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Abstract— This paper presents a novel event-triggered con-
trol (ETC) design framework based on measured Lp norms. We
consider a class of systems with finite Lp gain from the network-
induced error to a chosen output. The Lp norms of the network-
induced error and the chosen output since the last sampling
time are used to formulate a class of triggering rules. Based
on a small-gain condition, we derive an explicit expression
for the Lp gain of the resulting closed-loop systems and
present a time-regularization, which can be used to guarantee
a lower bound on the inter-sampling times. The proposed
framework is based on a different stability- and triggering
concept compared to ETC approaches from the literature,
and thus may yield new types of dynamical properties for
the closed-loop system. However, for specific output choices it
can lead to similar triggering rules as ”standard” static and
dynamic ETC approaches based on input-to-state stability and
yields therefore a novel interpretation for some of the existing
triggering rules. We illustrate the proposed framework with a
numerical example from the literature.

I. INTRODUCTION

Reducing the usage of communication resources when
implementing feedback laws over shared communication
networks is often necessary or beneficial for various recent
control applications, e.g., in the field of Networked Control
Systems (NCS) [1]. There, using shared communication
networks to close feedback loops may, e.g., lead to reduced
installation cost, more flexibility and better maintainability.

Event-triggered control (ETC) is a popular concept
to trade-off control performance and the usage of
communication[2], [3]. In ETC, sampling is triggered at
runtime based on a triggering rule that depends on the system
state, as opposed to time-triggered control, where sampling is
triggered at predetermined time instants. The benefits of ETC
have been investigated for the first time in [2], which initiated
significant research activity, leading to many different ETC
approaches. ETC triggering rules have been derived based
on, e.g., input-to-state stability (ISS) [4], [5], passivity [6]
or Lyapunov conditions [7], [8].
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Particularly relevant for the work herein is [9] that pro-
posed a dynamic event-triggering scheme which can be
interpreted as a filtered version of the event-triggering rule
in [4]. A similar approach was studied in [10], where the
integral of an ISS condition is considered and sampling is
triggered as soon as the integral satisfies a trigger condition.
Note that the approaches from [9] and [10] lead to similar
triggering rules. In [11], the framework from [12], [13] is
leveraged and a dynamic ETC triggering rule is proposed to
guarantee a certain Lp gain.

In this paper, we propose a novel framework for ETC
based on Lp norms that is conceptually different from other
approaches in the literature. Inspired by the framework for
the analysis of time-triggered sampling from [14], the con-
sidered class of NCS with event-triggered sampling consists
of one subsystem that describes the behavior of plant- and
controller states, and one subsystem that describes the evolu-
tion of the network-induced error. We consider an emulation
scenario and assume thus that a controller is given, such that
the Lp gain between the network-induced error and a chosen
system output is known. We propose a class of triggering
rules, that enforce sampling whenever the Lp gain from the
chosen output to the network-induced error is sufficiently
small. Stability guarantees are then obtained using a simple
small-gain condition. We derive an explicit expression for the
Lp gain for the chosen output of the resulting closed-loop
system. Moreover, we present a time-regularization inspired
by [14], which can be used to guarantee a lower bound on
the inter-sampling times. It thus prevents Zeno behavior, i.e.,
the occurrence of an infinite number of sampling instants in
a finite time interval.

The framework that is proposed in this paper is based on
different technical concepts than the known approaches in
the literature. Whilst it captures in general different types
of dynamical system properties and thus allows different
conclusions like a bound on the resulting Lp gain, it can
also be used to derive similar triggering rules as in [4], [5]
for static ETC, and in [9], [10] for dynamic ETC. However,
the general concept and proofs for our proposed framework
are different from existing approaches and in particular from
those of [4], [5], [9], [10]. Hence it not only provides an
alternative way to obtain stability guarantees and to handle
disturbances for the setups and triggering rules from [4],
[5], [9], [10], but also offers additional flexibility in the
design of novel triggering rules. Moreover, whilst [11] can be
seen as the event-triggered variant of the Lyapunov function
based framework for stabilization of NCS from [12], [13],
our proposed framework is inspired by the Lp gain frame-
work to analyze NCS with time-triggered sampling from
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[14]. Finally, we illustrate the proposed framework and the
resulting trade-off between guaranteed L2 gain and average
inter-sampling times for a specific numerical example.

This paper is structured as follows. In the remainder of
this section, we introduce some notation and recap definitions
from the literature that we use in the paper. In Section II, we
present the considered NCS model. Section III summarizes
the used small gain condition. The proposed ETC frame-
work is presented in Section IV. We discuss the relations
between the proposed framework and the results for static
and dynamic ETC from [4], [5], [9], [10] in Section V.
In Section VI, we illustrate the proposed framework by a
numerical example. Section VII concludes the paper.

Notation and definitions

The nonnegative real numbers are denoted by R≥0. The
natural numbers are denoted by N, and we define N0 :=

N∪{0}. We use (x, y) =
[
x⊤, y⊤

]⊤
. A continuous function

α : R≥0 → R≥0 is of class K if it is strictly increasing and
α(0) = 0. Given t ∈ R and a piecewise continuous function
f : R → Rn, we use the notation f(t+) := lim

s→t,s>t
f(s). For

α1, α2 ∈ K, the condition α1◦α2 < Id means α1(α2(s)) < s
for all s > 0. We denote by |·| the Euclidean norm1

of a vector or respectively the induced matrix norm for
the Euclidean norm. Given a measurable, locally integrable
signal φ : [ta, tb] → Rn and p ∈ [1,∞), we denote its Lp

norm as ∥φ∥Lp[ta,tb]
:=

(∫ tb
ta

|φ(s)|pds
) 1

p

. For p = ∞, we
denote the Lp norm as ∥φ∥L∞[ta,tb]

:= ess sup
s∈[ta,tb]

|φ(s)|. If

φ(·) is defined on [t0,∞) and for some p ∈ [1,∞], there
exists K ≥ 0 such that ∥φ∥Lp[t0,t]

≤ K,∀t ≥ t0 ≥ 0,
then we write2 φ ∈ Lp. We consider in this paper impulsive
systems that are governed by equations of the form

ẋ = f(x,w), t ∈ [tj , tj+1]

y = H(x,w)

x(t+j ) = h(x(tj))

(1)

with state x(t) ∈ Rnx , input w(t) ∈ Rnw , output y(t) ∈ Rny ,
a jump sequence (tj), j ∈ N0 and with continuous functions
f : Rnx ×Rnw → Rnx , H : Rnx ×Rnw → Rny . We use the
notion of solutions for these systems as in [14, Section II.B].
and the following definitions that are adopted from [14].

Definition 1: Let p ∈ [1,∞] be given. The system (1) is
finite-gain Lp stable from w to y with gain γ if there exists
K > 0 such that for all t0 ≥ 0, x(t0) ∈ Rnx , w ∈ Lp and
each corresponding solution x(·), we have that

∥y∥Lp[t0,t]
≤ K|x(t0)|+ γ∥w∥Lp[t0,t]

∀t ∈ [t0, t0 + T ]

where [t0, T ] is the maximal interval of definition of x(·).
Definition 2: Let p, q ∈ [1,∞] be given. The state x of

system (1) is said to be Lp to Lq detectable from output y
with gain γ if there exist K > 0 and γ > 0 such that for

1Note that the results of this paper also hold if we consider any other
p-norm instead.

2In the literature, this is sometimes also denoted as extended Lp space.

all t0 ≥ 0, x(t0) ∈ Rnx , w ∈ Lp and each corresponding
solution x(·), we have ∀t ∈ [t0, t0 + T ] that ∥x∥Lq [t0,t]

≤
K|x(t0)| + γ∥y∥Lp[t0,t]

+ γ∥w∥Lp[t0,t]
holds, where [t0, T ]

is the maximal interval of definition of x(·).

II. SETUP

We follow in this paper an emulation-based approach and
thus start from a plant with known (continuously evaluated)
controller, that guarantees a certain Lp gain for the closed-
loop system with continuous feedback when network effects
are ignored. We thus consider nonlinear plants of the form

ẋp = fp(xp, û, w) (2)

with state xp ∈ Rnp , most recently received control input
û ∈ Rnu and disturbance input w ∈ Rnw . The controller is
given in the form

ẋc = fc(xc, x̂p)

u = gc(xc, x̂p)
(3)

with controller state xc ∈ Rnc and last received value of
the plant state x̂p ∈ Rnp . Note that the results of this paper
apply also for static controllers of the form u = gc(x̂p).
We suppose the controller is designed such, that the Lp gain
from w to an output y = H(x, e, w), where y ∈ Rny and H :
Rnx×Rne×Rnw → Rny , is known. Further, we assume that
fp and fc are continuous and gc is continuously differentiable
(the latter can be relaxed, see [14]).

The sampling times are described by a sequence {tj}j∈N0

that will be determined by the ETC triggering rule.
At sampling time tj , x̂p and û are updated as x̂p(t

+
j ) =

x(tj) and û(t+j ) = u(tj). Between sampling instants, i.e.,
for t ∈ [tj , tj+1], we set ˙̂x(t) = 0 and ˙̂u(t) = 0. We thus
consider a zero-order-hold scenario. We define the network-
induced error as e :=

(
x̂p − xp

û− u

)
with e ∈ Rne and ne =

np + nu. Using in addition x := (xp, xc) with x ∈ Rnx for
nx = np + nc, we can write the overall system in the form

ẋ = f(x, e, w)
ė = g(x, e, w)

}
t ∈ [tj , tj+1]

x(t+j ) = x(tj)

e(t+j ) = 0,

y = H(x, e, w)

(4)

where f and g are continuous functions that are determined
by fp, fc and gc, see [14, Section III] for more details.

The triggering rule for the proposed ETC framework in
this paper will be designed to ensure that the system (4)
is finite-gain Lp stable from w to y and, under additional
detectability assumptions, Lp stable from w to (x, e).

III. A SMALL-GAIN PERSPECTIVE

In this section, we present a small-gain perspective that we
will use within the proposed framework to analyze stability
properties of the (4). The overall system can be considered
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for analysis purposes as a feedback-interconnection of two
coupled subsystems

ẋ = f(x, e, w) t ∈ [tj , tj+1]

y = H(x, e, w) (5a)

x(t+j ) = x(tj)

and

ė = g(x, e, w) t ∈ [tj , tj+1]

y2 = W (e) (5b)

e(t+j ) = 0.

Here, (5b) describes the behavior of the sampling induced
error e. Further, the continuous function W : Rne → RnW

with nW ∈ N and W (0) = 0 determines a fictional output
of subsystem (5b), that is used for the analysis.

The first step of the emulation approach is thus to design
a controller that guarantees a finite Lp gain from w to y. We
thus make the following assumption on plant and controller.

Assumption 1: Let p ∈ [1,∞]. The controller is designed
such that subsystem (5a) satisfies γx > 0, γw > 0, Kx > 0
and W : Rne → RnW with nW ∈ N and W (0) = 0 the
finite-gain Lp stability condition

∥y∥Lp[t0,t]

≤ Kx|x(t0)|+ γx∥W (e)∥Lp[t0,t]
+ γw,1∥w∥Lp[t0,t]

(6)

for all t ∈ [t0, T ] and w ∈ Lp, where T is the maximal
interval of definition of x(·).

Note that Assumption 1 implies that the Lp gain from
the input (W (e), w) to the output y is bounded by
max {γx, γw,1}. However, using different gains γx and γw,1

in (6) is potentially less conservative than using one common
gain. Given that a controller has been designed to satisfy
Assumption 1, similarly to [14], small-gain arguments can be
used to guarantee Lp stability properties if the e-subsystem
(5b) of system (5) satisfies the Lp stability condition

∥W (e)∥Lp[t0,t]

≤ Ke|e(t0)|+ γe∥y∥Lp[t0,t]
+ γw,2∥w∥Lp[t0,t]

(7)

for some Ke > 0, γw,2 ≥ 0, sufficiently small γe > 0
and all t ∈ [t0, T ]. In particular, the following small-gain
condition that is adapted from [14, Theorem 1] can be used
to conclude a finite Lp gain from w to y, and, if the states
x and e of subsystems (5a) and (5b) are detectable from y
and respectively W (e), a finite Lp gain from w to (x, e).

Proposition 1: Suppose that for some p ∈ [1,∞] subsys-
tem (5a) satisfies (6) and subsystem (5b) satisfies (7) for all
t ∈ [t0, T ], where T is the maximal interval of definition of
x(·). If the small gain condition γxγe < 1 holds, then the
system (5) is Lp stable from w to y with gain γw,1+γxγw,2

1−γxγe
.

Moreover, if the state x of subsystem (5a) is Lp to Lp

detectable from (y, w) with gain γd and the state e of
subsystem (5b) is Lp to Lp detectable from (W (e), w) with
gain γd, then the system (5) is Lp stable from w to (x, e)

with gain γd
γw,1(1+γe)+γw,2(1+γx)

1−γxγe
.

The main idea of the proposed ETC framework is thus to
sample such that (7) is enforced with γe <

1
γx

.
Remark 1: Note that the conclusions from Proposition 1

are valid for the maximum interval of definition T for x. If
the conditions for Lp stability from w to (x, e) are fulfilled
and w ∈ Lp, then T = ∞. Otherwise, additional conditions
on the parts of x that are not captured by H(x, e, w) may
be required to guarantee that T = ∞.

Moreover, Proposition 1 does not guarantee the existence
of a lower bound on tj+1 − tj , which would be a sufficient
condition that there is no Zeno behavior. Instead, such a
lower bound will later be derived independent of Proposi-
tion 1 for the proposed ETC framework.

Remark 2: In our analysis, the function W serves a sim-
ilar purpose as the function W in [14], where it describes
a Lyapunov function for the protocol that characterizes the
update of the error subsystem at sampling times. Further W
must be chosen in a suitable way such that it can be treated as
an input to (5a). In [14], a lower bound on W (e) in terms of
a K-function in |e| is required to guarantee this. Compared
to the setup from [14], there are some differences in the
way how W is defined in this paper. Since we consider a
sampled-data setup, instead of an assumption on the protocol,
we simply use the condition W (0) = 0 that ensures that
W (e(t+j )) = W (0) = 0. In addition, we do not require W
in our setup to be scalar or positive. Further, we do not make
a specific restriction on W (e) in terms of a K-function in
|e| as lower bound. Instead, Assumption 1 requires implicitly
that W is chosen suitably, such that it can be treated as an
input to (5a) for which (6) holds.

IV. A FRAMEWORK FOR Lp GAIN BASED SAMPLING

In this section, we present the general idea for the pro-
posed ETC framework and present results on Lp stability
and a lower bound on the inter-event times. To ensure that
(7) holds, and thus stability guarantees are obtained using
Proposition 1, our goal is to trigger such, that

∥W (e)∥Lp[tj ,t]
≤ γe∥H(x, e, w)∥Lp[tj ,t]

+ γw,2∥w∥Lp[tj ,t]

(8)

holds for t ∈ [tj , tj+1] for all j ∈ N0. We discuss
first how a sufficient condition for (8) can be imple-
mented as a trigger condition. Then, we focus on how
to additionally guarantee a lower bound on the inter-event
times using a bound on ∥W (e)∥Lp[tj ,t]

that depends on
∥H(x, e, w)∥Lp[tj ,t]

, ∥w∥Lp[tj ,t]
and the time between sam-

pling instants.

A. General triggering concept

Given a system that satisfies Proposition 1 for specific γx,
our goal is to give stability guarantees using Proposition 1.
This can be ensured by triggering sampling instants such that

tj+1 ≤ t∗∗j+1 := inf

{
t > tj :

∥W (e)∥Lp[tj ,t]

∥y∥Lp[tj ,t]

≥ γe

}
(9)

holds for γe < 1
γx

. Observe that (9) implies that
∥W (e)∥Lp[tj ,t]

≤ γe∥H(x, e, w)∥Lp[tj ,t]
and thus that (8)
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hold for t ∈ [tj , tj+1] and thus by summing (8) up from
t0 until tj that (7) holds if it holds for any j ∈ N. The
proposed framework thus covers the class of triggering rules
that checks (9) for different p and different choices of W
and y directly. However, it is not limited to this class. It also
allows for triggering rules that lead to sufficient conditions
for (9). We will use this fact in Section V to illustrate how
the proposed framework also covers static and dynamic ETC
triggering rules from the literature.

Remark 3: Implementing condition (9) requires measure-
ments of appropriate signals. In particular, ∥W (e)∥Lp[tj ,t]

and ∥y∥Lp[tj ,t]
= ∥H(x, e, w)∥Lp[tj ,t]

can be determined by
integrating |W (e)|p and respectively |y|p and taking the p-th
root. If y cannot be measured, then it can still be computed
based on x and e, if these are measured and H does not
depend on w. However, if H depends on w and w cannot
be measured, then measurements of y must be available to
compute ∥y∥Lp[tj ,t]

.
Remark 4: If w(t) can be measured for all t, which may

be possible for some applications like reference tracking,
then we can even consider the less conservative condition

tj+1 ≤ t∗j+1

:= inf

{
t > tj :

∥W (e)∥Lp[tj ,t]
− γw,2∥w∥Lp[tj ,t]

∥y∥Lp[tj ,t]

≥ γe

}
(10)

instead of (9).
Proposition 1 does not make any statement about inter-event
times. We will discuss in the next subsection, how a lower
bound on the inter-event times can be obtained for triggering
rules that ensure (9).

B. A lower bound on the inter-event times

To guarantee a lower bound on the inter-event times and
thus Zeno-freeness, time regularization as it was proposed in
[15] can be used. Note that a lower bound on the inter-event
times is also important for the practical implementability of
the approach. We explicitly determine a lower bound on
the time for which (8) is satisfied after a sampling time,
leveraging again the results from [14]. If the ETC mechanism
without time regularization would trigger before this mini-
mum inter-event time has lapsed, then the mechanism with
time regularization triggers instead as soon as the minimum
inter-event time has lapsed. The triggering rule with time
regularization is thus given by

tj+1 = max
{
tj + δ, t∗∗j+1

}
, (11)

where the minimum inter-event time δ > 0 still needs to be
determined. To do so, we adapt the following assumption
from [14].

Assumption 2 ([14]): For all x, w and almost all3 e, there
exist L ≥ 0 and γw,3 > 0 such that〈
∂|W (e)|

∂e
, g(x, e, w)

〉
≤ L|W (e)|+|H(x, e, w)|+γw,3|w|.

(12)

3All except for a set of Lebesque measure 0.

The main difference of Assumption 2 compared to its
counterpart in [14] is that we introduce the additional term
γw,3|w|. Compared to [14], this allows to chose H indepen-
dent from w. Note that it is not restrictive since H can still
be chosen as in [14] if this is desired, as long as y or w
can be measured. We will discuss later how Assumption 2
can further be relaxed. Moreover, note that vectornorms are
considered in Assumption 2, since different from [14], we
do not require W to be scalar. However, we can recover the
results from [14] when considering the norm of W .

Based on Assumption 2, we can state the following
adapted version of [14, Proposition 6].

Proposition 2: Consider the system (5) and let Assump-
tion 2 hold. If tj+1 ∈ (tj , tj + δ] for δ := κ

L ln(1 + γ∗L) > 0

for arbitrary4 κ ∈ (0, 1) where γ∗ := min
{
γe,

γw,2

γw,3

}
then

(8) holds for t ∈ [tj , tj+1].
Thus when Assumption 2 holds, then there is a non vanishing
time interval δ such that (8) holds if tj+1−tj ≤ δ. This time
interval can be used as minimum sampling interval for time
regularization. The original triggering rule is only used if it
leads to larger sampling intervals than δ. Due to the time
regularization, we can thus still conclude that (7) holds for
all times, even if there are sampling intervals for which (9)
does not hold but the time regularization is used.

Note that the proposed framework is however not limited
to time-regularization. Instead, other approaches to guarantee
an upper bound on the inter-event time can be used. For
example, the approaches for static and dynamic ETC from
[4], [5], [9], [10] can be adopted as well, as discussed in
Section V.

C. Lp stability results

For the triggering rule given by (11) with t∗∗j according
to (9), we can state the following result.

Theorem 1: Consider the system (5) and let Assump-
tions 1 and 2 hold. If the sequence (tj) is generated by
(11) with t∗∗j+1 according to (9) for some γe ∈

(
0, 1

γx

)
,

γw,2 ≥ 0 and with δ as in Proposition 2, then the system (5)
is Lp stable from w to y with gain γ =

γw,1+γxγw,2

1−γxγe
and

tj+1 − tj ≥ δ. Moreover, if the state x of subsystem (5a) is
Lp to Lp detectable from (y, w) with gain γd and the state
e of subsystem (5b) is Lp to Lp detectable from (W (e), w)
with gain γd, then the system (5) is Lp stable from w to
(x, e) with gain γ = γd

γw,1(1+γe)+γw,2(1+γx)
1−γxγe

.
Proof: The lower bound on tj+1 − tj follows for all

j immediately from (11). If tj+1 = tj + δ for some j ∈
N0, then (8) holds for t ∈ [tj , tj+1] due to Proposition 2
and Assumption 2. Otherwise, (9) and thus (8) hold for t ∈
[tj , tj+1]. Hence (8) holds for all j ∈ N0 for t ∈ [tj , tj+1].
Summing it up for all j, we can conclude that (7) holds
for all t ≥ t0. The statement of the theorem then follows
immediately due to Proposition 1 and Assumption 1.

Some remarks are in order.
Remark 5: The way how w enters in Assumptions 1 and

2 may potentially be restrictive. It can however be relaxed

4To make δ large, κ should typically be chosen close to 1.
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by considering α(|w|) instead of |w| for some α ∈ K in (6)
and (12). Then, one verifies

∥W (e)∥Lp[t0,t]
≤ Ke (|e(t0)|) + γe∥y∥Lp[tj ,t]

+ γw,2∥α(|w|)∥Lp[tj ,t]
,

instead of (7). In this case, the conclusions of Theorem 1
regarding Lp stability still hold for the Lp gain from α(|w|)
to y instead from w to y.

Remark 6: Note that in Theorem 1, lim
γe,γw,2→0

γ = γw,1.

Thus γe > 0 and γw,2 ≥ 0 can be chosen such that the
Lp gain γ is arbitrarily close to the Lp gain of the original
system. However, it has in general to be expected that smaller
values for γe and γw,2 also lead to smaller sampling intervals
and more sampling instants. The resulting trade-off is studied
for a particular example in Section VI.

Remark 7: In (9), the norms of W (e) and y are only con-
sidered over the recent sampling interval. Note that instead,
for p ∈ [1,∞), it is also possible to consider ∥W (e)∥Lp[t0,t]

and ∥y∥Lp[t0,t]
in (9) to determine sampling intervals, which

also implies that (7) is satisfied. This may be advantageous
to increase future sampling intervals if sampling instants are
triggered earlier than prescribed by t∗∗j+1.

For p = ∞, it is alternatively possible to consider
∥W (e)∥Lp[tj ,t]

and ∥y∥Lp[t0,t]
in (9), i.e., to compare the

essential supremum of W (e) since the last sampling time to
the essential supremum of y since t0. For p = ∞, this also
implies that (7) is satisfied, but may be less restrictive than
considering ∥y∥Lp[tj ,t]

in (9).
Remark 8: For p ∈ [1,∞), we note that ∥y∥Lp

< ∞
implies that y(t) converges to 0 as t → ∞ (cf. [16,
Lemma 8.2]). In particular, if additionally, y = α(|x|) for
some α ∈ K, then this means that our proposed framework
can also be used to obtain guarantees for asymptotic stability.

V. RELATIONSHIP WITH EXISTING TRIGGERING RULES

In this section, we illustrate how ETC triggering rules
from the literature are covered by the proposed framework.
In particular, we discuss how guarantees for Lp-stability for
static ETC triggering rules in the form from, e.g., [4], [5]
and for the dynamic ETC triggering rules from [9], [10] can
be obtained by using the proposed framework. As in the
references [4], [5], [9], [10], we mainly focus in this section
on the disturbance-free case, i.e., we assume w = 0. First,
we focus on the relation of the proposed framework to static
ETC. In the second subsection, the relation of the proposed
framework to dynamic ETC is discussed.

A. Static ETC

In this subsection, we illustrate how the static ETC trigger-
ing rule from [4], [5] is covered by the proposed framework.
We consider here static ETC triggering rules of the form

tj+1 = inf {t > tj : γs(|e(t)|) ≥ αs(|x(t)|)} . (13)

for αs, γs ∈ K. Such triggering rules were, e.g., used in [4],
[5]. In [5], an ISS condition in the ”max” form

∥x∥L∞
≤ max

{
βmax(|x(t0)|), ∥γmax(|e|)∥L∞

}
(14)

for βmax, γmax ∈ K is considered, leading in [5] to the
triggering rule

tj+1 = inf {t > tj : ρ(|x(t)|)− |e(t)| ≤ 0} , (15)

where ρ can be any K-function satisfying

ρ ◦ γmax < Id . (16)

Note that (15) is equivalent to (13) for αs = ρ and γs = 1.
To relate the approach from [5] to our proposed frame-

work, first note that the ISS condition in the ”max” form
from (14) implies5 the ISS condition in ”plus” form given
by the L∞-gain condition

∥x∥L∞
≤ βmax(|x(t0)|) + γmax(∥e∥L∞

), (17)

and thus∥∥γ−1
max (|x|)

∥∥
L∞

≤ γ−1
max (βmax(|x(t0)|)) + ∥e∥L∞

, (18)

which corresponds to (6) with γx = 1,W (e) = |e| and
H(x, e, w) = γ−1

max (|x|).
Using our proposed framework for the L∞-norm case6,

we thus obtain

t∗∗j+1 = inf
{
t > tj : ∥e∥L∞[tj ,t]

≥ γe
∥∥γ−1

max (|x|)
∥∥
L∞[t0,t]

}
(19)

for any γe < 1 as equivalent for (9). Note that

inf
{
t > tj : ∥e∥L∞[tj ,t]

≥ γe
∥∥γ−1

max (|x|)
∥∥
L∞[t0,t]

}
≥ inf

{
t > tj : |e(t)| ≥ γeγ

−1
max(|x(t)|)

}
which implies that

t∗∗j+1 ≥ inf
{
t > tj : |e(t)| ≥ γeγ

−1
max(|x(t)|)

}
. (20)

Hence, for any ρ satisfying ρ(s) ≤ γeγ
−1
max(s) for all s

and arbitrary γe ∈ (0, 1), and thus for all ρ such that
ρ◦γmax ≤ (1− ϵ) Id for arbitrary small ϵ > 0, our proposed
approach also implies a guarantee for a finite L∞-gain for the
triggering rule from [5]. Note that this condition is equivalent
to (16) on compact sets. Thus, our proposed framework can
be used almost for the same set of triggering rules as the
approach from [5]. We only need to exclude here the rather
constructed case that ρ(s) converges to γ−1

max(s) as s → ∞.
In turn, our proposed framework may lead to less restrictive
triggering rules when the ISS condition in ”plus” form allows
different K-functions as the ISS condition in ”max” form.
Moreover, it naturally allows under the same assumptions
as in [5] the potentially less restrictive triggering rule (19)
based on the L∞ norms of signals instead of their current
values. In [4], an ISS condition in the dissipation form

∂V (x)

∂x
f(x, e) ≤ −αdiss(|x|) + γdiss(|e|) (21)

5Since max {a, b} ≤ a+ b ≤ max {2a, 2b}, if the ISS condition in the
”max” form holds, then the ISS condition in the ”plus” form holds with
the same K functions. In turn, if the condition in the ”plus” form holds,
then the condition in the ”max” form holds as well, but potentially with
larger (and thus for the triggering rule more restrictive) K functions.

6As discussed in Remark 7, we consider ∥W (e)∥Lp[tj ,t]
and

∥y∥Lp[t0,t]
.
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for a positive definite function V : Rnx → R≥0 and
class K functions αdiss and γdiss is considered, leading to
a triggering rule of the form (13) with αs = αdiss and
γs = γdiss. Note that according to [17], the ISS condition
in dissipation form (21) implies an ISS condition in ”plus”
form of (17). Thus, whenever the approach from [4] can
be used to derive a triggering rule of the form (13), then the
proposed framework can be used to derive one as well. In the
general case, the resulting functions αs and γs may however
be different. Moreover, our proposed approach can be viewed
as a trajectory based alternative to the results from [4] with
the potential advantage that it does not require knowledge of
a Lyapunov function.

Furthermore, as analyzed in [18], the approaches from [4],
[5] may lead, even for arbitrarily small disturbances w, to
Zeno behavior. In [18], [5], it is proposed to add a constant
term to the right hand side of the triggering rule (13), leading
to tj+1 = inf {t > tj : γs(|e(t)|) ≥ αs(|x(t)|) + d} for some
d > 0. Note that our proposed framework does not suffer
from the same shortcoming when using (19) directly, since
the γe

∥∥γ−1
max (|x|)

∥∥
L∞[t0,t]

term is, e.g., lower bounded by
γeγ

−1
max (|x(0)|) and does thus not vanish even if x(t) goes

to 0. Using this fact, one can straightforwardly modify the
results for Zeno-freeness from [18], [5] to conclude Zeno-
freeness for (19) under the same assumptions as in [18], [5]
if arbitrary large but essentially bounded disturbances are
present. As an alternative, the proposed time regularization
can be used which yields in our proposed framework a
natural way to guarantee Zeno-freeness and a tunable bound
on the resulting L∞-gain.

B. Dynamic ETC

In this subsection, we study the relation of the proposed
framework to dynamic ETC triggering rules and study how
they can be captured by it. We consider here dynamic ETC
triggering rules of the form

tj+1 := inf {t > tj : η(t) ≥ 0} (22)

for η satisfying η̇ = −β(η) + σαd(|x|) − γd(|e|), for7

η(0) = 0, where αd, γd ∈ K, β ∈ K ∪ {0} and σ ∈ (0, 1).
Such approaches have, e.g., been proposed in [9], [10]. In
both papers, the authors consider an ISS condition in the
dissipation form (21) and derive a triggering rule of the form
(22) with αd = αdiss and γd = γdiss (however stated in [10]
in an integral form).

Note that due to the comparison Lemma [16, p. 102], it
holds for any β ∈ K ∪ {0} and αd = αdiss and γd = γdiss
that η ≤ η̃, where η̃ is the solution of ˙̃η = σαdiss(|x|) −
γdiss(|e|) for t ∈ [tj , tj+1] with η̃(tj) = η(tj). It holds for
t ∈ [tj , tj+1] that

η̃(t) =

∫ t

tj

σαdiss(|x(τ)|)− γdiss(|e(τ)|)dτ

= σ∥αdiss(|x|)∥L1[tj ,t]
− ∥γdiss(|e|)∥L1[tj ,t]

.

7To simplify notation, we restrict ourselves here w.l.o.g. to η(0) = 0
instead of considering arbitrary η(0) ≥ 0.

Hence, triggering rule (22) ensures that
σ∥αdiss(|x|)∥L1[tj ,t]

− ∥γdiss(|e|)∥L1[tj ,t]
= η̃(t) ≥ η(t) ≥ 0

and thus that tj+1 ≤ t∗∗j+1 for t∗∗j+1 according to (9)
with γe = σ. Furthermore, the ISS condition in
dissipation form (21) implies the L1-gain condition
∥αdiss(|x|)∥L1

≤ Kx(|x(0)|) + ∥γdiss(|e|)∥L1
for some

Kx ∈ K and thus that (6) holds with γx = 1. Thus, the
dynamic ETC triggering rules according to [9], [10] are
captured by our proposed framework that can be used as an
alternative approach to obtain a guarantee for L1-stability
and, since the above choice corresponds to y = αdiss(|x|)
for αdiss ∈ K, also for asymptotic stability.

Besides that, the guarantee for positive inter-event times
for the triggering rules from [10] can be adopted for our
proposed framework for the disturbance free case if W (e)
and H(x, e, w) are chosen in a suitable way and can then
serve as an alternative for the time regularization in the
proposed framework.

Moreover, our proposed framework thus yields a natural
way to extend the dynamic ETC triggering rules from [9],
[10] to handle L1-disturbances and to derive dynamic ETC
schemes for different p ∈ [2,∞). It thus yields an approach
to guarantee a certain performance in terms of a guaranteed
Lp gain. Furthermore, it also allows different choices for the
functions W (e) and H(x, e, w) that are not restricted to K-
functions, leading also potentially to more flexible triggering
rules for dynamic ETC compared to those from [9], [10], that
were restricted to K functions of |x| and |e|.

Remark 9: In [9], also hybrid triggering rules using the
sum of a static and a dynamic triggering rule are proposed.
Note that such triggering rules can also be derived for our
proposed framework by considering the sum of an L1 and
an L∞ triggering rule. Then, one obtains a bound on either
the L1 or the L∞ norm of the output.

VI. EXAMPLE

In this section, we illustrate the proposed ETC framework
with a numerical example. We consider the same example
that was used in [19]. The example system is a single-link
robot arm described by

ẋ1 = x2 + w

ẋ2 = − sin(x1) + û

with the static state feedback controller u = sin(x1) −
3x1 − 2x2. We define x = (x1, x2) and e = (e1, e2) and

chose W (e) = [|e1|, |e2|]⊤ and H(x, e, w) =

[
0 −1
2 3

]
x+

0.6

([
0 0
2 3

]
e+

[
0

sin(x1)− sin(x1 + e1)

])
. Moreover we

select p = 2 for which we can use the same approach as in
[20] to compute γx and γw,1 and to verify Assumption 2.

Similar as in [19], we first consider the disturbance free
case (i.e. w(t) = 0 for all t ≥ t0). In this case, Assumption 1
holds with γx = 3.008 and Assumption 2 holds with L =
1.6971 leading for κ = 0.999 to δ = 0.2636 s.

We conducted simulations for the same set of 10 different
initial conditions for x(0), which are uniformly distributed
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Fig. 1. Trade-off curve between guaranteed L2 gain and minimum (τmin)
and average (τavg) sampling intervals.

over a circle centered at the origin with radius 20, that was
used in [19]. As in [19], we have always selected e(0) = 0.
Additionally, we chose γe = 0.3291 = 0.99

γx
. We obtained

τavg = 0.5380 as average inter-sampling time, τmin = 0.4374
as minimum inter-sampling time and τmax = 0.5989 as
maximum inter-sampling time.

Next we illustrate the case with disturbances, i.e., with
arbitrary w. In this case, Assumption 1 holds, e.g.8, with
γx = 3.041 and γw,1 = 5. Assumption 2 still holds
with L = 1.6971. To illustrate the trade-off between inter-
sampling times and the guaranteed L2 gain γ, we conducted
simulations with the same 10 initial conditions as above but
with the disturbance w(t) = sin(t). To vary the guaranteed
L2 gain, we sampled different values of γe uniformly in the
interval [0.01, 0.99] 1

γx
and γw,3 uniformly in the interval

2 · [0.01, 0.99]. Figure 1 shows the resulting minimal and
average inter-sampling times that were observed in the
simulations as a function of the chosen L2 gain. For values
of γe and γw,3 that lead to a small guaranteed L2 gain,
the minimum and average inter-sampling times are small but
increase as a larger overall L2 gain γ is allowed.

VII. CONCLUSION

We have proposed a novel framework for dynamic ETC
based on measured Lp norms. Transmissions are triggered
such that the Lp gain of the subsystem that describes the
sampling induced error is sufficiently small so stability
can be concluded from a simple small-gain condition. We
have also presented a time-regularization that can be used
to guarantee a lower bound on the inter-sampling times.
The framework that is proposed in this paper is based on
different technical concepts than the known approaches in
the literature. Still, it covers common dynamic and static
triggering rules from the literature. Besides providing an
alternative way to interpret static and dynamic trigger rules, it
further provides an approach to obtain Lp stability guarantees
for the setups from [4], [5], [9], [10]. The proposed strategy
was illustrated with a numerical example highlighting the
trade-off between guaranteed Lp gain and average inter-
sampling times.

8Note that there is a trade-off between γx and γw,1 for the considered
example.

Our future research will focus on extending the framework
by finding different conditions to guarantee a lower bound
on the inter-sampling times, further investigation of the con-
nections to different ETC approaches and on more realistic
network setups, e.g., by considering decentralized systems.
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