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Abstract— Cost optimal control in water distribution net-
works is considered. Focus is on distribution networks with tree
like structures, that can be separated into sections composed
of an elevated reservoirs (water towers), a pumping stations,
and a consumer district. Given the structure of the network,
a centralized and a distributed economic model predictive
controller is developed. The later is expected to improve
scalability and easy commissioning of the controller setup.
Both control methods are based on first principle models.
The controllers performance and effectiveness are tested on
a scaled water distribution network and their performances
are compared. The tests shows similar performance of the two
proposed controllers, and both controllers effectively reduce the
operational cost when compared to controllers that disregard
energy prices.

I. INTRODUCTION

Elevated reservoirs are often used in Water Distribution
Networks (WDN’s) to meet fluctuations in the demand, pro-
vide reserve supply in the case of fire and other emergencies,
and to stabilize the pressure at the consumers [1]. The strait
forward way of controlling the filling of these reservoirs
is to pump water into the reservoirs whenever they are
empty, without considering energy availability or cost. The
transition to sustainable weather-dependent energy sources
demands better coordination between energy supply and
consumption. Optimal control in water distribution networks
can contribute to this. To that end, [2] examen different
relations between the water distribution network and the
electrical grid, and propose pump scheduling method that
enable grid support. In [3] energy prices are proposed as a
mean to shape the consumption to the production, and the
approach is exemplified on a WDN.

To operate WDN’s within pressure bounds, optimal control
methods, such as Model Predictive Control (MPC), has been
proposed in the literature. Following [4], economic MPC
(EMPC) is discussed as a control method for nonlinear
systems. Central approaches for optimizing the operation of
WDN are presented in [2] with focus on pump scheduling,
and in [5] a control structure utilizing EMPC for planing
the pump operation to varying electricity prices is consid-
ered. The operational cost of water distribution networks is
reduced by letting the controller consider economic aspects
such as energy cost in [6] and [7]. In our work a central
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control approach is compared to a decentralized architecture,
where the communication structure for the decentralized
architecture is designed based on the structure of WDN.
Decentralized optimal control is considered in [8] where
economic and distributed control is combined. Decentralized
MPC with a hierarchical structure has been used for control
of WDN in [9], and with bidirectional communication in
[10], [11] and [12].

This work presents a distributed EMPC structure that
minimized the operational cost for WDN of variable size, but
with a tree like structure. Here, a tree like structure implies
networks, where pump-reservoirs sections are connected in
series. A WDN, where parts of the network has exactly this
structure, is found in Barcelona [6]. A EMPC is designed
along with a decentralised EMPC, where the later utilizes
the tree like structure, to setup an efficient communication
strategy with one directional communication only. For the
EMPC designs, a non-convex optimization problem, derived
from first principles modeling, is converted to a convex
problem ensuring robust system operation. The EMPC algo-
rithm is afterward decentralized, leading to a control setup
that is expected to improve the scalability and enables the
possibility for step-wise commissioning of the the control
system. The network model and the water demands are
expected to be known along with energy prices 24 hours into
the future. Water demand prediction and model identification
are presented in [7] for network sections similar to the ones
considered in this work, and will not be considered further
here. Both the centralized and the distributed EMPC’s are
tested on a scaled WDN, implemented in the lab environment
described in [13]. These tests verify the robustness and
usability of the approaches when applied to a real life system.

The main contributions of the paper are 1) the approxi-
mation of the WDN model that leads to a convex EMPC, 2)
the communication structure derived from the approximated
WDN model, and 3) the lab tests, showing that the approach
works on an WDN emulation implemented in the Smart
Water Lab [13].

The paper states, in Section II by introducing the consid-
ered WDN with tree like structure, including the derivation
of a model utilized by the controllers presented in Section III.
The smart water laboratory implementation and test results
are presented in Section IV. The paper ends with concluding
remarks in Section V.

II. WATER DISTRIBUTION NETWORK

The WDN considered in this work is fed by a single water
treatment plant and consists of a system of pumps, pipes,
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Fig. 1: Schematic representation water distribution network
consisting of two subsystems.

and elevated reservoirs feeding civilized areas with different
geodetic elevations, cf. Fig. 1. These geodetic levels are here
denoted pressure zones. All reservoirs are filled from the
top, ensuring tolerable water freshness at all times. One net
demand flow per zone represents water distributed among
consumers in a pressure zone.

A. Generalized Network Model

Graph theory is used to obtain a generalized system repre-
sentation. The WDN is split into subsystems, each containing
one pump, one piping section, one elevated reservoir, and
is connected to one pressure zone, see Fig 1. The relation
between the subsystems is described by a rooted tree graph
G = (V,E). Let the WDN be composed by M subsystems,
then the graph G has M + 1 vertices related to the root
node and the subsystems, and the M edges related to the
connection between the subsystems. In the following, it is
assumed that the root note represents an infinite water source.
Let index j ∈ {1, · · · ,M} ⊂ V denote subsystems (j = 0
represents the root node). The index set of downstream
subsystems connected to the output of subsystem j (j’s
children) is denoted Lj ⊂ V, while the source (j’s parent)
is indexed using mj . With this graph definition, the WDN
in Fig 1 contains M = 2 subsystems. The absolute geodetic
elevation at the inlet of subsystem j is zij , and the elevation
of its reservoir is zrj . The elevation difference between zij
and the pipe outlet into the reservoir is denoted ∆ztj , and
∆zbj is the elevation change between the bottom of the
reservoir and the outlet of the subsystem. It is assumed that
zrj ≥ zij , implying that water is always pumped from lower
to higher areas separated by reservoirs and pumps. Let uj

[m3/s] be the volumetric flow pumped by the pumping station
of subsystem j. The water leaving subsystem j is the sum of
the corresponding net water demand dj and the pump flow∑

l∈Lj
ul.

B. Subsystem Model

Given initial conditions and inputs, the model should
predict water levels, pressures, and flows inside the WDN
for 24 hours. The expected system energy consumption is
derived from these predictions. The model is derived based
on [14].

1) Reservoir model: The dynamic water level xj [m] in
reservoir j can be described by the first-order differential
equation

dxj

dt
=

1

Aj

(
uj(t)− dj(t)−

∑
l∈Lj

ul(t)

)
(1)

where Aj is the reservoir surface area in subsystem j.
2) Pipe model: The pressure drop ∆pj [Pa] over the main

pipe in subsystem j is approximated using

∆p = λju
2
j + ρg∆zj

where uj is the pumping station flow, g [m/s2] is the grav-
itational constant, ρ [kg/m3] is the water density, and ∆zj
is the elevation change between the inlet and outlet of the
pipe. The flow-dependent pressure drop λju

2
j is based on the

Darcy-Weisbach equation [14, ch 2] and is only considered
in piping segments that feed reservoirs.

3) Pressure equations: Determining water pressure at the
inlet pij [Pa] and outlet poj [Pa] of pump j is necessary
to estimate power consumption. The outlet pressure poj is
approximated using poj = ρg(zrj − zij + ∆ztj) + λju

2
j for

positive flow uj > 0. This approximation does not hold for
uj = 0. However, pressure is only used for determining
the power consumption, which equals 0 when uj = 0.
The reservoir outlet pressure prj [Pa] is given by prj =
ρg(∆zbj + xj) for j ≥ 1. For j = 0 (the root node)
pi0 = pair = 0.

4) State-space system: The reservoir dynamics of subsys-
tem j is described by (1). The corresponding outputs yj ∈ R3

contains observable nodal pressures and the water level in
the reservoir yj =

[
poj prj xj

]⊤
. Let the output map be

yj(t) = Cxj(t) + fj(uj(t)) + γ , such that

yj(t) =

 0
ρg
1

xj(t) +

λju
2
j (t)
0
0

+

ρg(zrj-zij +∆ztj)
ρg∆zbj

0

 .

(2)
The state space is bounded by the reservoir sizes and pressure
requirements for the zones. The input is bounded by pump
limits, and the disturbance is bounded by pressure zone flow
limits. This yields the feasible sets

Xj = {x ∈ R |xjmin ≤ xi ≤ xjmax} (3a)
Uj = {u ∈ R | 0 ≤ uj ≤ ujmax} (3b)
Dj = {d ∈ R | 0 ≤ dj ≤ djmax} . (3c)

5) Power consumption: This project focuses on the ef-
fective energy fed into the WDN, meaning that electrical
and mechanical pump efficiencies are not considered. Deter-
mining the pump pressure boost and assuming unidirectional
flow, the pump power is approximated by Pj = (poj−pij)qpj ,
so that

Pj =

{
ujyj,1 if j = 1

uj(yj,1 − ymj ,2) if j ∈ V′ . (4)
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Fig. 2: Normalized demand profile fit (4/88 days)

C. WDN operations

1) Cost of energy: With today’s fluctuating electrical
energy market, energy prices can be negative. However, in
this work the energy price c(t) ∈ R+ , that is, the energy
price is assumed to be positive and has an arbitrary unit.

2) Demand profile: The WDN must be able to deliver the
maximum possible demand flow at any time. Data suggests
that water demand exhibits noisy periodic behavior with
peak demand in the morning and lowest demand at night.
The minimal Fourier series order with which the desired
periodicity can be described is 3. Based on 88 days of
normalized data from a Danish water utility, and utilizing
the function fit [15], the demand model is given by

d̃j(t) =


0 if xj = 0

κj(a0 +
∑3

i=1 (ai cos(2πit/Tf )

+ bi sin(2πit/Tf )) if xj > 0

(5)

where κj = qcj,mean/a0 is a scaling factor dependent on the
mean demand qcj,mean. The normalized data-fit is plotted for
four out of eighty-eight days in Fig. 2. The fundamental
period Tf = 24 [hrs] in the data but is scaled in the
laboratory tests.

III. OPTIMAL CONTROL

An EMPC approach is adopted to minimize the operational
energy cost of the WDN. The EMPC is implemented as
a supervisory controller generating pump water flow refer-
ences. A centralized version of the EMPC is presented first,
followed by a distributed version. Both controller implemen-
tations operate in discrete time and follow a receding horizon
approach, ignoring any data processing or optimization de-
lays. The power price c̃(t) is assumed to be known over
prediction horizon TH and is equal for all pumps. The water
demand is assumed to be bounded by (3c), but expected to
follow (5), given qcjmean.

An on/off controller is used to compare the optimal control
solutions to a conventional one. This controller turns the
pumps on if the water level in the connected reservoir falls
under a lower threshold and turns them off if the water level
exceeds an upper threshold.

A. Centralized EMPC

Following the system model and power calculations pre-
sented in Section II, let u(t) ∈ RM denote the input
to all subsystems at time t. The continuous version of
the constraint optimization problem, to be solved at each
iteration, is

min
u(t)

∫ t0+TH

t0

c(τ)P (u(τ), y(τ)) dτ (6)

s.t. P (u(t), y(t)) = u1(t)y1,1(t)+∑
j∈V′

uj(t)(yj,1(t)− ymj ,2(t))) (6a)

yj(t) = Cxj(t) + fj(uj(t)) + γj ∀j ∈ V (6b)

ẋj(t) = 1/Aj(uj(t)− d̃(t)−∑
l∈Lj

ul(t)) ∀j ∈ V (6c)

xj(t0 + TH) = xj,T ∀j ∈ V (6d)
xj(t) ∈ X′

j,dmax,u(t)
⊆ Xj ∀j ∈ V (6e)

uj(t) ∈ Uj ∀j ∈ V (6f)

where X′
dmax,u(t)

⊆ X incorporates erroneous demand pre-
dictions and ensures adequate water levels if d(t) = dmax.
Terminal state constraint (6d) enforces predefined reservoir
water levels at the end of the prediction horizon.

B. Convexity

For the implementation of the optimization problem (6),
it is discretized and solved using standard optimization
methods. However, it can be shown that there exist operating
conditions in which the discrete version of optimization
problem (6) is not convex. The relation in (6) that affect
convexity is that the power P depends negatively on parent
system state xmj

through ymj ,2. see (6a) and (2).
1) Convexification: A convex optimization problem is

desired to produce global optima in all situations, ensuring
consistent system operations. Convexification of the opti-
mization problem (6) can be obtained by removing the
dependency of xmj

in the expression of the power (6a).
This is achieved by approximating ymj

in (6a) without
changing the model dynamics constraints in (6c), such that
P̃j = uj(yj,1−ỹmj ,2(x̃mj

)) ∀j ∈ V′, where x̃mj
is constant.

To obtain an optimal x̃mj
, the absolute maximum approx-

imation error for each Pj , j ∈ V′, is minimized. The error

ej(x̃mj
, xmj

, uj) :=
Pj(xmj

, uj)− P̃j(x̃mj
, uj)

Pj(xmj , uj)
(7)

is bounded by the reservoir water limits and minimum input.
Specifically, ej(xmj

) ≤ ej(xmjmin), ej(xmj
) ≥ ej(xmjmax),

|ej(uj)| ≤ |ej(0)| ∀ xmj ∈ Xmj , uj ∈ Uj . Equating emin and
−emax yields ej(x̃mj , xmjmax, 0) = −ej(x̃mj , xmjmin, 0),
which is solved for x̃mj

, resulting in

x̃mj =
(xmin + xmax)(γmj ,2 − γj,1) + 2ρgxmaxxmin

2(γmj ,2 − γj,1) + ρg(xmin + xmax)

where subscript notation mj is omitted in the bounds.
Problem (6) is converted to a convex optimization problem

752



if (6a) changes to

P (u, y) = u1y1,1 +
∑
j∈V′

uj(yj,1 − ỹmj ,2)) (8)

where ỹmj ,2 = ρgx̃mj + γj,2. Note that parent water level
x̃mj is a constant approximation of the actual water level.
The constant approximation is not used in the dynamics
constraints of (6).

C. Distributed EMPC

In distributed control it is desired to control each sub-
system individually using convex cost-functions. Using the
convexification method presented in (8), implies that local
cost-functions always are independent from their parents’
state. Given this independence from parents’ state in combi-
nation with the tree structure of the network, the choice of
solving strategy, e.g. iteratively or sequentially (presented by
[16]), naturally goes to a sequential approach. Locally, the
following optimization problem is solved

min
uj(t)

∫ t0+TH

t0

c(τ)Pj(uj(τ), yj(τ)) dτ (9)

s.t. Pj(uj , yj) =

{
ujyj,1 if j = 1

uj(yj,1 − ỹmj ,2) if j ∈ V′ (9a)

yj,1 = fj,1(uj(t)) + γj,1 (9b)
ẋj(t) = Bj(uj(t)− dj(t)−

∑
l∈Lj

ul(t)) (9c)

xj(t0 + TH) = xjT (9d)
xj(t) ∈ X′

j,dj max,uj(t)
⊆ Xj (9e)

uj(t) ∈ Uj (9f)

At each control iteration, the controllers, optimize sequen-
tially, starting at the leaf subsystem(s) and ending at the root
subsystem. All leaf subsystem controller(s) independently
solve the local optimization problem(s). The current and
expected future inputs are communicated to the correspond-
ing parent subsystem(s). Each parent subsystem controller
optimizes, considering the expected future inputs of the child
subsystem(s) as a disturbance. This process continues up to
the root subsystem and starts over each control iteration.
Any time delays are ignored. With this setup, only backward
communication from the leaf subsystem(s) toward the root
is necessary.

IV. RESULTS

The convex centralized and distributed controllers are both
implemented in discrete time using the function fmincon

[15] . Slack variables are added to the terminal constraint
(9d) and thereby softening the terminal constraint. These
slack variables help ensuring convergence and have not
shown to introduce stability issues. An input delay is present
due to the nature of the control structure. However, Tdelay ≤
1 second is observed in all optimizations, which is negligible
if the sample time Ts is considerable longer than this. The
sample time Ts = 1 hour in real-life and Ts = 60 sec in the
accelerated lab tests. Energy prices are considered repetitive
and and 50% lower between 07:00 and 22:00 compared to the

other hours of the day. Even though, this pattern is artificial
compared to what is expected in real life applications, it
is chosen to recognize if the controllers exhibit the desired
behavior. The price is shown for one day in Fig. 5a and
Fig. 6a.

Laboratory tests are performed using the bounds, con-
sumer demands, and empirically obtained parameters listed
in the tables in I. All tests start at virtual midnight with
xj = 300 ±6 mm, and are time accelerated by a factor 60
such that 24 minutes represents 24 hours in a real WDN.
The supervisory control operates with Ts = 60 seconds and
N = 24, meaning that a prediction horizon of 24 hours is
used in the economic MPC controllers. The terminal equality
state constraint is chosen to be xjT = xjmax ∀ j ∈ M.

A. Laboratory Implementation

A spatially scaled WDN containing two subsystems, is
implemented in the smart water infrastructure laboratory pre-
sented by [13], using three generic modules types: pumping
stations, consumer units, and piping units. The lab can be
seen in Fig. 3.

Fig. 3: Picture of the Smart Water Lab used for the tests.

The physical system dimensions and elevations are listed
in Table Ia. Pressurizing reservoirs mimics the effect of
physical elevation. The designed EMPC acts as a supervi-
sory controller that sets reference flow signals to local PI
controllers that regulate the local pumping stations flows
to desired values. Consumer demands are determined by
(5), and local PI controllers control valve flows to act as
consumers. All local PI controllers operate at fs = 1 Hertz.

1) Parameter estimation: A select number of parameters,
listed in Table Ic, is estimated to minimize the difference
between the physical system and the first principle model.

B. Controller behavior

Five days are emulated in the laboratory using the central-
ized EMPC, distributed EMPC, and the on/off controller. Pre-
simulation studies suggest that, using the model predictive
controllers, the system exhibits periodic (limit-cycle-like)
behavior in the states and inputs after transient.

1) Centralized EMPC: Relevant signals for one emulated
day are presented in Fig. 5, where the total system passed
the transient time. The main observation that can be made
is that pump flow is significantly higher when the power
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parameters z1:2 zr1 zr2 ∆zb1:2 ∆zt1:2 A1:2

unit m m m m m m2

value 0 0 1 2 3 π0.32

(a) Physical parameters
parameter x1min x1max x2min x2max u1min u1max
unit mm mm mm mm l/min l/min

value 110 440 110 440 0.5 14.0

parameter u2min u2max qc1mean qc1max qc2mean qc2max
unit l/min l/min l/min l/min l/min l/min

value 0.5 8.0 2.0 4.0 3.0 6.0

(b) Bounds and operating points
parameter unit expected emperical error [%]
γ1,1 kPa 29.34 27.07 7.74
γ1,2 kPa 19.56 18.58 5.04
γ2,2 kPa 39.12 38.82 0.77
ρg kg/m2s2 9781 9627 1.57
λ1 kg/m7 1.990e11
λ2 kg/m7 2.080e12

(c) System parameters in y

TABLE I: Laboratory system specifications

is cheap than when the power is expensive, indicating that
the controller behaves as desired. Reservoir 2 exceeds its
upper limit, which is explainable by the dynamics of the
flow controllers, which means that the desired flow reference
is not followed exactly. Poor flow control in the lower
flow regimes is visible in Fig. 5c and Fig. 5d. A peak in
operational cost is visible in Fig. 5f and is caused by the PI
settling time delay.

2) Distributed EMPC: Relevant signals for one emulated
day are presented in Fig. 6, where the total system passed the
transient time. Comparable behavior to the centralized EMPC
can be observed, such as limit-exceeding water levels, poor
flow control in the lower flow regime, and a peak in cost
every morning. A small difference between the distributed
EMPC and the centralized EMPC can be observed in the
water levels of reservoir 1. On average, reservoir 1 water
level is 1.25% lower in the distributed EMPC tests.

3) Cumulative cost: The cumulative theoretical operating
cost for the three presented control methods, based on
laboratory pressure measurements, is plotted over time in
Fig. 4. After five days, the cumulative cost is 23.2% and
21.2% lower for the centralized EMPC and the distributed
EMPC compared to the on/off controller, respectively. In
the distributed EMPC case, the child subsystem disregards
the water level, water demand, and other disturbances of its
parent subsystem. As one would expect, this results in a
sub-optimal outcome compared to centralized EMPC, which
considers all available information. This is evident in the test
results by the 2% less saving when applying the distributed
EMPC.

4) Approximation errors: The theoretical maximum error
of making the cost function convex (7), is ≤ 9%. Empirically,
using combined measurement data, pump 2 mean power
approximation error is 4.2%.

V. CONCLUSION
In this paper a centralized and distributed EMPC are

developed for a type of serial connected pumping stations

Fig. 4: Normalized cumulative cost different control types
based on 5 emulated days in the laboratory

found in water distribution networks. To ensure a robust
solution to the embedded optimization problem, convexity
is forced upon the problem by adjusting the underlying
model. Beside imposing convexity, this adjustment also leads
an efficient extension to a distributed setup, with a simple
communication structure between the local controllers. A
bound on the cost of introducing this adjustment is derived,
and is calculated to be less than 9% in the presented
experimental results. The laboratory test results show that
the centralized and distributed EMPC are both effective
solutions. Considering the specific power price structure from
Fig. 5a, the distributed EMPC methods reduce operating
costs by approximately 21% compared to the presented con-
ventional control. Moreover, both controllers exhibit robust
behavior and prove capable of handling high, unexpected
water demands.

Future work include stability analysis and further analysis
of the impact on the saving potential imposed by forcing
convexity on the model.
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