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Abstract— Dynamic obstacle avoidance is an essential func-
tion for Unmanned Aerial Vehicles (UAVs) to ensure the safe
and reliable operations of drones in real-world environments. It
allows drones to navigate and react to environmental changes
in real time, preventing collisions and maintaining their flight
paths. Dynamic obstacle avoidance also improves the success
rate of the drone’s mission by reducing the need for manual
control. In this study, we propose a model predictive control
(MPC) concept to generate high-level control commands for
drones to avoid dynamic obstacles by integrating Gaussian
process regression to forecast the motion of the moving obstacle
based on noisy observations. Additionally, we also investigated
the applicability of the Kalman filter as an alternative approach
in this context. Our tests demonstrate promising results for
multi-rotor drones in physics-based simulations.

Index Terms— Automatic guidance, UAV, motion control,
applications.

I. INTRODUCTION

With the advancement of aircraft technologies and the
rising demand for efficient mobility, Unmanned Aerial Ve-
hicles (UAVs) are considered a key element with a large
variety of applications in the future. Besides monitoring
[1], search and rescue purposes [2], drone technologies
have been intensively developed for logistics applications.
These are roughly divided into several areas: retail and E-
commerce, mail delivery, food delivery, and healthcare as
well as emergency services [3]. Especially in dense operation
regions, where multiple UAVs are operated, the interaction
of drones with the dynamic environment is crucial.

The interaction can usually be either bidirectional or uni-
directional. Cooperative scenarios represent the bidirectional
type of interaction, where information flow from both direc-
tions is provided. In unidirectional or non-cooperative cases,
the drone requires sensors for perception and algorithms to
track the object and grasp its motion. In this way, appropriate
avoidance maneuvers can be executed.

Most of the research in air mobility has been focusing on
the aircraft technologies and individual features of drones,
e.g., flight stability, remote sensing, and path planning. The
interaction with the environment is mostly handled in the
context of path and trajectory planning. However, motion
planning in an environment with dynamic obstacles is barely
addressed.

A significant amount of effort has been put into various
approaches to generate reliable trajectories in unknown,
dynamic environments and perform collision avoidance with
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moving obstacles. Different methods have been studied for
the autonomous navigation of UAVs. Some of them are
based on heuristic assumptions and simple obstacle represen-
tations. In [4], artificial potential fields were used to avoid
moving obstacles. However, potential field-based approaches
usually suffer from local minimum problems. [5] presents
a further study using potential functions, where the authors
additionally used fuzzy logic to overcome the local minimum
problem. A recent study [6] utilized the combination of
Dynamic Window Approach (DWA) and RRT* to plan a
collision-free path and react to unexpected obstacles. To
navigate in an environment with unknown obstacles, Chen et
al. [7] presented a real-time path update scheme based on A*
algorithm that does not take moving obstacles into account
in a predictive fashion.

Alvarez et al. [8] presented the ACAS sXu scheme, which
is a decision-making framework that helps autonomous
drones fly safely in the air by detecting and avoiding potential
collisions for large airspaces.

In recent years, deep learning-based approaches have
received considerable attention. Such approaches are usually
applied to solve different parts of the obstacle avoidance
problem, such as vision-based localization or planning. In
[9], a methodology for deep learning-based scene under-
standing by using monocular depth and ego-motion estima-
tion with an optical flow model is presented to deal with
obstacles.

Reinforcement learning (RL) is a different learning tech-
nique that has been intensively studied because of the ad-
vantage that it can provide intuitive solutions for complex
tasks. In [10], with only the information on distance obtained
through Lidar, an obstacle avoidance policy for a mobile
ground-based robot was derived. The prediction and avoid-
ance of the movements of dynamic obstacles relied on the
information of the lidar distance of the present and the past
steps. A theoretical RL-based attempt for decision-making to
avoid dynamic obstacles in 3D space was presented in [11].

Behavior cloning is another machine learning approach
where an agent learns to mimic the behavior of a demon-
strated expert to accomplish a task. In [12], a learning-
based, perception-aware trajectory planner was developed to
perform collision avoidance with dynamic obstacles.

Another popular type of method, which is based on
optimization, is MPC. Study [13] presented an MPC-based
motion planning framework for a static environment by
defining flyable spaces within the prediction time horizon
as optimization constraints. In [14], [15], another MPC and
optimal control concepts in a multi-agent context for a static
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environment are proposed. However, only static obstacles
are addressed. An MPC-based approach was also applied
to flight motion planning of a UAV in the presence of
moving obstacles [16]. The authors predefined certain motion
classes and identified them based on some measurements
and presumptions. The localization was emulated with an
external tracking system, and the approach was experimen-
tally demonstrated. In a further study [17], which is relevant
to our work, collision avoidance with moving obstacles
was achieved using MPC and Kalman filter, which uses a
predefined motion model of the moving obstacle for making
predictions about its future state.

However, despite the promising results achieved by vari-
ous studies, there still exists a research gap when it comes to
robustly predicting the motion of arbitrary moving objects in
dynamic environments. In real-world scenarios, the motion
of objects can be highly unpredictable and prone to noise in
detection. This makes it difficult to accurately model their
behavior. This lack of robustness can result in a higher risk
of collisions and accidents. Therefore, there is a need for
more research in this area to develop robust and accurate
methods for detecting and predicting the motion of moving
objects in dynamic environments.

Data-driven system identification has been a popular topic
in engineering, and natural sciences to model dynamic sys-
tems based on measurement data [18], [19]. Due to high
flexibility in terms of handling different types of data, ease
of hyperparameter tuning, and purely data-driven nature
(no need for model assumptions), Gaussian process (GP)
regression has gained increasing interest to quantify model
uncertainties, especially in motion planning, in combination
with MPC framework [20]–[22].

In this paper, we focus on the motion control of a transport
drone. Since the crowded airspace may include other drones
that are uncooperative or less environmentally aware in
the future, appropriate motion planning in the presence of
moving obstacles is crucial to prevent accidents. Due to the
power of MPC in handling nonlinear systems, constraints,
and adaptability to unforeseen events, we propose a modular
motion planning scheme centralized around MPC. This in-
cludes the prediction of the motion of an obstacle with mea-
surable positions, and the shaping of optimization constraints
to integrate the future behavior of the detected obstacle to
the predictive planner. MPC relies on mathematical models
of the system, which are often easier to develop and validate
in scenarios where prior knowledge of the system dynamics
is available. The key contributions of the paper are listed
below:

• An MPC scheme that can also be easily adaptable to
fixed-wing VTOL drones was implemented to generate
high-level control commands.

• Gaussian process-based observations are integrated into
the MPC scheme as inequality constraints in a recursive
way. GP can deal with delayed position measurements
and still provide a reasonable confidence interval, espe-
cially if it is used in a recursive fashion.

• Modular design in terms of replaceable individual mod-

ules, e.g., type of GP, flight controller, obstacle detec-
tion/localization approach.

• The proposed scheme is demonstrated in a realistic,
physics-based simulation environment together with an
open-source flight controller.

The paper is structured as follows: Section II briefly
describes essential preliminaries of the proposed framework.
In Section III, we explain the MPC scheme along with GP-
based shaping of the optimization constraints to perform
avoidance maneuvers. In Section IV, the application and
evaluation of the concept on a UAV are shown in realistic
simulation scenarios using the real-world communication
framework (ROS2). Furthermore, we discus the use Kalman
filter as potential alternative for our approach. Finally, Sec-
tion V concludes the paper and provides future research
directions.

II. PRELIMINARIES

This section briefly introduces the basics of MPC and the
frameworks used for our guidance scheme implementation.

A. Model Predictive Control

As the name implies, MPC requires a dynamic model of
the controlled system on an appropriate abstraction level. The
basic idea of MPC is to handle the multivariable, constrained
control problem by considering a specified finite time horizon
to predict the system’s future behavior. In this way, instead of
calculating the whole set of controls from the current state to
the final state, the optimization problem is repeatedly solved
over a finite horizon during the operation.

Along a specified time horizon, a previously defined cost
function is minimized under the consideration of the given
state and input constraints in each time instant. Subsequently,
only a particular part of the calculated optimal input is
applied to the plant.

State, control variables, and reference state over the pre-
diction horizon N ∈ N are usually the essential elements of
the cost function for the optimization step of MPC. Constant
factors weight the variable terms in the cost function to define
the priority of certain state variables within the optimization
problem. The optimization problem in MPC is formulated as
follows:

min
u

N−1∑
k=0

ℓ(x(k),u(k)) + V (x (N)) (1)

subject to

x(k + 1) =f(u(k), x(k)), ∀k ∈ {0, N − 1} (2)
g(x(k)) = 0, (3)
h(x(k),u) ≤ 0, ∀k ∈ {0, N − 1}, (4)

with a stage cost (
∑N−1

k=0 ℓ(x(k),u(k))). The so-called
Mayer term V represents terminal cost acting only at the
end of a prediction horizon. In addition, u is the control
input of the system (2) with the state x. The initial condition
is described by x0 at time t0. The end conditions g(·) usually
describe a target state xref to be reached at the end of the
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prediction horizon, e.g., g(x(NC)) = x(NC)−xref(NC). Eqn.
(4) denotes inequality constraints, such as the restriction of
a control or state variable.

The optimal control problem (OCP) can be solved either
analytically or numerically by translating it into nonlinear
programming (NLP) problem. For the numerical solution,
there are different external solvers. In this work, we used
CasADI [23] with IPOPT solver to iteratively solve the OCP
in the MPC. Within this framework, symbolic expressions for
the various equations (1)-(4) are defined, and their derivatives
are evaluated by using algorithmic differentiation.

B. Gaussian Process-based Prediction

Gaussian Processes are stochastic processes that are com-
pletely specified by their mean and covariance functions.
They are frequently applied for non-parametric function
approximation. Based on a finite set of n observations
{(x1, y1), . . . (xn, yn)}, GP makes it possible to formulate
a non-linear function y = f(x) : Rd 7→ R. In a GP, the
mean function defines the expected value of the process at
any point, and the covariance function defines the similarity
between any two points. The covariance function, also known
as the kernel, encodes the assumptions about the smoothness
and periodicity of the modeled function. For fundamental
information, the reader is referred to [24].

GPs can be used for non-parametric Bayesian inference,
where the number of parameters is not fixed and is deter-
mined by the data. This makes GPs particularly well-suited
for systems where the underlying function is not or only
partially known in advance.

One of the main advantages of GPs is that they quantify
the uncertainty in the predictions made by the model. This is
done by computing the posterior distribution of the function
values at any given point, given the observed data. This al-
lows the model to make probabilistic predictions, which can
be useful in many control and decision-making tasks.With
the GP-based predictions about confidence levels, trajectory
corridors can be generated to be used as boundary conditions
for the MPC.

III. METHODOLOGY

In this problem set, we consider UAVs that can localize
themselves in the 3D space using a GPS receiver and
measure their velocities using an IMU.

A. Motion Planner

The motion of a wide range of vehicle classes, such as
quadrotors, holonomic ground vehicles, or robots, can be
simply modeled by using double-integrator dynamics. Since
we use an external flight controller that uses acceleration
setpoints, for the high-level motion planner, we consider the
UAV in quadcopter mode to be a simplified point mass.
The state of the UAV is defined by (p, v) ∈ R3 × R3,
which represent the position and velocity of the UAV in 3-
dimensional space, respectively. The dynamics for the time-

Quadrotor

Drone’s 
reference 
position

MPC
Flight controller

GP model

Noisy 
observation

acceleration
command

Fig. 1: System architecture of the proposed motion control
concept.

discrete implementation are given as follows:

p(tk + 1) = p(tk) + v(tk) ·∆t,

v(tk + 1) = v(tk) + u(tk) ·∆t,
(5)

where ∆t is a finite step size, tk is the k-th time step and
u ∈ R3 is the high-level control input.

In order to generate predictive motion, we design the
MPC, which makes use of a point mass model (5) and
minimizes a simple cost function:

min
p0:N−1,u0:N−1

J(p,u) =
N−1∑
k=0

(
||p(k)− pr||2Q1

+ ||v(k)− vr||2Q2
+ ||u(k)||2R

)
(6)

subject to p(k + 1) = p(k) + v ·∆t,

v(k + 1) = v(k) + u ·∆t, ∀k ∈ [0, N − 1]
(7)

where Q1, Q2, and R are weighting-matrices1 of the ap-
propriate dimensions and can be seen as design parameters,
which can be defined empirically and based on the applica-
tion. The notation x0:N−1 = [x0, x1, . . . , xN−1]

T represents
sequences. The index k denotes the current time instant. The
initial states are defined as follows:

p0 = p(k = 0), v0 = v(k = 0).

The first term of (6) considers the minimization of the
distance between the UAV and the given reference position
pr. The second term is to minimize the velocity difference
between the UAV and reference velocity vr. The third term
aims at minimum control effort. Given position setpoints,
we can generate high-level control inputs, the acceleration
commands, by repeatedly solving eqn. (6) using CasADi.
Fig. 1 depicts the system’s overall architecture. To convert
the high-level control commands to thrust setpoints, we used
an open-source flight controller, PX4.

1||x(k)||2M is a short notation for x(k)TM x(k).
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Fig. 2: Illustration of the recursive observation and GP
regression scheme.

B. Constraint Shaping with GP

In many MPC implementations, static obstacles are usually
integrated into the optimization scheme using safety distance
r and obstacle position O ∈ R3. To avoid collision between
the UAV and the static obstacles, the following inequality
constraint can easily be used:

h(p,u, k) = −||p(k)− O||+ r + dO ≤ 0, dO > 0 (8)

where dO denotes the predefined, additional safety distance
in case of uncertainty in position measurement.

For dynamic obstacles, however, inequality (8) should be
updated repeatedly over the horizon in a predictive manner.
To this end, we recursively apply a GP regression to a set of
recently collected observation data measured via localization
with image sensors or radar. In the recursive observation
scheme, we forecast the short-term future behavior of the
detected obstacle based on a specific set of previous obser-
vations (see Fig. 2). Before each optimization step of the
MPC, the GP regression is conducted based on a predefined
number of recently collected observations.

The observation data do not only consist of the 3D
position observations but also the corresponding timestamp
of each measurement point, e.g., [t, x(t), y(t), z(t)]. After
the application of the GP regression to the data, we obtain a
model that can represent the 3D spatio-temporal behavior
of the obstacle. With this, the new inequality constraint
is formulated in a time-variant way, similar to ellipsoid
equations, as follows:

h(p,u, k) =−

(
px(k)− Cx(k)

)2

(a(k) + dO)2
−

(
py(k)− Cy(k)

)2

(b(k) + dO)2

−

(
pz(k)− Cz(k)

)2

(c(k) + dO)2
+ 1 ≤ 0, dO > 0

(9)

where p(k) = (px, py, pz) are the coordinates of any point
on the ellipsoid and C(k) = (Cx, Cy, Cz) are the coordinates
of the mean value of the GP model at the discretization point
k. The paramaters a, b, and c are the semi-axes lengths along

Observed positions of the 
obstacle

Prediction of the 3D 
motion

Fig. 3: Visualization of the GP-based constraint shaping.

the x, y, and z-axes, respectively. Semi-axes lengths are
defined based on the confidence interval of the GP model in
each dimension at the corresponding discretization point. The
constant parameter dO denotes the predefined safety distance
to expand the ellipsoidal constraints to provide additional
safety. In this way, the MPC constraints are shaped actively
in each optimization step (6) over the prediction horizon (see
Fig. 3).

IV. RESULTS

This section presents simulation results of the proposed
dynamic obstacle avoidance scheme using a communication
framework based on ROS2 and a physics engine2 (Fig. 4).

A. Simulation Experiments

For this study, we used a physics model of a quadrotor
with parameters taken from AirSim [25], and the dynamics
modeling is based on [26]. The UAV is equipped with a GPS
receiver to determine the location of the UAV and IMU for
the velocities. In addition, a sensor is required to localize
the obstacle in the proximity and collect observation data.
Since object tracking and localization is not within the scope
of this work, this part was emulated by publishing noisy
position messages with a standard deviation of 0.3 in ROS2
with slight time delays ranging from a few milliseconds up
to 20ms. All simulations are conducted on a computer with
Intel i9-11950H CPU @ 2.6 GHz. One optimization step of
the MPC with our parameter and problem setting takes 0.15 s
on average. Training of a GP model on 50 data points, that
include 3D position information and observation timestamps,
takes ≈ 88.9ms in average.

The open-source flight controller PX4 is used in Offboard
mode for our experiments. PX4 Offboard mode is a control
mode that is used in drone flight control systems based on
the PX4 Autopilot software. In this mode, control commands
are sent from an external control source, in our case, from
the motion planner to the drone’s flight controller over a
communication link. The flight controller then executes these
commands to control the drone’s movement. This allows
more advanced and flexible motion control of the drone in
contrast to providing only position setpoints. The yaw angle
of the UAV is controlled by the PX4 autopilot, which adjusts

2Simulations are done using OCTANE, a simulation platform developed
by Fraunhofer IOSB. https://www.octane.org.
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Fig. 4: A scene from the simulation, where the drone is flying
in multicopter mode.

the drone’s orientation to align with the targeted reference
position.

For the training of the GP model, we utilized the radial
basis function (RBF) kernel initialized with a length scale of
130 and white kernel initialized with a noise level of 0.3 are
utilized, where the white kernel is employed to estimate the
noise level within the data, while the RBF kernel is employed
to capture the non-linear relationship between the data and
the target variable. As optimizer, L-BFGS-B from scipy was
used and the kernel hyperparameters are evaluated with the
log-marginal likelihood.

The values of the parameters for the motion planner
were empirically determined and are given in Table II3.
All simulations were performed with these parameter values
using the cost function from eqn. (6) and in a working area
with identical dimensions. To prevent significant deviation
from the straight line connecting two target positions, we
introduced additional inequality constraints to ensure that the
trajectory remains within an ellipsoidal space between two
consecutive reference positions, following an approach sim-
ilar to the first step of the Safe Flight Corridor Construction
outlined in [27].

To evaluate the effectiveness of the proposed approach,
we identified several test scenarios in which the obstacle’s
speed and direction of motion are varied. In a subset of
test scenarios, the obstacle executes 3D linear motion with
different constant speed values (2, 3, 4m/s) beginning from
different altitudes (28, 34m). We set the obstacle’s motion
so that its path intersects with the preplanned trajectory of
the UAV at potential collision point (34, 30, 28), marked with
a red cross in Fig. 5. We adjusted the initial position of the
obstacle in each test scenario, exploring a range of collision
directions around the intersection (collision) point. In ad-
dition, we also investigated obstacles with a circular motion
applying different angular velocities (0.05−0.15 rad/s) and
intersecting the flight trajectory of the UAV.

Fig. 5 depicts the UAV’s reference positions and paths
and moving obstacle from a selected test scenario. The UAV
takes off from position (0, 0, 0) and flies first to the closest
reference position. Fig. 6 shows the predicted position of the

3Our main goal is to demonstrate the approach’s performance across
diverse scenarios, with an emphasis on generalization rather than cost
function optimization.
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Fig. 5: Paths of UAV and the dynamic obstacle from an
example test scenario with the take-off position (0, 0, 0). The
obstacle flies from the North towards the South-East.

obstacle at each MPC iteration from the same test scenario.
The obstacle was detected first at ca. 29 s, and after collecting
observation data for ca. 3 seconds, the forecasting begins.
When more than 50 data points are available, the prediction
is made based on the 50 most recent collected observations.
Fig. 7 visualizes the mean values over the prediction horizon
in each GP model prediction. The prediction obviously
tends to better represent the path as more observations are
utilized for the GP regression. Since the ground truth and the
confidence of the prediction are partially, relatively close to
each other, the additional distance dO provides extra safety
and also compensates faulty forecasting.

B. Discussion

Since the multi-step position prediction over the horizon
is an important component of the proposed scheme, we
compared the extended Kalman filter (EKF) as an alternative
method to GP regression. Since the Kalman filters are
usually applied for one-step state estimation, we modified
the EKF accordingly to enable multi-step estimation that
can be used in the MPC framework. In alternative prediction
approaches, we consider multi-step EKF based on a linear
motion model and constant turn-rate (CTR) model with a
turn rate of 0.05 rad/s. Table I shows a comparison of them
on the same dataset with 150 position data points based
on metrics such as average multi-step prediction time and
root mean square error (RMSE). Although Kalman filter is
time-efficient, it is based on an assumed dynamic model and
designed for one-step prediction, so in multi-step estimations,
the error propagates. On the other hand, the implemented GP
regression provides significantly better estimation since it is
not based on a model assumption.

The minimum distance values between the UAV and the
moving obstacle during all simulated scenarios for different
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Fig. 7: Forecasting behavior over the individual prediction
horizon in each MPC step from the selected test scenario
(see Fig. 5).

EKF (lin) EKF (ctr) GPR
RMSE 3.11 1.32 1.12

avg. time (ms) 2.8 3.4 68.1

TABLE I: Comparison of multi-step (50 time steps with
0.2 s step size) prediction performances of KF and GP-based
estimation. The real obstacle motion was circular. It should
be noted that the value of the constant turn-rate strongly
influences the multi-step prediction accuracy.
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Fig. 8: Analysis of the minimum distances in all test scenar-
ios.

multi-step prediction approaches are depicted in a boxplot
in Fig. 8. The simulated test scenarios covered 48 linear and
12 circular obstacle motions with different characteristics.
Based on the results, the UAV applying the GP-based method
could maintain a reasonable distance from the obstacle and
in more than 75% of the test scenarios, it successfully
obeyed the defined minimum distance of 6m. On the other
hand, however, in 75% of the tests with EKF, the UAV
could maintain a minimum distance below 6.7m. In EKF
basd on CTR model, 50% of the cases, and in EKF using
a linear motion model, more than 50% of the cases, the
minimum distance was below 6m. The outliers, where the
drone maintained a high distance, correspond to cases in
which the obstacle approaches from a similar direction to that
of the drone, rather than from the opposite direction. Due to
the high covariance values from EKF used similarly to those
in eqn. (9), the drone may have reacted at an appropriate
time.

The simple GP-based forecast works with limitations and
additional safety distance sufficiently good when the hyper-
parameters of the GP regression are adequately tuned by con-
sidering the measurement noise, observation frequency, and
the number of data points used for the GP regression model
fitting. Compared to the modified EKF-based attempts, the
proposed scheme helps predict spatio-temporal behavior of
the moving obstacle in a more generalized fashion with a
good confidence. However, it is recommended for moderately
dense areas to ensure safe avoidance maneuvers.

V. CONCLUSION

This paper proposes a modular and efficient approach for
collision avoidance with dynamic obstacles. While utilizing
the obstacle’s spatio-temporal observations and data-driven
motion forecast via GP, MPC constraints can be shaped
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TABLE II: Parameter Setting

Cost function

Q1

 1 0 0
0 1 0
0 0 1


Q2

 1 0 0
0 1 0
0 0 1


R [1, 1, 1]T

MPC parameters
Prediction horizon N 75

Step size ∆t 0.2 s
Velocity range [−5, 5] m/s

Acceleration range [−3, 3] m/s2

Additional safety distance dO 6 m

during motion planning. Thus, moving obstacles can be
avoided in a predictive way by maintaining the intended
flight path. The proposed scheme is tested and evaluated
in realistic physics simulations. Future work will incor-
porate the avoidance of multiple obstacles and additional
environmental constraints by making use of environmental
perception. Furthermore, employing heuristics such as choos-
ing them from a subset of the initial data points can be
investigated to enhance the computational efficiency of the
GP module. We also plan to investigate the UAV’s reactivity
in detail, focusing on improving its response times and
maneuverability.

APPENDIX

In Fig. 9, the acceleration commands (red) generated by
our motion control scheme and the IMU-based acceleration
(blue) are shown. PX4 sufficiently tracks the high-level con-
trol inputs. However, the tracking behavior can be improved
by adequately tuning the controller gains.

Fig. 10 visualizes the mean values over the prediction
horizon in each EKF-based prediction using CTR. In Fig.
11, the prediction behavior is illustrated for the EKF based
on liner motion. In addition, the test cases with linear and
circular obstacle motion are analysed separately in Fig.
12. Based on the analyses, it can be concluded that GP-
based prediction can outperform Kalman filter-based multi-
step prediction approaches, as errors strongly propagate
when the Kalman filter’s update step relies solely on new
observation data. The EKF can partially compensate for
this by incorporating variance values from the covariance
matrices in the MPC constraints. Furthermore, EKF with
CTR tends to provide better results in our scenario. However,
the predefined constant turn-rate value remains a limiting
factor in terms of multi-step prediction accuracy.
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