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Abstract— This work proposes an efficient treatment of
continuous-time optimal control problems with long horizons
and nonlinear least-squares costs. In particular, we present the
Gauss-Newton Runge-Kutta (GNRK) integrator which provides
a high-order cost integration. Crucially, the Hessian of the cost
terms required within an SQP-type algorithm is approximated
with a Gauss-Newton Hessian. Moreover, L2 penalty formu-
lations for constraints are shown to be particularly effective
for optimization with GNRK. An efficient implementation of
GNRK is provided in the open-source software framework
acados. We demonstrate the effectiveness of the proposed
approach and its implementation on an illustrative example
showing a reduction of relative suboptimality by a factor greater
than 10 while increasing the runtime by only 10%.

I. INTRODUCTION

Model predictive control (MPC) is an optimization-based
control strategy which relies on the (approximate) solution
of nonlinear optimization problems in real-time. In direct
optimal control, starting from a continuous-time optimal
control problem (OCP), a variety of choices have to be
made to derive a discrete-time formulation that adequately
approximates the continuous-time problem but can be solved
efficiently within an online optimization context.

Direct methods for optimal control first discretize then
optimize the original problem and are the focus of this
paper. In particular, we consider a multiple shooting [1]
discretization approach. Sequential quadratic programming
(SQP) is a widely used algorithm in the field of real-time
nonlinear model predictive control (NMPC) to tackle the
resulting discrete-time OCP. Especially its application via
the real-time iteration (RTI) scheme [2] is of particular
interest in the context of online optimization. Within the
RTI framework, a single SQP iteration is performed at
each sampling time, which allows one to further split the
required computation into a preparation and a feedback phase
minimizing feedback delays.

One essential component of SQP software for NMPC
based on direct multiple shooting are integration routines
that solve initial value problems with possibly nonlinear and
stiff differential equations and compute the sensitivities of
the result with respect to the initial state and the control
input [3], [4]. Often, these integration methods are simply
referred to as integrators.
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The above ingredients are implemented in the open-
source software package acados which provides high-
performance algorithms for optimal control [5]. It internally
uses the linear algebra package BLASFEO, which provides
performance-optimized routines for small to medium sized
matrix operations [6]. The acados software offers a very
flexible optimization problem formulation supporting a wide
range of optimal-control structured problems, such as clas-
sic optimal control problems (OCP) and moving horizon
estimation (MHE) problems. Various discretization options
are available, such as nonuniform grids, explicit and implicit
integrators and dedicated functionalities to handle nonlineari-
ties and linearities in cost and constraint functions efficiently.
Moreover, a variety of quadratic programming (QP) solvers,
such as HPIPM, qpOASES, DAQP, OSQP, qpDUNES, [7],
[8], [9], [10], [11] are interfaced, which either tackle the
OCP-structured QP directly or after applying full or partial
condensing to it [12], [13].

This paper focuses on the discretization and Hessian
approximation of the cost function. We investigate how
the control performance, both in terms of closed-loop cost
and computation time, can be improved using a sophisti-
cated cost discretization scheme. In particular, we focus on
nonlinear-least squares objectives, which are common in con-
trol applications and allows us to use intrinsically positive-
semidefinite Gauss-Newton Hessian approximations. We ef-
ficiently implemented the integration of a nonlinear least-
squares Lagrange cost term together with its derivatives
within an integrator, resulting in a Gauss-Newton Runge-
Kutta (GNRK) integration method, recently proposed in [14].
In addition, we propose a simple but effective penalty for-
mulation to incorporate state constraints with an L2 penalty.
The combination of the above ingredients are especially
effective, in terms of accuracy and associated computational
complexity, when applied to problems with relatively long
horizons. The GNRK implementation is described and its
effectiveness is demonstrated together with the use of RTI
and a nonuniform discretization grid in terms of computation
time and closed-loop cost on the illustrative example of a
pendulum on a cart.

The remainder of the paper is structured as follows.
Section II presents the continuous-time OCP and discusses in
detail how to transform it into an NLP using multiple shoot-
ing. Section III describes the GNRK integrator. Section IV
presents numerical experiments and Section V concludes
the paper and discuss the handling of state constraints via
penalties.
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II. OPTIMAL CONTROL PROBLEM FORMULATION

In this section, we start with a continuous-time optimal
control problem (OCP) which we aim at approximating with
a direct multiple shooting formulation that is suitable for real-
time MPC. We give an overview and recommendations on
the various discretization choices within the direct multiple
shooting framework.

A. Continuous-time optimal control problem

We consider optimal control problems of the form

minimize
x(·),u(·)

∫ ∞

0

ℓ(x(t), u(t)) dt (1a)

subject to x(0) = x̄0, (1b)
0 = f(t, x(t), ẋ(t), u(t)), t∈ [0,∞), (1c)
0 ≥ g(x(t), u(t)), t∈ [0,∞) (1d)

where x(·) : [0,∞) → Rnx , u(·) : [0,∞) → Rnu are the
state and control trajectories respectively, x̄0 is the initial
state value, f(·) describes the implicit system dynamics and
g(·) denotes the inequality constraints. The cost function
consists of the integral of the Lagrange cost term ℓ(·), which
we assume to have the following nonlinear least-squares form

ℓ(x, u) =
1

2
∥r(x, u)∥2W , (2)

where W ∈ Rny×ny is positive definite and r(·) : Rnx ×
Rnu → Rny is the potentially nonlinear residual function.

B. Discretization of the optimal control problem

In order to arrive at a finite dimensional approximation of
the continuous problem (1), which can be solved online, a
finite time horizon T and the number of shooting intervals N
have to be chosen. The shooting intervals are [tn, tn+1] with
t0 = 0 and tN = T . The time steps are ∆tn = tn+1− tn for
n = 0, . . . , N9 1. The multiple shooting OCP corresponding
to (1) can then be stated as

minimize
x0,...,xN ,
u0,...,uN91

N91∑

n=0

Ln(xn, un) +M(xN ) (3a)

subject to x0 = x̄0, (3b)
xn+1 = ϕn(xn, un), n = 0, . . . , N 9 1, (3c)

0 ≥ gn(xn, un), n = 0, . . . , N 9 1, (3d)
0 ≥ gterminal(xN ). (3e)

Its optimization variables are the discrete control inputs un

acting on [tn, tn+1], n = 0, . . . , N 9 1, and the discrete
states xn at tn, n = 0, . . . , N . The values xn and xn+1

are coupled by integration methods (integrators) ϕn(·) that
discretize the continuous-time dynamics in (1c) and that
can be different for all stages n = 0, . . . , N 9 1. The cost
terms Ln(·) approximate the integral of the continuous cost
over the shooting interval [tn, tn+1]. The constraints gn(·)
represent the continuous-time constraints on [tn, tn+1]. Most
direct methods in optimal control only enforce the con-
straints at the shooting nodes. Lastly, the terminal constraint
gterminal(·) and the terminal cost term M(·) can be used

to approximately summarize the infinite remainder of the
horizon.

C. Constraint handling via direct penalty

In the context of NMPC, it is not recommended to impose
hard constraints on the state, since this can render the OCP
infeasible [15]. This issue is typically mitigated by softening
all constraints which depend on the state. This means that a
scalar constraint of the form h(z) ≤ 0 in the variables z is
replaced by

h(z) ≤ s (4)

using an additional optimization variable s, commonly re-
ferred to as slack, which is constrained to be nonnegative,
s ≥ 0. The slack is penalized in the cost function, by adding
a term ρs(s), which typically consists of an L1 and/or L2

penalty. Such slack variables can be considered as a control
input in the context of optimization problem (3). However,
many OCP specific solvers allow to handle them in a more
dedicated fashion, exploiting the fact that they do not enter
the dynamics [7], [16].

Since constraints are typically only imposed on the shoot-
ing nodes in the discrete-time OCP, the continuous-time
trajectories corresponding to the discrete solution may violate
the constraints between shooting nodes. This issue can be
mitigated by directly adding the cost term corresponding to
the constraint violation to the continuous objective, i.e.

ρs(max(0, h(z))). (5)

This can lead to a more accurate incorporation of the
constraint cost if an accurate cost integration is employed,
see below, especially if longer intervals are used.

In order to fit into the nonlinear least-squares framework,
we propose to penalize constraint violations of (4) with an
L2 penalty with weighting parameter γ, by adding

ρ(z) = γ(max(h(z), 0))2 (6)

to the cost function. The combination of such penalty
functions for multiple constraints is visualized in Figure 1.
Note that for this penalty formulation, the Gauss-Newton
Hessian corresponds to the exact Hessian, which is in this
case not continuous. However, the Newton iterations can
be analyzed within the framework of semismooth Newton
methods, compare e.g. [17].

In contrast, using an L1 penalty instead of the L2 penalty
yields a nondifferentiable objective, rendering this formula-
tion not directly suitable for the numerical method presented
in this paper. Instead, L1 penalties require the reformulation
via a slack variable and inequalities. However, an extension
of formulation (6) to convex penalties with a continuous
gradient, such as the Huber loss, would also be suitable
for direct numerical treatment and can be handled with a
generalized or extended Gauss-Newton Hessian [18].
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Fig. 1. Multiple constraints penalized via (6).

D. Cost integration scheme

Now that state constraints are incorporated into the cost
function, we want to define Ln(·) to approximate the
continuous-time cost term on the interval [tn, tn+1), i.e.

Ln(xn, un) ≈
∫ tn+1

tn

ℓ(x(t), u(t))dt. (7)

We consider two possible integration schemes:
(i) The shooting node cost discretization (SN) approxi-

mates the cost term as

LSN
n (xn, un) = ∆tnℓ(xn, un), (8)

and corresponds to an Euler integration of the cost.
(ii) The (implicit) Runge-Kutta (RK) integration uses the

same integration scheme which is used to integrate
the dynamics, represented by ϕn(·). The Runge-Kutta
integration of the cost and, in particular, a Hessian
approximation of this cost term, which is efficient to
compute, are described in detail in Section III.

Note that the two options coincide if the dynamics are
discretized using one step of an explicit Euler scheme.

E. Practical considerations and nonuniform grids

In the context of real-time MPC, there are practical
limitations relevant for the design of the MPC controller.
Firstly, the plant or actuators typically have a minimum
sampling time ∆tplant, for which a control input should be
applied. Operating the plant at a lower frequency restricts
the control law unnecessarily, potentially sacrificing control
performance. Thus, a controller should be able to output
controls with the same frequency, i.e., the sampling time
of the controller Ts should equal ∆tplant, which we assume
in the following. Secondly, the control input applied for one
sampling period is typically constant. These considerations
motivate a constant control input on the first shooting interval
[0, t1] with t1=Ts.

While the remaining degrees of freedom in choosing a
time grid are massive, the majority of practical applications
of MPC restrict themselves to a uniform time grid. It is
difficult to make general suggestions about this choice, but
we want to motivate the use of a nonuniform in the following.

If the first shooting interval is longer, i.e., ∆t0 > Ts, this
can lead to a loss of optimality, since the controls have to be
chosen more conservatively, such that they do not drive the
system away from a desired trajectory, even if applied for

the longer period ∆t0. On the other hand, if ∆t0 < Ts, the
controller might choose too aggressive actions for Ts, which
are only safe to apply for the shorter period of ∆t0.

The prediction model and its discretization should be very
accurate on the first shooting interval to avoid suboptimality
of the open-loop trajectory due to model-plant mismatch on
the first part of the horizon, which is applied to the real
system.

Additionally, it is essential to have a sufficiently long time
horizon such that the optimizer is aware of future constraints
or future changes in the cost, such as reference changes. The
crucial task of the latter part of the horizon which is not
applied to the plant is to capture the cost-to-go accurately.
However, since the computational cost of MPC algorithms
scales at least linearly in the number of shooting nodes, a
trade-off between a long time horizon and a low number of
shooting nodes has to be made, which motivates the use of
a nonuniform time grid.

Overall, these considerations encourage the use of a fine
cost integration in contrast to the widely used shooting node
discretization.

III. IMPLICIT RUNGE-KUTTA INTEGRATION OF THE
LAGRANGE TERM AND GAUSS-NEWTON HESSIAN

APPROXIMATION

In the following, we describe how the Lagrange term
within the continuous cost (1a) can be integrated with the
same integration scheme used for the system dynamics (1c).
In particular, we show how the first-order, as well as an ap-
proximation of the second-order derivatives of the integrated
Lagrange term can be computed with little computational
overhead and a low memory footprint. Our presentation
closely follows the one given in [14].

A. Integrated cost and its derivatives

We assume that each integration interval [tn, tn+1) is
subdivided into nsteps equidistant subintervals [tin, t

i+1
n ) with

tn = t0n, tn+1 = t
nsteps
n and tin = tn + i ∆tn

nsteps
where ∆tn

nsteps

is the length of each subinterval, i = 1, . . . , nsteps. On each
subinterval [tin, t

i+1
n ], the following system of equations is

solved:

si,jn = xi
n +

∆tn
nsteps

nstages∑

l=1

aj,lk
i,l
n , (9)

0 = f(ti,jn , si,jn , ki,jn , un), (10)

for j = 1, . . . , nstages and where ti,jn = tin + cj
∆tn
nsteps

. The
final state at the end of the subinterval is obtained as

xi+1
n = xi

n +
∆tn
nsteps

nstages∑

j=1

bjk
i,j
n . (11)

The coefficients aj,l, bj , cj are given by the Butcher
tableau defining a specific RK method. We obtain the in-
tegrated value of the cost at tin as:

Li+1
n = Li

n +
∆tn
nsteps

nstages∑

j=1

bj
2

∥∥ri,jn

∥∥2
W

(12)
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where ri,jn = r(si,jn , un). Differentiating (12) with respect to
wn := (xn, un), we obtain

dLi+1
n

dwn
=

dLi
n

dwn
+

∆tn
nsteps

nstages∑

j=1

bjr
i,j⊤
n WJ̃ i,j

n , (13)

where J̃ i,j
n =

dri,jn

dwn
. For the Hessian, we differentiate the

above again to obtain

d2Li+1
n

dw2
n

=
d2Li

n

dw2
n

(14)

+
∆tn
nsteps

nstages∑

j=1

bj ·
(
J̃ i,j⊤
n WJ̃ i,j

n +

ny∑

l=1

ri,j,ln Wl,•
d2ri,j,ln

dw2
n

)

where ri,j,ln is the l-th component of ri,jn . Discarding the
second term within the sum in (14), we obtain the Gauss-
Newton (GN) Hessian approximation

d2Li+1
n

dw2
n

≈ Hi+1
n := Hi

n +
∆tn
nsteps

nstages∑

j=1

bj J̃
i,j⊤
n WJ̃ i,j

n . (15)

Note that the product J̃ i,j⊤
n WJ̃ i,j

n in (15) is positive semidef-
inite. Thus, if the coefficients bj are nonnegative1, the GN
Hessian approximation is positive semidefinite as well.

In summary, the GNRK cost integration technique is
defined by using the cost

LGNRK
n (xn, un) := Lnsteps

n . (16)

where L
nsteps
n as in (12). It is used together with its exact

gradient (13) and the GN Hessian approximation in (15).
If used within an SQP-type algorithm, the Gauss-Newton

Hessian approximation yields in general local linear con-
vergence [20]. The asymptotic linear rate depends on the
deviation of the Gauss-Newton Hessian approximation from
the exact Hessian at the solution [21]. The deviation is
explicitly given by

Ei+1
n :=Ei

n +
∆tn
nsteps

nstages∑

j=1

bj

(
ny∑

l=1

ri,j,ln Wl,•
d2ri,j,ln

dw2
n

)
. (17)

Thus, we expect fast linear convergence if the residuals ri,j,ln

are close to zero.

B. Efficient computation of the Gauss-Newton Hessian

This section describes how the Gauss-Newton Hessian of
the integrated cost can be obtained with minor additional
computations within an integrator that already delivers first-
order derivatives. Applying the chain rule, we can express
J̃ i,j
n as

J̃ i,j
n = J i,j

n Si,j
n (18)

1Note that this is the case for Gauss-Radau IIA and Gauss-Legendre
tableaus with nstages = 1, . . . , 9 and all explicit tableaus implemented in
acados at the time of writing, but not true in general, e.g. some DIRK
methods [19] use negative coefficients bj .

where we introduced

J i,j
n =

∂ri,jn

∂w

Si,j
n =

d(si,jn , un)

dwn
=

[
dsi,jn

dxn

dsi,jn

dun

0nu×nx 1nu×nu

]
.

Differentiating (9), we obtain

dsi,jn
dwn

=
dxi

n

dwn
+

∆tn
nsteps

nstages∑

l=1

aj,l
dki,ln

dwn
. (19)

The derivatives dki,l
n

dwn
are available within the forward prop-

agation of any Runge-Kutta integrator that applies internal
numerical differentiation and can be reused. For a detailed
description of forward sensitivity propagation within implicit
integrators, we refer to [3].

The additional computations for using GNRK instead
of SN on a shooting interval are nstagesnsteps evaluations
of r(·) and ∂r

∂w (·) and matrix-matrix multiplications with
dimension ny × (nx + nu), (nx + nu) × nx, respectively
(nx + nu) × (nx + nu). The additional linear algebra op-
erations are all of order (nx + nu)

2 or less, assuming that
ny ≤ (nx+nu). Thus, it is of a lower order compared to the
fastest QP solution algorithms, which require computations
with order n3

x and n3
u [22], [16]. On the other hand, in

the SN discretization, the functions r(·) and ∂r
∂w (·) would

only be evaluated once instead of nstagesnsteps times, which
might dominate the computational cost. However, if these
evaluations would dominate, the functions are likely to be
very nonlinear and a more accurate integration is desirable.
Since the Hessian contributions of each point within the
RK integrator can be accumulated on the fly using (15),
(18) and (19), the additional memory footprint is small
and independent of nsteps and nstages. Note that these
considerations also hold for explicit Runge-Kutta method,
such as the widely used RK4 method. However, the relative
additional computational cost would be higher compared to
the implicit GNRK implementation considered in this work,
since explicit integrators are typically faster.

C. Comparison to generic quadrature states

Note that a common alternative to the approach described
in the previous sections is to propagate the cost with the same
accuracy as the dynamics via a cost state. Efficient integrators
support a dedicated treatment of quadrature variables, i.e.,
variables which do not enter the dynamics, such that the
implicit system of equations can be decoupled and solved
in the original space [23]. This idea has been extended to
integrators that exploit more general linear structures within
the dynamic system [24], [25].

The generic quadrature state approach however does not
take the cost function’s nonlinear least-squares structure into
account. Thus, it is limited to an exact Hessian propagation,
which might result in an indefinite Hessian and the associ-
ated problems within an NLP solver. From a computational
perspective, an exact Hessian propagation requires at least
an additional adjoint sweep and thus more computational
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TABLE I
OVERVIEW ON DISCRETIZATION AND SOLVER OPTIONS VARIED IN THE

BENCHMARK OF THIS PAPER.

Option Variant I Variant II

Hessian (approximation) Gauss-Newton (GN) Exact Hessian (EH)
cost discretization Shooting Node (SN) Runge-Kutta (RK)
discretization grid uniform (a) nonuniform (b)
algorithm type converged SQP RTI
shooting intervals N 20 200
Time horizon T 0.4 4.0

resources. Different methods for Hessian propagation exist
which trade-off computations and memory footprint [3].

D. Implementation in acados

The GNRK algorithm described in Section III-A and III-B
has been implemented in the open-source software pack-
age acados, which provides high-performance, embedded
solvers for nonlinear optimal control. The cost integration
was implemented as an option in the acados IRK module
for nonlinear-least squares cost functions (2).

The GNRK algorithm is compatible with additional Hes-
sian contributions form the constraints. In particular, when
including Hessian contributions from constraints with a
convex-over-nonlinear structure as described in [26], this re-
sults in a sequential convex quadratic programming (SCQP)
scheme with integrated cost.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate the effectiveness of the
presented strategies in terms of closed-loop cost with two
numerical simulation studies. All experiments have been
carried out using acados v0.3.1 via its Python interface
on a Laptop with an Intel i5-8365U CPU, 16 GB of RAM
running Ubuntu 22.04. The code to reproduce the results is
publicly available2.

A. Inverted pendulum on cart problem

In order to demonstrate the importance of cost discretiza-
tion, we regard the widely studied control problem of sta-
bilizing an inverted pendulum mounted onto a cart. The
differential state of the model is x = [p, θ, s, ω]⊤ with cart
position p, cart velocity s, angle of the pendulum θ and
angular velocity ω. The system dynamics can be found e.g.
in [5]. The control input u is a force acting on the cart
in the horizontal plane and constrained to be in [−40, 40].
The example simulation starts with an initial state x̄0 =
[0, θ̄0, 0, 0]

⊤ with θ̄0 = π
5 . The goal is to drive all states

to zero, i.e. the unstable upright position. We formulate the
nonlinear least squares cost

lpend(x, u) = x⊤Qx+ u⊤Ru+ ρ0(x) + ρ1(x), (20)

consisting of quadratic costs on states and controls, with
weights Q = diag(100, 103, 0.01, 0.01), R = 0.2, and addi-
tional penalty terms ρi(x) corresponding to the inequalities
pmin − p ≤ 0 and p− pmax ≤ 0 with pmin = −1, pmax = 1

2https://github.com/FreyJo/GNRK_benchmark
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Fig. 2. Closed-loop state and control trajectories for different controllers
stabilizing a pendulum on cart system. The corresponding computation times
are given in Table II.

and γ = 5 · 104, c.f. (6). The terminal cost term is set to
Mpend(x) = x⊤Px, where P is obtained as solution of the
discrete algebraic Riccati equation with cost and dynamics
linearized at the steady-state.

B. Controller variants in closed-loop

We study the behavior of different controller variants in a
closed-loop simulation of 4s. The plant is represented by a
single-step IRK integrator that uses the Radau IIA Butcher
tableau with nstages=4 with a sampling time of Ts=0.02s.
It internally uses a model that is augmented with a cost state
to accurately capture the evolution of (20) over time.

All controllers use HPIPM without condensing as a QP
solver and a single step of IRK with Radau IIA Butcher
tableau and nstages=4 on each shooting interval solving the
system of RK equations to a tolerance of εIRK=10−12. The
time horizon is chosen to be T = 4s if not otherwise stated
and divided using one of the following time grids:
(a) uniform time grid with ∆tn=

T
N , n = 0, . . . , N 9 1

(b) nonuniform time grid using the sampling time Ts =
0.02s on the first interval, ∆t0 = Ts, and dividing
the remainder equally between the other intervals, i.e.,
∆tn=

T−Ts

N91 , n = 1, . . . , N 9 1.
In terms of cost-discretization, we compare the shooting
node (SN) and the Runge-Kutta (RK) versions, which can be
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TABLE II
CLOSED-LOOP PERFORMANCE OF DIFFERENT CONTROLLERS MEASURED BY RELATIVE SUBOPTIMALITY, MAXIMUM AND MINIMUM COMPUTATION

TIME, AND SQP ITERATIONS niter OVER THE SCENARIO DEPICTED IN FIGURE 2.

Hessian approximation
and cost discretization N T [s] RTI uniform rel. subopt. max niter median niter tmin[ms] tmax[ms] in Fig. 2

GNRK 200 4.0 x 0.0 % 21 4.89 25.3 207.4 A
GNSN 200 4.0 x 0.0 % 20 4.97 25.9 206.2

GNRK 20 4.0 x 3.6 % 1 1.00 0.9 1.1 B
GNRK 20 4.0 3.7 % 15 4.08 1.8 15.5
GNSN 20 4.0 x 68.3 % 1 1.00 0.8 1.0 C
GNSN 20 4.0 34.3 % 33 4.42 1.7 31.5
EHSN 20 4.0 34.3 % 400 8.48 1.8 393.1
EHRK 20 4.0 3.7 % 50 5.85 4.8 72.7
GNRK 20 4.0 x x 992.3 % 1 1.00 0.9 1.0 D
GNRK 20 4.0 x 845.4 % 23 5.70 2.5 20.6
GNSN 20 4.0 x x 960.9 % 1 1.00 0.8 1.0
GNSN 20 4.0 x 823.4 % 48 6.38 2.7 46.9
GNRK 20 0.4 x x 3524.8 % 1 1.00 0.9 1.8
GNRK 20 0.4 x 3356.3 % 400 164.53 2.7 688.0
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Fig. 3. Pareto plot comparing computation time and relative suboptimality
of different controllers, see Table I. The x-axis is linearly scaled in [0, 1].

combined either with the Exact Hessian (EH) or the Gauss-
Newton Hessian (GN), such that the proposed approach
is GNRK. Additionally, we look at converged SQP and
SQP-RTI and different number of shooting intervals N . An
overview on the discretization and solver options varied in
this benchmark is given in Table I.

In Figure 2, the closed-loop trajectories of different con-
trollers are visualized. Key performance indicators of even
more variants are listed in Table II. The minimum and maxi-
mum computation time tmin, respectively tmax are evaluated
after running the exact same simulation 5 times and taking
the minimum of each execution to remove artifacts. The
relative suboptimality is obtained by comparing the total
closed-loop cost, i.e., the integrated cost state, with the one
of an ideal controller, i.e. without model-plant mismatch.

The black line in Figure 2 shows the reference controller
with a fine uniform time grid and GNRK cost discretization.
In this case, there is no model-plant mismatch and the
difference between GNRK and SN cost discretization is
negligible, see Table II. The controller variants with GNRK
cost discretization, a nonuniform grid and N = 20 result
in a very similar closed-loop cost with only around 3.7%
of relative suboptimality with respect to the baseline. In

contrast, using the standard SN cost discretization with
otherwise the same settings, results in a suboptimality of 34%
and 68% for converged SQP and RTI respectively. When
using controller variants with a uniform grid and ∆t0=10Ts,
the control performance drastically degrades, resulting in a
relative suboptimality of over 800%. On the other hand, using
a uniform grid with ∆t0=Ts results in a very short horizon
length T , when keeping N = 20 fix. The corresponding
controller does not stabilize the pendulum and results in over
3000% of relative suboptimality.

The computation times in Table II show that all Gauss-
Newton variants with N = 20 and RTI have a similar
runtime. As expected, the variants with converged SQP have
a much higher variance in CPU time. Comparing the versions
with exact Hessian in Table II to their GN counterparts, we
observe that they converge to the same solution. However,
the minimum runtime is more than twice as high. The
computation times of the GN variants with N = 200 are
roughly tenfold of the corresponding version with N = 20.
Regarding the number of SQP iterations in Table II, we
observe that while the median number of iterations is similar
for GNRK and GNSN, the maximum number is roughly half
for GNRK, indicating better convergence properties.

Figure 3 visualizes the Pareto front of different controllers
from Table II in terms of relative suboptimality and max-
imum computation time. The latter ultimately determines
if a controller is real-time feasible. It can be seen that
the proposed controller variant B results in a reduction of
relative suboptimality by a factor of 18 while increasing the
maximum computation time by less than 10%, compared
to controller variant C, i.e., the same controller without
cost integration, which was regarded as an attractive variant
before this work.

Overall, the results indicate that using GNRK allows one
to drastically reduce the number of shooting intervals as long
as the first interval is kept at Ts.
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Fig. 4. Empirical contraction rate for different initial states of the pendulum
example. Both controllers use a uniform grid with T = 4s and nstages =4.

C. Empirical contraction rate
In order to give insights into why the maximum number

of iterations in Table II is higher for GNSN than for GNRK,
we regard the empirical contraction rate κ̂k = ∥dk+1∥

∥dk∥ , where
dk denotes the step in all variables at SQP iteration k. The
empirical contraction rate is plotted in Figure 4 for two initial
states, x̄0 = [0, θ0, 0, 0]

⊤. We observe that GNRK converges
with a faster rate. For the easier initial state with θ0 = π

8 , the
difference is not significant, while for the initial state with
θ0 = π

4 , the κ̂k values close to the solution are significantly
smaller.

V. CONCLUSION & OUTLOOK

The GNRK integrator has been shown to handle nonlinear
least-squares OCPs with long horizons effectively, as it trades
off accuracy and computational complexity. We showed that
soft L2 constraints can be handled accurately without addi-
tional slack variables by integrating the constraint violation
penalty, which perfectly fits the GNRK framework. The
effectiveness of GNRK combined with the use of nonuniform
discretization grids and L2 penalties for state constraints has
been demonstrated on an illustrative example. Furthermore,
this paper gave some recommendations that can help MPC
practitioners to formulate and discretize their problems to
obtain a competitive solver implementation.

Possible future work includes an extension of the cur-
rent GNRK implementation in acados to handle gen-
eralized and extended Gauss-Newton Hessian terms [18],
which would allow one to handle more general convex-over-
nonlinear cost and penalty functions.
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