
Service-Oriented Model-based Control
Dynamic Software for Dynamic Systems

Ole Greß1 , Markus Zimmer2 , Dominik Scheurenberg2, Student Members, IEEE,
Lorenz Dörschel2 , Member, IEEE, Bassam Alrifaee3 , Senior Member, IEEE

Abstract— Control loops trend towards cyber-physical sys-
tems and come with corresponding challenges that complex
IT systems from other domains share, such as increased
effort to integrate components into a system. Modern service-
oriented architectures can help address these challenges by
decoupling component development from system integration.
This paper presents a concept to model control loop elements
as services that are flexibly integrated at runtime using a
central entity called orchestrator. Our concept is suitable for
a general control system, is capable of running on embedded
and general-purpose computers, and can ensure deterministic
computations. We apply our approach to an experimental setup
of a three-tank system and implement multiple control loops
using a set of services and an orchestrator. We show that using
our architecture, the service composition is easy to change
dynamically at runtime and thus realize a retrofit of the process
control.

I. INTRODUCTION

In times of digitalization, control loops are rarely im-
plemented in analog components but almost exclusively
consist of digital control elements, and thus software. These
cyber-physical control loops trend toward ever-increasing
complexity and shortened lifecycles. Keeping cyber-physical
systems (CPS) up-to-date and maintainable is important to
keep up with short lifecycles, but the associated integration
effort is becoming more expensive with increased com-
plexity [1]. Traditional control system design is based on
cause-effect relationships between the measurement, signal
processing, control, and actuation steps, which are often
modeled as a functional block diagram. One way to realize
this is to use a model-based software development process
to implement function blocks in code, define interfaces
and interactions between them, and finally assign them to
electronic control units (ECUs) [2]. While these function
blocks can be reused in other systems, their interactions
within a system, and thus the flow of information, are fixed
after the system’s deployment.

In control literature, there are various approaches for
creating runtime-flexible control loops. Switching adaptive

This research is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under grant number 468483200.

1Ole Greß is with the Chair of Embedded Software, RWTH Aachen
University, 52074 Aachen, Germany (e-mail: gress@embedded.rwth-
aachen.de).

2Markus Zimmer, Dominik Scheurenberg and Lorenz Dörschel are
with the Institute of Automatic Control, RWTH Aachen Univer-
sity, 52074 Aachen, Germany (e-mail: {M.Zimmer, D.Scheurenberg,
L.Doerschel}@irt.rwth-aachen.de).

3Bassam Alrifaee is with the Department of Aerospace Engineering,
University of the Bundeswehr Munich, 85579 Neubiberg, Germany, (e-mail:
bassam.alrifaee@unibw.de).

control can detect changes in a control loop and switch
between a set of controllers [3], [4]. For over-actuated sys-
tems, control allocation can be used to compensate for faulty
actuators by reallocating the available control values [5].
However, these approaches fix all components and their
interactions at design time, and flexibility is only possible
between a pre-determined set of options.

The lack of flexibility and maintainability have long been
known in software and have resulted in software architectures
for distributed systems that can keep flexibility using ex-
changeable software modules [6], [7]. One of these, service-
oriented architecture (SOA), is based on reusable services
that are combined in a flexible system integration to achieve
a complex goal. Dynamic integration of these services, called
service composition, has received extensive research in the
fields of web services and cloud computing [8], [9]. However,
a SOA for CPS additionally needs to be real-time capable,
ensure deterministic computations, and be compatible with
low-cost microcontrollers.

Kugele et al. present a concept for a SOA for an automo-
tive context that provides a failover mechanism that changes
the flow of information at runtime; however with a focus
on general-purpose computers and cloud-based usage [10].
Robot Operating System (ROS2) is known as a widely used
service-oriented middleware in the field of robotics and
has recently been adapted for use on microcontrollers [11].
However, ROS2 neither provides a mechanism to control
the flow of information between nodes, nor a mechanism
to coordinate the timing of nodes, hindering computational
determinism. Stoll et al. address the former and present a
SOA based on ROS2 that adapts the control flow to dynam-
ically switch services at runtime in case of failures or newly
added components, but without addressing possible timing is-
sues [12]. Research at RWTH Aachen University resulted in
the microcontroller compatible Automotive Service-Oriented
Architecture (ASOA) that uses an orchestrator to centrally
manage the service composition and coordinate the timing of
the services [13]. While ASOA dynamically chooses service
compositions between three pre-defined operating modes,
it cannot determine the most suitable operating mode on
its own or select suitable service compositions at runtime.
Additionally, we introduced a SOA specifically tailored to
conducting deterministic and reproducible experiments in the
domain of connected and automated vehicles in [14].

Our proposed SOA is based on ASOA but specialized in
control systems. Using domain knowledge on control loops,
we can monitor a control system at runtime and reason which

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3292

service composition is the most suitable.
No generalizable control approach based on SOA has been

proposed so far. Therefore the novelty of our approach is to
model control loop elements as services and dynamically
integrate them at runtime using an orchestrator. We use
a retrofitting scenario on a three-tank system to validate
our approach. Our findings showcase that our architecture
enables the reliable exchange of control loop elements at
runtime for retrofitting and upgrade purposes.

First, Section II presents our architecture. Section III
elaborates on the evaluation scenario and the services im-
plemented for it. Section IV evaluates the results of this
scenario. Section V draws a conclusion on our architecture
and presents research topics for future works.

II. PROPOSED ARCHITECTURE

The proposed architecture entails a model-based control
loop, with elements modeled as services. We assume that
the system state is not measurable, necessitating a filter
that estimates the system state from the measurements. The
filter and the controller utilize separate process models. The
control loop interacts with its environment via sensors and
actuators and requires a reference to follow. This results in
six essential elements for the considered general model-based
control loop: the filter, the controller, the process model, the
sensor, the actuator, and the process.

These elements must remain independent for service
implementation, ensuring reusability and accommodating
application-specific demands. Although these benefits could
also be achieved using standardized code blocks with well-
defined interfaces, services have the distinguishing benefit
of providing a middleware as well as in-built lifecycle
management. It decouples the development of services and
the integration of components not just during initial devel-
opment, but also during runtime when updates to a system
become necessary.

Because our architecture is designed specifically for con-
trol loops, the orchestrator can utilize domain knowledge
to select the correct services and to facilitate stable ad
hoc integration of new services. When integrating multiple
interdependent periodical computing services into an execu-
tion chain, it is beneficial to to adapt the starting point of
computations so that each service begins its computations as
soon as the preceding service’s results arrive. These starting
points are centrally managed by the orchestrator, as it is
the only element with the system-level knowledge necessary
to determine the relative timings for an efficient execution
chain.

A. Interface Types

To allow transmission of the process model between
elements and to represent any operating points of interest
of a nonlinear system, as well as possible system parameter
variations, in this work, we focus on linear time-variant
(LTV) systems. Our architecture is based on the linear

state-space formulation

ẋ(t) = A(t)x(t) +B(t)u(t), (1)
y(t) = C(t)x(t) +D(t)u(t), (2)

with the state vector x ∈ RNx , the input vector u ∈ RNu , the
output vector y ∈ RNy , the system matrix A ∈ RNx×Nx , the
input matrix B ∈ RNx×Nu , the output matrix C ∈ RNx×Ny ,
and the feed-through matrix D ∈ RNu×Ny . The transmission
of the process model between services is realized using the
matrices A,B,C, and D. For the sake of brevity, we omit
the time argument when it is clear from the context.

We define interface types as data representations of the
vectors and matrices introduced in Eq. (1) and Eq. (2) as
follows:

• control values type τu for the control values u,
• system states type τx for the system states x,
• measured values type τy for the measured values y,
• reference values type τref for the reference values yref,
• model type τmodel for the system’s model matrices A,

B, C, and D.
Each interface type has a fixed size to set a known upper

bound on memory consumption. If the complexity of the
applied process model is known a priori, the maximum sizes
can be set per Nu, Nx, and Ny.

B. Service Types

We define service types to enable interchangeable control
loop elements. All services of a particular service type
provide and require the same interface types and can be
exchanged with one another. Our architecture defines six ser-
vice types, each corresponding to one control loop element.
Fig. 1 shows an overview of all interface and service types
as well as their interactions.

III. IMPLEMENTATION

A. Three-tank system

We demonstrate the proposed SOA using the existing
experimental setup of a laboratory-scale three-tank system
at IRT, RWTH Aachen University (Fig. 2). Three fluid tanks

Guarantee
Requirement

τu

τu

τx

τmodelτx

Sensor
service

type

Filter
service

type

Model
service

type

Process
service

type

Controller
service

type

Actuator
service

type τref

τy

Fig. 1: Overview of the defined interface and service types,
e.g., the filter service type has a requirement of measured
values type τy and model type τmodel while offering a
guarantee of system state type τx.

3293

are connected in series, and the outlet of the third tank is
connected to a liquid reservoir. To pump the liquid from
the reservoir back into the three-tank system, a pump is
connected to the first tank. The pump can supply a maximum
flow of Qin,max ≈ 50, l / min and its dynamic response has a
dead time of TD ≈ 1.2, s. To regulate the liquid height H3

of the third tank, a capacitive level sensor is installed in tank
three and a flow sensor is placed directly behind the pump.
All measurements and control signals are transmitted to a
programmable logic controller (PLC), which is connected
through Profinet to a local network. To allow the process
control of the three-tank system with the proposed service-
oriented model-based control, a desktop PC is connected to
this network, communicating with the PLC using the user
datagram protocol (UDP).

{k8

{k2 {k3 {k4 {k5

{k1

{k7 {k6

Fig. 2: Experimental setup of the three-tank system withj1 liquid level sensor, j2 - j4 water tanks, j5 outlet ori-
fice, j6 flow sensor, j7 pump and j8 liquid reservoir.

To evaluate our architecture, we consider the scenario
of retrofitting the process control of the three-tank system.
Initially, we implement cascaded control using PI controllers
for regulating the liquid height H3 in the third tank. We start
with only the initial process control services deployed. The
retrofit involves two steps:

1) Introducing an extended Kalman filter (EKF) to reduce
the measurement noise for the feedback loops of the
cascade controller.

2) Upgrading the cascade controller from propor-
tional–integral (PI) controllers to model predictive
control (MPC) to account for the pump’s dead-time

and system constraints.
For this evaluation, the deployment of a new service corre-
sponds to starting it as a new application on the desktop PC.
The following gives a detailed description of the services
implemented within our SOA for the given retrofit scenario.

B. Implementation of Service Types

1) Model Service Type: As shown in the schematic il-
lustration in Fig. 3, the three liquid tanks are connected by
orifices and the dynamic behaviors of the liquid levels are
modeled by the following differential equations

Ḣ1 =
1

A0

(
Qin − ψ12A12

√
2 g∆H12

)
, (3a)

Ḣ2 =

√
2 g

A0

(
ψ12A12

√
∆H12 − ψ23A23

√
∆H23

)
, (3b)

Ḣ3 =
1

A0

(
ψ23A23

√
2 g∆H23 −Qout

)
, , (3c)

with difference in liquid height ∆Hij = Hi − Hj , the
orifice cross-sectional areas Aij and the corresponding flow
coefficients ψij . The input volume flow Qin into the first tank
is supplied by the controllable pump, whose dead-time free
dynamics are modeled as

Q̇in =
1

TP
(Qtarget −Qin) , (4)

with the time constant TP and the target volume flow Qtarget.
The outgoing volume flow Qout depends on the liquid
height H3 in the third tank and the outlet orifice with its
cross-sectional areas Aout and flow coefficients ψout, given
as

Qout = ψout Aout
√
2 g H3 . (5)

The required system outputs for controlling the level of H3

are measured of the input volume flow Qin,m and the mea-
sured liquid height H3,m.

To obtain a mathematical model of the three-tank sys-
tem for linear control theory with the system states X =
(H1 H2 H3 Qin)

⊤, the system input U = Qtarget and the
system output Y = (Qin H3)

⊤, the nonlinear differential
equations Ẋ = f(X, U) (cf. Eq. (3), (4)) are linearized by
applying a first-order TAYLOR series approximation for an

Qin

Qout

A12

H1 H2

H3,m

H3

ψ12 ψ23 ψoutA0

A23 Aout

Qin,m

Fig. 3: Tank system consisting of three tanks connected
through static orifices, a water supply with a controllable
pump, one flow sensor to measure the input volume flow
Qin,m and one capacitive sensor to measure the liquid
height H3,m in tank three.

3294

operating point XOP, UOP. The linearized model is then time-
discretized for the use within the model-based approaches
(cf. Section III-B.4, Section III-B.5), yielding the general
linear time-discrete state-space representation of the three-
tank system

xk+1 = Ad(k)xk +Bd(k)uk , (6a)
yk = Cd(k)xk +Dd(k)uk , (6b)

with k specifying a discrete point in time and x, u and y
defined as relative variables, i.e., x = X − XOP. For the
considered system Dd = 0 holds.

2) Process Service Type: The evaluation process service
implements the process service type and provides a reference
value for the liquid height H3. The process service chosen
for this scenario iterates through the ordered list of reference
values H3,ref ∈ (10 cm, 17 cm, 10 cm, 20 cm, 10 cm, 20 cm),
changing the reference value every 120 s.

3) Actuator and Sensor Service Type: A PLC offers UDP
interfaces to actuate the pump, and read out the liquid level
and flow sensors. The actuator and sensor services interface
with this UDP interface on one side, and with the proposed
architecture on the other side. Additionally, they convert the
sensor’s output and actuator’s input to the physical quantities
and units expected by other services. To validate a control
loop configuration in a simulation, these services may easily
be replaced with simulated actuator and sensor services
without affecting other services.

4) Controller Service Type: The implemented controller
services are a cascaded control service utilizing PI controllers
(cf. [15]) and an MPC service. The cascaded control contains
two feedback loops. The outer loop is used to regulate the
liquid height H3 and the inner loop is designed to control
the volume flow Qtarget. Compared to MPC, the cascaded
control service is a model-free control approach, i.e., it does
not require a process model.

MPC is a class of model-based control methods that ex-
plicitly use a mathematical model of the process to predict its
system’s states. A cost function containing relevant process
variables is defined and evaluated over the prediction of
the system dynamics. The minimization of the cost function
yields optimal control inputs. The advantages of MPC are the
simple consideration of dead time of the system’s dynamics
and an explicit accounting for limitations of the control
inputs as well as the system states. To account for the pump’s
dead time behavior, the time-discrete state-space (cf. Eq. 6)
is augmented with additional state variables realizing a shift
register [16]. As a result, the system input does not affect the
dynamics of the system until the dead time TD has elapsed.

The optimization problem of MPC results from a general
continuous-time optimal control problem (OCP) [17]. We
define the cost function of the OCP for a tracking error
problem which reads

J =

∫ t0+Tp

t0

(
||h3(t)− h3,ref(t)||2Qy

+ ||u̇(t)||2Qu

)
dt , (7)

using the quadratic weighting notation ||c||2Q = cTQc.
The first cost term penalizes the system output’s er-

ror (cf. Eq. (6b)) regarding a reference trajectory h3,ref(t) and
the second cost term penalizes the control input’s alteration
rate u̇(t). In general, the OCP cannot be solved online
due to the infinite number of optimization variables. Since
the controller model in Eq. (6) is considered to be linear,
the OCP can be approximated as a quadratic programming
(QP) problem by applying a discretization. For this purpose,
various strategies can be found in the literature [17]. The
resulting QP problem can be solved by standard QP solvers
and reads

min
u(·|k)

Hp∑
k=1

||h3,k − h3,ref,k||2Qy
+ ||uk − uk−1||2Qu

(8a)

subject to:

umin ≤uk ≤ umax, ∀k ∈ [1, . . . ,Hp], (8b)

∆umin ≤∆uk ≤ ∆umax, ∀k ∈ [1, . . . ,Hp], (8c)

xmin ≤xk ≤ xmax, ∀k ∈ [1, . . . ,Hp], (8d)

with the prediction horizon Hp = Tp/Ts, sampling time Ts
and the control horizon Hu ≤ Hp. If Hu < Hp, u(j|k) =
u(Hu|k) holds for j ∈ [Hu + 1, Hp]. The matrices Qy and
Qu are used to weight the individual penalization terms in
the cost function Eq. (8a). Furthermore, box constraints for
the control input Eq (8b), the alteration rate of the control
input Eq. (8c) and the system states Eq. (8d) are applied.

5) Filter Service Type: Since direct measurement of the
system states is either not possible or too costly, the ap-
plication of a state estimator, also known as soft sensors,
has been proven successful. Furthermore, state estimators
can be applied for measurement noise reduction, parameter
or disturbance estimation, and provide a measure of model
accuracy through the covariance matrix P.

We implement an EKF service and a measurement bridge
service. The measurement bridge passes-through the mea-
surements guarantee τy of the sensor service to the system
state requirement τx of the controller service without further
processing. State estimators reconstruct the system states
based on a process model and taking into account the past
control inputs and measurable system outputs. The process
dynamics are considered as a LTV system, which allows
the application of an EKF. The following equations are
based on the discretized state-space representation of [18].
The estimators model is based on the discretized state-space
model in Eq. (6) which is considered to be disturbed by the
noise terms µ ∈ RNx , ν ∈ RNy and reads

xk+1 = Ad xk +Bd uk + µk , (9a)
yk = Cd xk +Dd uk + νk . (9b)

The noise terms are assumed to be uncorrelated, mean-free,
normally distributed white noise. Measurement noise is
represented by ν and state noise is represented by µ.
The estimation of the state vector xk+1 is portioned into
two steps: time update and measurement update, cf. Fig. 4.
First, the algorithm is initialized with an initial guess of the
state vector x0 and the covariance matrix P0 ∈ RNx×Nx .

3295

Following the initialization of the time-discrete state-space
model, the two update routines are executed recursively.
To account for the covariances of the noise terms, two
constant positive definite matrices QKF ∈ RNx×Nx and
RKF ∈ RNy×Ny are defined. Assuming uncorrelated noise
terms µ and ν, the matrices QKF,RKF are given as diagonal
matrices. The deviation of the measured system output yk

and the predicted output Cd xk is weighted with the Kalman
gain matrix K, cf. Fig. 4. Higher measurement noise results
in smaller Kalman gain values, leading to a greater reliance
on prediction over measurement.

Time Update

Measurement Update

Kk = (PkC
T
d)(CdPkC

T
d +RKF)

−1

Pk = AdP̂k−1A
T
d +QKF

xk = Ad xk−1 +Bd uk−1

x0,P0

x̂k = xk +Kk

(
yk −Cd xk

)
P̂k = (I−KkCd)Pk

Initial estimates

Fig. 4: EKF algorithm: Scheme of the one-step recursive
update equations.

C. Orchestration

The orchestration is the central component of the control
loop and the only component with system-level knowledge of
all services in the network. It connects services into service
compositions, herein called control loop configurations. The
control loop configuration is implemented depending on
the available services. In this scenario, the orchestration
prefers newer services. Fig. 6 depicts the applied control loop
configurations with respect to our architecture (cf. Fig. 1). In
other scenarios, the orchestrator could choose a control loop
configuration based on user-specified criteria. High frequent
switching between model and controller configurations may
destabilize the control loop. In particular, the time between
setpoint changes should not be faster than the settling time of
the closed-loop system. In our study, due to the user-defined
retrofitting of the three-tank system’s process control, high
switching oscillations are avoided.

D. Scheduling of services

Each service in this scenario runs its computations with
a period of T = 100ms. If every service’s periodic com-
putation started at the same time, the order of completion
for service computations would be non-deterministic and
unpredictable. This would lead to an unknown delay between
measurements and the corresponding actuator inputs, making
the system hard to control at best and unpredictably unstable
at worst. To counteract this, we use fixed timing offsets for
each service type, as shown in Fig. 5 to achieve a prede-
termined order of computations. Under the assumption of
known upper bounds on the communication latency between
services as well as on the services’ computation times, this

ensures deterministic system behavior with a known fixed
delay. Because actuator and sensor service are scheduled at
the same time, all other services start their computations
after measurements are received by the sensor and finish
them before they are enacted by the actuator, resulting in
a delay of one period T . We also schedule the orchestrator
in the same way as the services, because an unsynchronized
orchestration can lead to nondeterministic system behavior.

Filter service

time t

T

Controller service

Process service

Sensor service
Model service

Orchestrator

Actuator service

Fig. 5: Qualitative timing offsets of the implemented ser-
vices. Time axis and computation times are not to scale.
Services of the same service type of our demonstrator have
the same offset and are consolidated in this figure. In this
scenario the period T is identical for every service.

IV. RESULTS

The results of the retrofit scenario applying our service-
oriented model-based process control are depicted in Fig. 7.
They are divided into three time segments I, II and III based
on the selected control loop configurations (cf. Fig. 6). The
time segments are separated by black vertical dashed lines.
The measured state of the system is represented by solid
lines and the results of their state estimates with semicolon
lines. The red horizontal lines indicate the three-tank system
limits, e.g., maximum/minimum flow rate of the pump and
the maximum liquid height of the tanks. Although not used
for control, liquid heights H1 and H2 are displayed as well.
In addition to the overview of the entire experiment, the two
bottom illustrations show a detailed view of the point in
time when EKF is retrofitted and the point in time when
the process control is upgraded from PI controller to MPC.
We tuned the MPC, EKF and PI controller in experiments.

In segment I, the cascaded controller is applied for level
control of the liquid height H3 of the third tank. Accord-
ing to the references values H3,ref of the process service
type (cf. III-B.2), level control is conducted in a range
of H3,ref ∈ [10 cm; 17 cm]. As can be seen in Fig. 7,
the controller bandwidth is limited, such that the transient
behavior of the controlled variable is rather slow and over-
shooting occurs. However, the reference values H3,ref can be
reached within 120 s and the three-tank system’s limits are
not violated.

In segment II, the Kalman Filter service is deployed
at time t ≈ 300 s to retrofit the process control and to
reduce measurement noise for the feedback loops of the
cascade controller. In this work, the estimates Q̂in and Ĥ3

are initialized using the previous measurements Qin,m and

3296

Guarantee
Requirement

τu

τu

τx

τmodelτx

Sensor
Service

Measurement
Bridge
Service

Three-Tank
Model
service

Evaluation
Process
Service

Cascaded
Controller

Service
Actuator
Service

τref

τy Extended
Kalman Filter

Service

Cascaded
Controller

Service

MPC
Controller

Service

Extended
Kalman Filter

Service

{kI {kII {kIII

Fig. 6: Representation of the control loop configurations, which are selected within our service-oriented architecture by the
orchestrator to retrofit the three-tank system’s process control during operation.

H3,m. Initially, the rest of the system states are guessed.
Due to the initialization error of the EKF, switching from
the measurement values to the estimate values Q̂in and
Ĥ3 induces a discontinuity to the closed loop. This affects
the accuracy of the controlled variable H3 and leads to a
transient control error eH3 < 0.5 cm, (cf. detailed view in
Fig. 7). After approximately 25 s the state estimates have
converged to the actual system states, and the control error
has decayed.

Thereafter, in segment II, the cascaded controller is op-
erated in a range of H3,ref ∈ [10 cm; 20 cm]. As shown in
Fig. 7, the control behavior yields an unsatisfactory response.
The reason for this is the controller parameterization, which
leads to a too aggressive control behavior for the reference
value H3,ref = 20 cm. Due to this, at time t ≈ 380 s the liquid
level of the first tank violates the three-tank limit causing the
pump to be deactivated (cf. gray marked area). As a result,
the fluid levels of the three-tank system drop. As soon as the
pump is enabled again, the cascaded controller attempts to
reach the reference value H3,ref, yielding to a repeat over-
shooting. To extend the bandwidth of the cascaded controller,
gain scheduling could be applied or a model-based controller,
such as the linear–quadratic regulator (LQR) could be used.
In this scenario, the initial cascade controller is upgraded to
MPC to account for both, the system constraints and the
pump’s dead-time behavior.
The process control MPC service is deployed at time t ≈
460 s, which is indicated by the black vertical dashed line.
As can be seen from the detailed view in Fig. 7, no
discontinuities result from the upgraded process controller
compared to the previous retrofitting by the EKF. The MPC
smoothly takes over the level control and transfers the
controlled variable H3 to the reference value H3,ref = 20 cm.
As can be seen from the results in segment III, the MPC
achieves a significantly better control result, as expected.
Overshoot is reduced significantly and the time to reach
a new reference value shows distinctly lower convergence
times. It is noteworthy that the gray-marked area is at time
t ≈ 620 s. This area clearly shows that the state estimation
for transient system behavior tends to overestimate the tank
levels Hi. Consequently, the MPC does not fully utilize

the upper limit of H3,limit = 30 cm and stops at a value
of H3 ≈ 28 cm.
For the given scenario, overestimating the upper level limit
leads to more conservative control performance, which is
unproblematic. However, this demonstrates the weakness of
a model-based control approach. In general, model mismatch
can lead to poor control performance using MPC. In such
a case, our proposed SOA enables us to switch back to the
cascaded controller and thus revert to the initial control.

V. CONCLUSION AND FUTURE WORK

This paper presented a Service-oriented architecture
(SOA) for CPS, that enables runtime-flexible control loops
by modeling control loop elements as services and combining
them into service compositions using an orchestrator. To
evaluate our architecture, we retrofitted the process control
of an experimental three-tank system setup. The scenario
considered three different process control configurations,
which required exchanging of various control loop elements.
With our architecture, we successfully demonstrated the
exchange of services at runtime.

The ability to dynamically exchange services at runtime
shows, that the system integration was successfully de-
coupled from the service implementation. We also show
that the ability to dynamically exchange services benefits
control systems, in particular by enabling retrofits to keep
good control performance despite changing requirements.
We conclude that future CPS cannot benefit just from SOA
in their development and maintenance, but also in their
performance by becoming more flexible and robust.

Future research will analyze the transition period between
services, how it affects the system’s dynamic behavior, and
how this effect can be minimized or compensated. We
will also research orchestrators that increase robustness by
dynamically responding to component failures. For arbitrary
switching topology, rigorous switching conditions must be
developed to guarantee stable system behavior.

ACKNOWLEDGMENT

The authors wish to express their sincere gratitude to
A. Kampmann and J. Beerwerth for the discussions.

3297

0

20

40

60
Q

(l
/m

in
)

{kI {kII {kIII

Qin,m Q̂in

0 100 200 300 400 500 600 700 750
time (s)

5

10

15

20

25

30

35

H
i

(c
m

)

H1,m Ĥ1 H2,m Ĥ2 H3,m Ĥ3 H3,ref

275 300 325 350 365
time (s)

10

12

14

16

H
i

(c
m

)

440 450 460 470 480
time (s)

20

25

30

H
i

(c
m

)

Fig. 7: Experimental level control results of the liquid height H3 of the third tank. In segment I, the initial process control
is applied using a cascade of PI controllers. In segment II, a retrofit to an EKF for measurement noise reduction is realized
and in segment III, the process control is upgraded from PI controller to MPC to account for the pump’s dead-time behavior
and system constraints. The transition from segment I to II, as well as from segment II to III, are magnified at the bottom.

REFERENCES

[1] M. Törngren and U. Sellgren, “Complexity Challenges in Develop-
ment of Cyber-Physical Systems,” in Principles of Modeling: Essays
Dedicated to Edward A. Lee on the Occasion of His 60th Birthday,
ser. Lecture Notes in Computer Science, M. Lohstroh, P. Derler, and
M. Sirjani, Eds. Cham: Springer International Publishing, 2018, pp.
478–503.

[2] J. Bach, S. Otten, and E. Sax, “A Taxonomy and Systematic Approach
for Automotive System Architectures - From Functional Chains to
Functional Networks:,” in International Conference on Vehicle Tech-
nology and Intelligent Transport Systems, 2017, pp. 90–101.

[3] M. Fu, “Switching Adaptive Control,” in Encyclopedia of Systems and
Control, J. Baillieul and T. Samad, Eds. Cham: Springer International
Publishing, 2021, pp. 2261–2266.

[4] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science robotics, vol. 7, no. 66, pp. 60–74, 2022.

[5] T. A. Johansen and T. I. Fossen, “Control allocation—A survey,”
Automatica, vol. 49, no. 5, pp. 1087–1103, 2013.

[6] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to
Web services architecture,” IBM Systems Journal, vol. 41, no. 2, pp.
170–177, 2002.

[7] M. Lohstroh, Í. Í. Romeo, A. Goens, P. Derler, J. Castrillon, E. A.
Lee, and A. Sangiovanni-Vincentelli, “Reactors: A deterministic model
for composable reactive systems,” in Cyber Physical Systems. Model-
Based Design. Springer International Publishing, 2020, pp. 59–85.

[8] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing service
composition: A systematic literature review,” Expert Systems with
Applications, vol. 41, no. 8, pp. 3809–3824, 2014.

[9] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review
on microservices,” in Computational Science and Its Applications –
ICCSA 2017. Springer International Publishing, 2017, pp. 203–217.

[10] S. Kugele, D. Hettler, and S. Shafaei, “Elastic Service Provision
for Intelligent Vehicle Functions,” in International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp. 3183–3190.

[11] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, architecture, and uses in the
wild,” Science Robotics, vol. 7, no. 66, pp. 60–74, 2022.

[12] H. Stoll, D. Grimm, M. Schindewolf, M. Brodatzki, and E. Sax,
“Dynamic Reconfiguration of Automotive Architectures Using a Novel
Plug-and-Play Approach,” in IEEE Intelligent Vehicles Symposium
Workshops (IV Workshops), 2021, pp. 70–75.

[13] A. Kampmann, B. Alrifaee, M. Kohout, A. Wüstenberg, T. Woopen,
M. Nolte, L. Eckstein, and S. Kowalewski, “A Dynamic Service-
Oriented Software Architecture for Highly Automated Vehicles,” in
IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp.
2101–2108.

[14] M. Kloock, P. Scheffe, O. Gress, and B. Alrifaee, “An architecture
for experiments in connected and automated vehicles,” IEEE Open
Journal of Intelligent Transportation Systems, vol. 4, pp. 175–186,
2023.

[15] K. J. Åström, T. Hägglund, and K. J. Åström, PID Controllers, 2nd ed.
Research Triangle Park, N.C: International Society for Measurement
and Control, 1995.

[16] J. Lunze, Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung.
Berlin, Heidelberg: Springer, 2020.

[17] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation and Design, 2nd ed. Santa Barbara: Nob Hill
Publishing, LLC, 2020.

[18] D. Simon, Optimal State Estimation: Kalman, H [Infinity] and Non-
linear Approaches. Hoboken, N.J: Wiley-Interscience, 2006.

3298

