate is selected as q = x

and the momentum is then p = mẋ. The state vector is
x = [q, p]T. The Hamiltonian for the system is

H(q, p) = T (p) + U(q) =
1

2

p2

m
+

1

2
kq2 (61)

The Hamiltonian dynamics of the true system are then given
by

q̇ =
∂H

∂p
=

p

m
, ṗ = −

∂H

∂q
= −kq (62)

Figure 1a shows phase curves of the true system as de-
scribed with parameters m = 0.5 and k = 1. Figure 1a also
shows three trajectories that were generated by simulation
of the true system with three different initial conditions:
x1,0 =

[

1, 0
]T

, x2,0 =
[

2.25, 0
]T

, and x3,0 =
[

3.5, 0
]T

. The
time step was h = 0.25 s and the system was simulated
for t ∈

[

0, 1
]

seconds, which resulted in 5 data points for
each trajectory, and N = 15 total data points. The velocities
y were sampled at each trajectory point, and zero mean
Gaussian noise with standard deviation σn = 0.1 was added
to the trajectory and velocity data. Figure 1b shows the
resulting data set.
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(a) True system (b) Data set (c) Learned gaussian model (d) Learned odd sympl. model

Fig. 1: Stream and trajectory plots for the harmonic oscillator and extracted data set, and the resulting learned models using
the separable Gaussian kernel and the odd symplectic kernel.

(a) True system (b) Data set (c) Learned gaussian model (d) Learned odd sympl. model

Fig. 2: Stream and trajectory plots for the simple pendulum and extracted data set, and the resulting learned models using
the separable Gaussian kernel and the odd symplectic kernel.

Cross-validation was used for tuning of the hyperparam-
eters, and gave a kernel width σg = 19.5 and regularization
parameter λg = 10−4 for the Gaussian separable model,
and kernel width σos = 12.1 and regularization parameter
λos = 10−4 for the odd symplectic model.

Figures 1c and 1d show the learned models when the
separable Gaussian kernel and the odd symplectic kernel
were used. Both models generalized well, but the odd sym-
plectic model recreated the periodic orbits of the true system
shown in Figure 1a, indicating that the energy conservation
was captured in the model. The lack of periodic orbits in
Figure 1c documents a lack of energy conservation in the
separable Gaussian model.

A separate test trajectory was simulated to test how
well the learned models generalize for unknown data. The
initial condition was x0 =

[

2, 0
]T

and the time horizon was
t ∈

[

0, 4
]

seconds. The error between the true system and
the learned model trajectories is given by Err = ‖xb − xl‖.
Figure 3a shows the three resulting trajectories, and Figure 3b
shows the error for each time step. The results show that
the odd symplectic model tracked the true system trajectory
with an order of magnitude improvement in accuracy, which
indicates the improvement in generalization with the odd,
symplectic kernel.

C. Simple pendulum

A simple pendulum is modeled with a point mass m at
the end of a mass-less rod of length l. The pendulum angle
is θ. The equation of motion is given by

θ̈ = −
g

l
sin(θ) (63)

(a) Test trajectory (b) Test trajectory error

Fig. 3: Comparison of the two learned models against the
harmonic oscillator system, using the test trajectory.

where g is the acceleration of gravity. The generalized co-
ordinate is q = θ, the kinetic energy is T = 1

2ml2q̇2 and the
potential energy is U = mgl(1− cos(q)). The Lagrangian
is defined as L = T − U and from (24) the generalized
momentum is

p =
∂L

∂q̇
= ml2q̇ (64)

The Hamiltonian is

H(q, p) = pq̇ − L =
p2

2ml2
+mgl(1− cos(q)) (65)

The Hamiltonian dynamics are then given by

q̇ =
∂H

∂p
=

p

ml2
, ṗ = −

∂H

∂q
= −mgl sin(q) (66)

Figure 2a shows the true system with parameters m = 0.5,
l = 1, and g = 9.81. Three trajectories were generated,
and the system was simulated with three different
initial conditions: x1,0 =

[

2π
5 , 0

]T
, x2,0 =

[

4π
5 , 0

]T
, and

x3,0 =
[

19π
20 ,−4

]T
. The time step was set to h = 0.1 s and

the system was simulated for t ∈
[

0, 0.7
]

seconds, giving 8
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data points for each trajectory, and N = 24 total data points.
The velocities y were sampled at each trajectory point, and
zero mean Gaussian noise with standard deviation σn = 0.01
was added to the trajectory and velocity data. Figure 2b
shows the resulting data set.

The cross-validation procedure gave kernel width
σg = 12.3 and regularization parameter λg = 0.1 for the
Gaussian separable model, and kernel width σos = 3 and
regularization parameter λos = 10−4 for the odd symplectic
model.

Figures 2c and 2d show the learned models using the
separable Gaussian kernel and the odd symplectic kernel,
respectively. The function learned with the Gaussian separa-
ble kernel did not give an accurate representation of the true
dynamics from such a limited dataset. The model learned
with the odd symplectic kernel was accurate and gave a good
representation of the vector field of the simple pendulum
system. It is seen from Figure 2d that symmetry and energy
conservation lead to periodic orbits.

A separate test trajectory was simulated to test the gener-
alized performance of the learned models. The initial condi-
tion was x0 =

[

π
2 , 0

]T
and the time horizon was t ∈

[

0, 2
]

seconds. The error between the true system and the learned
model trajectories was defined as Err = ‖xb − xl‖. Figure 4a
shows the three resulting trajectories, and Figure 4b shows
the error for each time step. The results show that the odd
symplectic model is far more accurate than the Gaussian
separable model, which fails to generalize beyond the area
close to the data set.

(a) Test trajectory (b) Test trajectory error

Fig. 4: Comparison of the two learned models against the
simple pendulum system, using the test trajectory.

D. Numerical evaluation

The models were evaluated numerically to investigate the
ability of the learned models to capture the side information
of the true systems. The odd symmetry was evaluated by
sampling 10 000 points in the right half plane of the phase
portraits shown in Figure 1 and Figure 2, and calculating the
odd error given as

eodd = ‖f(x) + f(−x)‖ (67)

where f : Rn → R
n is the dynamical system being evaluated

and x ∈ R
n is the sampled point.

The results in Table I document that the learned odd sym-
plectic model enforces odd symmetry like the true systems,
whereas the Gaussian separable model does not. The learned
Hamiltonian in (47) for the learned odd symplectic model

TABLE I: Odd error eodd for the two dynamical systems

Harmonic oscillator Simple pendulum

System Mean Variance Mean Variance

True eodd 0.00 0.00 0.00 0.00
Gaussian sep. eodd 0.65 0.08 7.87 1.49
Odd symplectic eodd 0.00 0.00 0.00 0.00

was evaluated over the test trajectories shown in Figure 3
and Figure 4, and compared to their corresponding real
Hamiltonians in (61) and (65).

The results in Table II demonstrate that the value of the
learned Hamiltonian Ĥ(x) has a constant offset from the
true Hamiltonian H(x). This agrees with the fact that the
potential energy’s zero potential cannot be expected to be the
same for the learned and true systems. It is seen that the value
of the learned Hamiltonian is constant in agreement with (29)
since the system is unforced and independent of time. This
is reflected in the variance of both H(x) and Ĥ(x). Noting
that these are results from numerical simulations, the results
indicate that the Hamiltonian mechanics are captured in the
learned odd symplectic model.

TABLE II: Hamiltonian for the two dynamical systems

Harmonic oscillator Simple pendulum

Hamiltonian Mean Variance Mean Variance

Real H(x) 1.99 5.43 · 10−9 9.81 2.2 · 10−6

Learned Ĥ(x) −108.54 6.24 · 10−9
−16.85 1.34 · 10−6

VI. CONCLUSION

The learning of Hamiltonian mechanical systems with odd
vector fields using a specialized kernel has been investigated.
The proposed method enforces side information concerning
Hamiltonian dynamics and odd vector fields using the kernel
rather than through constraints in an optimization problem.
The encoding of side information in the kernel allows for a
closed-form solution to the learning problem and enforces the
constraints over the whole domain of the learned function.
Comparative experiments on limited data sets demonstrate
how the proposed kernel learns the dynamics of a system
compared to a kernel that does not enforce side informa-
tion. The standard Gaussian kernel recreates the system’s
dynamics close to the data set, but fails to capture the general
characteristics of the system. The proposed kernel enforces
side information and produces a model that generalizes well,
capturing the dynamics even on a limited and noisy data set.

Future work: The proposed method could be applied to
more complex mechanical systems. For problems with larger
data sets, approximating the kernel using random Fourier
features [25] could reduce the problem size, reducing the
training and inference time of the learned model. Generalized
momenta and their derivatives might not be available in
practice, so extending the method to learn Hamiltonian sys-
tems from generalized coordinates and velocities only should
be investigated. Finally, control-oriented learning could be
studied using the proposed kernel.
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