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Abstract— This study develops a control technique,
called federated control, to connect disconnected agents in
multiagent systems aided by control stations. Specifically,
we first use a federated architecture to model multiagent
systems with control stations. Based on this architecture,
a federated-control procedure is proposed for the task of
connecting disconnected agents, together with an initializa-
tion procedure. Then, how the federated-control procedure
connects disconnected agents by incorporating simple global
coordination (i.e., global averaging) is analyzed. We derive
the close-form expression of the time sufficient to connect
disconnected agents, which possesses interesting properties
including early computability and delay independence. The
convergence of the formation of multiagent systems and the
velocities of all agents can also be proved.

I. Introduction
Network connectivity has been in the focus of re-

searchers of multiagent systems [1]–[8], since it is of vital
importance to the collective behavior coordination of
these systems [3], [4], [9]. Pioneering works are generally
concerned with estimating, preserving, and increasing
the network connectivity [1]–[9]. Most existing studies
of multiagent systems adopt the all-time [1]–[8] or inter-
mittent connectivity assumption [9], [10] which implies
that a multiagent system can maintain its communi-
cation graph connected at all times or “intermittently
connected infinitely often” during the evolution of the
system. From a practical point of view, both all-time
connectivity and intermittent connectivity might be
restrictive requirements for multiagent systems due to
the limited communication capabilities and motions of
agents [11], [12].

Nevertheless, few existing studies consider network-
disconnected systems in which neither all-time connec-
tivity nor intermittent connectivity is assured, while
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Fig. 1. As the space-air-ground integrated network is gradually
being built [13], ground control centers and manned vehicles can
serve as control stations that supervise and regulate multiagent
systems including systems of multiple unmanned aerial vehicles
(UAVs).

the network disconnected problem have to be taken
into account [11], [12], since there is no absolute
guarantee that a realistic multiagent system will never
be disconnected especially when the systems are ini-
tializing or experiencing severe failures [11], [12]. Our
previous work [12] provided a technique of identify-
ing disconnected agents for multiagent systems via
external estimators in control stations1; however, the
problem of connecting disconnected agents has not yet
been addressed. Besides, multiagent systems could be
highly autonomous from a technical perspective, but
for reasons such as public safety, they must operate
under human supervision at control stations in most
situations, and will require human regulation on many
occasions [12], [14].

In fact, a multiagent system with a control station
can be modeled using the federated architecture that
originates from the distributed computing of “federated
learning” and is also named the server-agent architec-
ture [15]–[19]. After emerging in distributed computing
research, the federated architecture has shown its broad

1The control station can be a ground control center or a
manned vehicle [12], see Fig. 1 for illustration. In the context of
the space-air-ground integrated network [13], cellular and satellite
communication systems facilitate the connections between control
stations and multiagent systems.
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Fig. 2. The federated architecture for a multiagent system with
a control station, e.g., a manned vehicle, that acts as a server.
Although the communication over a server-agent connection has
a high overhead [12], the number of server-agent connections is
relatively small in a federated architecture.

applicability in machine learning [15], signal processing
[16], communications [17], control [18], and optimiza-
tion [19]. Note that our recent study [20] applied the
federated architecture-based strategy to the design of
compressive sensing algorithms. As we will see in this
paper, the federated architecture can be applied to
model multiagent systems with control stations, giving
rise to a control technique referred to as federated
control for connecting disconnected agents.

These facts motivate the study to be presented in
this paper. In this study, we develop a federated-control
technique for connecting disconnected agents in multi-
agent systems aided by control stations, which consists
of federated-control and initialization procedures. We
derive the close-form expression of the time sufficient
to connect certain pair of disconnected agents (Theorem
1). Two important aspects of this expression are that, i)
it can be computed in the initialization procedure and
allows the control stations, at the initialization proce-
dure, to know when the task of connecting disconnected
agents will be accomplished (i.e., the task-time early
computability stated in Remark 1), and ii) its value
is delay independent (Remark 4). The convergence of
multiagent systems can also be proved (Corollary 1 and
Theorem 2). To the best of authors’ knowledge, this
study is the first to provide self-contained design and
analytical frameworks for federated control of multia-
gent systems, with the aim of developing a technique
to connect disconnected agents in multiagent systems
aided by control stations.

II. Model

In this section, we introduce a control technique, i.e.,
federated control, which can be used for multiagent
systems aided by control stations.

A. Federated Control
We consider a multiagent system that has N agents

moving in RM space, with first-integrator dynamics

ṗi(t) = ui(t), t ≥ 0, (1)

where pi(t) ∈ RM is the position vector of agent i,
i = 1, · · · , N , and ui(t) ∈ RM denotes the control
input. There exists a control station for supervising
and regulating the multiagent system [12], [14], which
plays the role of a server. A federated (server-agent)
architecture can thus be built, see Fig. 2. Based on
the federated architecture, we propose the following
procedure for connecting disconnected agents, as well
as for achieving a desired formation.

Federated-Control Procedure. It consists of two steps,
starting from t = 0:

1) Every agent i computes

xi(t) = pi(t)− δi − v∗t, t ≥ 0, (2)

and transmits xi(t) to the sever, where δi ∈ RM

is the desired position within the formation, and
v∗ ∈ RM is the desired velocity. The sever then
averages all values of xi(t) to obtain

x (t) =
1

N

N∑
l=1

xi (t) , (3)

and broadcast x (t) to all the agents.
2) After obtaining x (t), every agent i uses the

control law below

ui(t) = v∗ − θ

N∑
j=1

gij (t)∆pij (t)

−γ [xi (t)− x (t− τ)] , (4)

where ∆pij(t) = pi(t)−pj(t)− (δi − δj). θ and γ
are positive constants. gij denotes the connection
status between two distinct agents i and j, i.e.,
gij = 1 if they are connected and gij = 0
otherwise. There are non-negligible time delays
in both the transmission and broadcast of the
step 1), so τ is used to denote the overall time
delay. �

Remark. The term −γ [xi (t)− x (t− τ)] in the con-
trol law (4) is introduced by this study, which incor-
porates a simple global coordination, i.e., the global
averaging x (t) specified in (3). It is inspired by the
federated learning and optimization in which global
averaging is the most commonly used method for global
coordination [15], [19].

Moreover, it is always required to specify the initial
states for time-delay systems, so the following assump-
tion is made.

Assumption 1 [26]. Multiagent system (1) starts
working from t = 0, with an initial condition x (t) =
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xinit (t) for t ∈ [−τ, 0], where xinit : [−τ, 0] → RM is a
continuous function satisfying

max
−τ≤t≤0

∥xinit(t)∥2 < ∞. (5)

Remark 1 (Task-Time Early Computability). We
will see in the next section (from Theorem 1) that,
as early as the system initialization, the server can
compute the time that is sufficient for the federated-
control procedure to accomplish the task of connecting
disconnected agents.

In order to achieve this early computability, we design
an initialization procedure as follows.

Initialization Procedure. It is implemented in two
steps during the time period [0, τ ]:

1) Every agent i calculates xi(0) and transmits it,
together with δi, to the sever, allowing the server
to compute

C0
max = max

1≤i≤N
∥xi(0)− x(0)∥2. (6)

2) For agent pair (j, i) with ∥δi − δj∥2 < R, the
server computes

T c
ij = − 1

γ
log

(
R− ∥δi − δj∥2
2
√
NC0

max

)
, (7)

where R is the communication radius of intera-
gent communication and T c

ij is the time sufficient
for the federated-control procedure to connect
initially disconnected agents i and j. �

The federated-control and initialization procedures
have practical advantages at the cost of a small amount
of server-agent communication and extra computation,
as explained below.

Remark 2. The federated control allows the early
computability of task time at the server, i.e., T c

ij

can be computed within the initialization procedure
(roughly during the period [0, τ ]). On the other hand,
in the federated-control and initialization procedures,
the transmission and broadcast efforts made by the
multiagent system and the server, respectively, are only
of the order of N . Besides, the server only requires to
compute (3) and (6) whose computation complexity are
also of the order of N .

B. Interagent Communication
The communication connection between any two

agents is supposed to depend on their distance [3]–[5],
and the following assumption holds.

Assumption 2. Every agent has a fixed communica-
tion radius R [1], [4], [5]. If the distance between two
agents is less than R, then they are connected, otherwise
not connected. To be specific,

gij(t) =

 1, if ∥pi(t)− pj(t)∥2 < R, i ̸= j,
0, if ∥pi(t)− pj(t)∥2 ≥ R, i ̸= j,
0, otherwise (i.e., i = j).

(8)

Denote V = {1, · · · , N} as the set of N agents. A
time-varying graph G(t) = (V, E(t)) is used to model
the interagent connections (i.e., the connections among
the agents), where E(t) ∈ V × V is the edge set of
paired agents. An edge (i, j) ∈ E(t) implies that agent
i is connected to agent j, leading to gij(t) = 1. Since
(j, i) ∈ E(t) is equivalent to (i, j) ∈ E(t), G(t) is an
undirected graph. Let L(t) = [lij(t)] be the Laplacian
matrix of the graph G(t), where lii(t) =

∑
j ̸=i gij(t) and

lij(t) = −gij(t) for i ̸= j.
Proposition 1 [21], [24]. The Laplacian matrix L(t) is

symmetric positive semidefinite, such that there exists
an orthogonal matrix U(t) to establish

L(t) = U(t)Λ(t)UT (t), (9)

where Λ(t) = diag (λ1(t), λ2(t), · · · , λN (t)) is a di-
agonal matrix, U(t) can be denoted by U(t) =[

1√
N
1N Y (t)

]
∈ RN×N , and λi(t) is the i-th smallest

eigenvalue of L(t). Moreover, L(t)1N = 0, 1T
NL(t) = 0,

and λ1(t) ≡ 0.
Let us also describe the communication topology

when the desired formation is achieved by the multia-
gent system. Let g∗ij be the connection status between
agents i and j, such that

g∗ij =

 1, if ∥δi − δj∥2 < R, i ̸= j,
0, if ∥δi − δj∥2 ≥ R, i ̸= j,
0, otherwise (i.e., i = j).

(10)

Define an undirected graph G∗ = (V, E∗) to model the
interagent connections, where E∗ ∈ V × V is the edge
set of paired agents, and an edge (j, i) ∈ E∗ means
that g∗ij = 1, i.e., ∥δi − δj∥2 < R. Here (j, i) ∈ E∗

can be interpreted as that the agents i and j can be
connected if the desired shape of formation is achieved.
The Laplacian matrix of the graph G∗ is denoted by
L∗ =

[
l∗ij

]
. Let λ∗

i be the i-th smallest eigenvalue of
L∗ with 1 ≤ i ≤ N , where λ∗

1 ≡ 0. Assume that there
is an orthogonal matrix U∗ =

[
1√
N
1N Y ∗

]
∈ RN×N ,

such that L∗ = U∗Λ∗ (U∗)
T .

Under Assumption 2, the communication topology
G(t) of multi-agent system (1) is time-varying. Without
loss of generality, we suppose that the number of
topology changes during the period from the beginning
status to the final one is denoted by K, and G(t)
is updated at time instants T0, T1, · · · , TK , where
0 = T0 < T1 < · · · < TK . That is, G(t) = G (Tk) if t ∈
[Tk, Tk+1) with 0 ≤ k ≤ K−1, and G(t) = G (TK) = G∗

if t ∈ [TK , +∞).

III. Analysis

Having provided the model of the federated-control
multiagent system (1), we now state the analytical
results showing the behavior of the system (1).
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A. Model Transformations
Recalling (2), we express the system (1) as

ẋi(t) = ũi(t), (11)

ũi(t) = −θ

N∑
j=1

gij(t) [xi (t)− xj (t)]

−γ [xi (t)− x (t− τ)] . (12)

Let x(t) =
[
xT
1 (t) · · · xT

N (t)
]T . The system model

can be written in a compact form

ẋ(t) = − [(θL(t) + γIN )⊗ IM ]x(t)

+
γ

N

(
1N1T

N ⊗ IM
)
x (t− τ) . (13)

1) Transformation for Distance Analysis: One of our
main interests is in verifying that certain disconnected
pair of agents within multiagent system (1) can be
connected. The verification requires the analysis of
distances between agents. We will transform the model
(13) into the one that can be used for the distance
analysis.

Lemma 1. Let P = IN − 1N

(
1T
N1N

)−1
1T
N denote

the projection matrix onto the nullspace of 1T
N . Then

1) P = P T = P 2.
2) 1T

NP = 0T
N , or equivalently, P1N = 0N .

Moreover, consider the Laplacian matrix L(t) =
U(t)Λ(t)UT (t), then

L(t) = PL(t) = L(t)P , (14)
(U (t))

T
(IN −D)U (t) = P , (15)

where D = diag (1, 0, · · · , 0).
Proof: See Appendix A. �
Defining ξ(t) =

(
(U (t))

T ⊗ IM

)
(P ⊗ IM )x(t), and

combining it with the model (13), yields

ξ̇(t) = − [(θΛ(t) + γIN )⊗ IM ] ξ(t)

= [diag (µ1(t), · · · , µN (t))⊗ IM ] ξ(t),(16)

where µi(t) = −θλi(t) − γ such that µi(t) ≤ −γ, 1 ≤
i ≤ N . The first equality in (16) follows from Lemma
1.

Remark 3. Once the model (16) is derived, the
analysis becomes simpler, as (16) is a delay-free linear
system. The delay term presented in (13) vanishes in
(16) due to the fact
γ

N

(
(U (t))

T ⊗ IM

)
(P ⊗ IM )

(
1N1T

N ⊗ IM
)
≡ OMN .

The model (16) can easily be used to analyze how
the distances between agents evolve, because of the
property shown in the following lemma.

Lemma 2. Suppose that the state of the system (16)
is ξ(0) at t = 0. Then

∥pi(t)− pj(t)− (δi − δj)∥2 ≤ 2 exp (−γt) ∥ξ(0)∥2 , (17)

for all t ≥ 0.

Proof: See Appendix A. �
This result implies that ∥pi(t) − pj(t) − (δi − δj)∥2

decays to zero exponentially fast as t → ∞.
2) Transformation for Velocity Analysis: It is neces-

sary to validate the convergence of the velocities of all
agents. The model (13) will be transformed into the one
that can be exploited to analyze the velocity behavior
of the multiagent system.

Now let us focus on an interval [Tk, Tk+1) with k =
0, 1, · · · ,K, or [Tk, ∞) with k = K, in which G (t) and
L (t) stay constant, i.e., G (t) ≡ G (Tk) and L (t) ≡
L (Tk). The model (13) can be rewritten as

ẋ(t) = − [(θL (Tk) + γIN )⊗ IM ]x(t)

+
γ

N

(
1N1T

N ⊗ IM
)
x (t− τ) . (18)

We define z(t) =
(
UT (Tk)⊗ IM

)
x(t) and have

ż(t) = − [(θΛ (Tk) + γIN )⊗ IM ] z(t)

+γ (D ⊗ IM ) z (t− τ) . (19)

This equality holds due to Lemma 1.
As the system model is transformed from (1) to (19),

the velocities of all agents, i.e., ṗi(t), i = 1, · · · , N , can
be analyzed by using the property stated in the next
lemma.

Lemma 3. After transforming the model from (1) to
(19), one have

N∑
i=1

∥ṗi(t)− v∗∥22 = ∥ẋ(t)∥22 = ∥ż(t)∥22 . (20)

Proof: See Appendix A. �
To clarify the behaviour of the system (19), let us

denote z(t) =
[
zT
1 (t) · · · zT

N (t)
]T and rewrite (19)

as

ż1(t) = −γz1(t) + γz1 (t− τ) , (21)
żi(t) = − (θλi,TK

+ γ) zi(t), i = 2, · · · , N.(22)

On the one hand, as a first-order delay system, (21) is
in a simple form, but it cannot be directly analyzed
via classical stability tests including the Tsypkin’s
test and the frequency sweeping test, or via robust
stability methods including small µ theorem, or even
via Razumikhin theorem [26]. Because the coefficients of
z1(t) and z1 (t− τ) in (21) are −γ and γ, respectively,
where |−γ/γ| = 1, representing a marginal case that is
not covered by most known results [26]. We will analyze
the system (21) in Appendix B by using fundamental
mathematical tools such as the method of steps and
the final value theorem [26], [27]. On the other hand,
the analysis of the system (22) is more easy, which is
also given in Appendix B.
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B. Main Results
The first theorem provides sufficient conditions of

the time needed to connect certain pair of disconnected
agents.

Theorem 1. Apply the control law (4) to multiagent
system (1). Let Assumptions 1 and 2 hold. Consider a
pair of agents i and j that are disconnected at t = 0
but with ∥δi − δj∥2 < R. If

t ≥ T c
ij , (23)

where T c
ij is defined in (7), then two agents will get

connected, i.e., ∥pi(t)− pj(t)∥2 < R.
Proof: See Appendix B. �
Theorem 1 states that t ≥ T c

ij is sufficient for
connecting certain pair of disconnected agents, where
the value of T c

ij can be computed by the server during
the time period [0, τ ] using our designed initialization
procedure.

Remark 4 (Delay Independence). The values of both
T c
ij in Theorem 1 is delay independent, while the reason

behind can be deduced from Remark 3.
As a byproduct of the proof of Theorem 1 (in Ap-

pendix B), the control law (4) results in the convergence
of the formation of multiagent system (1); see the
corollary below.

Corollary 1. For any pair of agents i and j in
multiagent system (1), the control law (4) leads to

lim
t→∞

∥pi(t)− pj(t)∥2 = ∥δi − δj∥2 . (24)

Proof: See Appendix B. �
The second theorem of this paper shows the conver-

gence of the velocities of all agents in the system (1)
with the control law (4).

Theorem 2. Consider multiagent system (1) using
the control law (4). Let Assumptions 1 and 2 hold. For
t ∈ [0, TK ], the following holds

∥ṗi(t)∥2 < +∞. (25)

Moreover, if t ∈ [TK , ∞), then the velocity of every
agent converges to v∗, i.e.,

lim
t→∞

ṗi(t) = v∗, 1 ≤ i ≤ N. (26)

Proof: See Appendix B. �
For the velocity of every agent in multiagent system

(1), Theorem 2 first validates the boundness over the
time interval [0, TK ] in which the topology varies, and
then confirms the convergence with increasing t in the
interval [TK , ∞).

IV. Simulations
This section presents simulation results illustrating

the behaviour of a multiagent system with federated
control that aims at connecting disconnected agents.
The simulations are conducted in a two dimensional
plane, so that we can write δi = [δi,1 δi,2]

T , pi(t) =

−120 −90 −60 −30 0 30 60 90 120
−40

0

40

80

120

160

δ
i,1

δ i,2

15

12111098

1 2 3 6 754

1413

16

30

40

Fig. 3. The desired formation shape determined by δi, 1 ≤
i ≤ 16, and the corresponding communication graph G∗, where
the connection radius R = 43. Moreover, ∥δ14 − δ15∥2 = 30,
∥δ14 − δ16∥2 = 40, and ∥δ15 − δ16∥2 = 50.
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τ=2 

40

T
i,j
c   for (14, 16)

R=43
50

τ=10 

τ=6 

T
i,j
d   for (15,16)

Fig. 4. Convergence curves of the distances between agents i
and j, i.e., ∥pi(t)− pj(t)∥2, as t increases, for τ = 2, 6, and 10,
where agent pairs (14, 16) and (15, 16) are chosen as examples.
The × markers represent T c

ij and T d
ij , respectively, for the cases

∥pi(T )− pj(T )∥2 < R and ∥pi(T )− pj(T )∥2 ≥ R.

[pi,1(t) pi,2(t)]
T , and ṗi(t) = [ṗi,1(t) ṗi,2(t)]

T , for every
agent i. There are 16 agents moving from random initial
positions, that is, pi(0) = wi, where wi = [wi,1 wi,2]

T ∈
R2 whose entries satisfy wi,m ∼ N (0, 802). Suppose
that the control law (4) uses the parameters θ = 1
and γ = 2, with the desired velocity v∗ = [5 20]T . Let
the connection radius R = 43. The case of interest is
depicted in Fig. 3.

Fig. 4 shows the convergence behaviour of
∥pi(t)− pj(t)∥2 with different τ , when Assumption 1
holds. Agent pairs (14, 16) and (15, 16) are considered,
noting that ∥δ14 − δ16∥2 = 40 and ∥δ15 − δ16∥2 =
50. We can observe from Fig. 4 that, as t increases,
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Fig. 5. Snapshots of the formation shape and the communication
graph G(t) at t = 0.01, 0.05, 0.5, and 4.99. For each case, the value
of λ2(t) is also provided.

∥pi(t)− pj(t)∥2 → ∥δi − δj∥2. This is in accordance
with the analytical result of Corollary 1. More im-
portantly, as ∥δ14 − δ16∥2 < R = 43, we see that
∥p14(t)− p16(t)∥2 converges to be less than R at some
time t ≤ T c

ij in every case. This observation can be
interpreted as that, as long as t ≥ T c

ij , one should
always have ∥pi(t)− pj(t)∥2 < R for two agents i and
j with ∥δi − δj∥2 < R, which complies with Theorem
1. On the other hand, as ∥δ15 − δ16∥2 ≥ R, we observe
that ∥p15(t)− p16(t)∥2 converges to be larger than R
at some time t ≤ T d

ij in every case.
To see the effectiveness of the control law (4), we

provide four snapshots of the formation shape and
G(t) at t = 0.01, 0.05, 0.5, and 4.99 in Fig. 5. One
can find that G(t) is not connected at t = 0.01, 0.05,
and 0.5, while it becomes connected at t = 4.99 such
that λ2(4.99) = 0.2729. Typical behavior of agents’
velocities, i.e., ṗi(t), is plotted in Fig. 6. It can be seen
that all curves of ṗi(t) approach the desired velocity
v∗. In summary, Fig. 5 visualizes the analytical results
of Theorem 1 and Corollary 1, while Fig. 6 verifies
Theorem 2.

V. Conclusion
This study develops the federated-control technique

for connecting disconnected agents in multiagent sys-
tems. When investigating how the technique exactly
works, we derive the close-form expression of the time
sufficient to connect disconnected agents, which is
readily computable as early as the system initialization
and also delay independent.

In general, the federated-control concept can poten-
tially be applied to the emerging fields of cellular-
connected UAVs and cloud-robotics systems that allow

Fig. 6. Convergence curves of the velocities of agents, i.e., ṗi(t) =
[ṗi,1(t) ṗi,2(t)]

T , as t increases, where agents 1, 5, 9, and 16 are
considered. One curve corresponds to one agent.

swarming UAVs and robots, respectively, to offload
their computing and controlling tasks to centralized
severs to enhance the capacities [22], [23]. Also, the
federated-control technique is applicable to unmanned
surface vehicle (USV) systems sailing the oceans, which
are connected to control centers via the space-air-
ground integrated network. However, our work is just
a first step in the direction of federated control, while
extensions of analysis to multiagent systems with non-
linear, noisy, and communication-limited control laws,
and conducting research in conjunction with additional
multiagent control goals (such as path planning, and
collision/obstacle avoidance), are meaningful future
works.

Appendix A: Proofs of Used Lemmas
Proof of Lemma 1: The results can be verified by

doing simple matrix multiplications. Note that the
nullspace of 1T

N consists of all solutions s to 1T
Ns = 0,

and the projection matrix P projects any vector a ∈
RN to the nullspace of 1T

N , since 1T
N (Pa) = 0 [25]. �

Proof of Lemma 2: By definition, we have ∥ξ(t)∥22 =

∥(P ⊗ IM )x(t)∥22 = ∥x(t)∥22 =
∑N

i=1 ∥xi(t)− x(t)∥22.
Norm inequalities give rise to(

1/
√
N
)
∥ξ(t)∥2 ≤ max

1≤i≤N
∥xi(t)− x(t)∥2

≤ ∥ξ(t)∥2 . (27)

Substituting (2) and (3) into (27) results in

∥pi(t)− pj(t)− (δi − δj)∥2 ≤ 2 ∥ξ(t)∥2 . (28)

On the other hand, denote ξ(t) =[
ξ1(t) · · · ξMN (t)

]T . Given the system
model (16), use [28, (5.12)] to show that
ξ(i−1)N+l(t) = exp (−(θλi(t) + γ)t) ξ(i−1)N+l(0),
where i = 1, · · · , N and l = 1, · · · ,M . Applying
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the inequalities exp (−(θλi(t) + γ)t) ≤ exp (−γt),
i = 1, · · · , N , to the above equations, yields

∥ξ(t)∥2 ≤ exp (−γt) ∥ξ(0)∥2 , t ≥ 0. (29)

The proof is completed by combining (28) and (29).
�

Proof of Lemma 3: First of all, according to the
system model (1) with the control input (4) and the
system model (11) with the control input (12), respec-
tively, pi(t) and xi(t) are continuously differentiable.
From (2), we can deduce that ṗi(t)−v∗ = ẋi(t). Then,
(18) and (19) states that z(t) =

(
UT (Tk)⊗ IM

)
x(t),

so ż(t) =
(
UT (Tk)⊗ IM

)
ẋ(t) due to the linearity of

differential operation. This yields the desired result. �

Appendix B: Proofs of Main Results
Proof of Theorem 1: Combine (6) with the first

inequality of (27) to show that

∥ξ(0)∥2 ≤
√
NC0

max. (30)

By applying the second inequality of (27) to (17), we
get

∥xi(t)− x(t)∥2 ≤ ∥ξ(t)∥2 ≤
√
NC0

max exp (−γt) ≤ ϵ,

if t satisfies

t ≥ − 1

γ
log

(
ϵ√

NC0
max

)
. (31)

By norm inequalities, it is convenient to obtain that
∥pi(t) − pj(t) − (δi − δj)∥2 ≤ ∥xi(t)− x(t)∥2 +
∥xj(t)− x(t)∥2 ≤ 2ϵ.

Consider multiagent system (1) using the control law
(4), and let Assumptions 1 and 2 hold. If (31) holds,
then

∥pi(t)− pj(t)− (δi − δj)∥2 ≤ 2ϵ, (32)

with any positive ϵ < C0
max. This implies

that, for every positive number ε, there exists
a number tε = − 1

γ log
(

ε
2
√
NC0

max

)
, such that∣∣∥pi(t)− pj(t)∥2 − ∥δi − δj∥2

∣∣ ≤ ε if t ≥ tε. Use the
above result to show that, if t ≥ T c

ij , ∥pi(t)− pj(t)∥2 <
R, which concludes the proof. �

Proof of Corollary 1: Letting ε in (31) be arbitrarily
close to zero, (32) yields the corollary. �

Proof of Theorem 2: Provided that the communica-
tion topology of multiagent system (1) is time-varying,
the proof includes two aspects.

First, we use the method of steps [26] to investigate
whether the velocities of all agents are up-bounded in
[0, TK ], although the topology is time-varying.

To this end, consider the state of the dynamics sys-
tem (21) in the time interval [Tk, Tk+1), 0 ≤ k ≤ K−1,
and assume that z1(t) = ϕk(t) for t ∈ [Tk − τ, Tk],

where ϕk : [Tk − τ, Tk] → RM is a continuous function
satisfying

max
Tk−τ≤t≤Tk

∥ϕk(t)∥2 < ∞. (33)

Then if t ∈ [Tk, Tk + τ ], we get

z1(t) = e−γ(t−Tk)z1 (Tk)

+γ

∫ t

Tk

e−γ(t−u)z1(u− τ)du, (34)

such that

∥z1(t)∥2 ≤ ∥z1 (Tk)∥2 + γ

∥∥∥∥∫ t

Tk

e−γ(t−u)z1(u− τ)du

∥∥∥∥
2

.

The Cauchy-Schwarz-Buniakowsky inequality yields

∥∥∥∥∫ t

Tk

e−γ(t−u)z1(u− τ)du

∥∥∥∥2
2

≤ τ2 ∥ϕ(t)∥2c .(35)

Therefore, the following holds

max
Tk≤t≤Tk+τ

∥z1(t)∥2 ≤ (1 + γτ) ∥ϕ(t)∥c . (36)

Upon obtaining the inequality (36) for t ∈
[Tk, Tk + τ ], we can compute analogously for t ∈
[Tk + τ, Tk + 2τ ]. Continuing this process for q times,
where q = ⌈(Tk+1−Tk

)/τ⌉, gives rise to [26]

max
Tk≤t≤Tk+1

∥z1(t)∥2 ≤ (1 + γτ)q max
Tk−τ≤t≤Tk

∥ϕk(t)∥2
< ∞. (37)

The above implies that ∥z1(t)∥2 has a finite upper
bound within the time interval [0, TK ], under the
Assumption 2.

Second, we check whether the velocities of all agents
can converge in the time interval [TK , +∞).

On the one hand, from (21), the Laplace transform
of z1(t) can be obtained as

Z1(s) =
ϕ(0) + γe−sτ

∫ 0

−τ
e−svϕ(v)dv

s+ γ − γe−sτ
, (38)

by noting that the Laplace transform of z1(t − τ) is
e−τsZ1(s) + e−sτ

∫ 0

−τ
e−svϕ(v)dv [26, (1.9)].

Let u(t) =

{
1, t ≥ 0
0, t < 0

be the unit-step function,
and define

y (t) = ż1(t)u(t). (39)

The Laplace transform of y (t) is expressed by

Y (s) = −γ
(
1− e−sτ

)
Z1(s) + γe−sτ

∫ 0

−τ

e−svϕ(v)dv

=
−γ (esτ − 1)ϕ(0) + γs

∫ 0

−τ
e−svϕ(v)dv

sesτ + γesτ − γ
. (40)

Applying the final value theorem [27], and taking the
limit s → 0 yields

lim
t→∞

ż1(t) = lim
t→∞

y(t) = lim
s→0

sY (s) = 0M . (41)
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On the other hand, based on (22), simple calculations
show that

lim
t→∞

zi(t) = 0M , (42)

for i = 2, · · · , N , as one can have

zi(t) = e−(λi,TK
+γ)(t−TK)zi,TK

, (43)

where λi,TK
+ γ > 0.

Consider the state of the dynamics system (22).
Within the time interval [0, +∞), the differentiation
of zi(t) converges to 0M for t → ∞, i.e.,

lim
t→∞

żi(t) = 0M , i = 2, · · · , N. (44)

From (37) and (43), by definition, (25) can be
derived. By Lemma 3, we obtain

lim
t→∞

N∑
i=1

∥ṗi(t)− v∗∥22 = 0. (45)

The statement (26) of Theorem 2 can finally be verified
by norm inequalities. �
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