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Abstract— In discrete event systems, it is often convenient
and possible to observe directly whether or not the system
is in a subset of the state space, typically after some delay,
even if some event occurrences leading to the current state
were not observed. We model supervisory control with the
delayed observations of events and states and investigate the
existence of a supervisor to obtain a given desired language
accordingly. An existence verifier with polynomial run time
is presented.

I. INTRODUCTION
Ramadge and Wonham [1] initiated the framework

of supervisory control. Soon after that, Lin and Won-
ham [2] incorporate partial observation into discrete
event system (DES) models and define observability to
distinguish whether or not the supervisor always has
sufficient observation for achieving the control goal. This
paper considers supervisory control with the supervisor
observing both events and states, with its observations
possibly having some delay.

The original version of partial observation of the
supervisory control assumes that a particular supervisor
observes either all occurrences of an event or none of that
event [2], [3], [4]. However, the ability of a supervisor to
observe different occurrences of a particular event usually
changes with the situation. For example, the orientation
of a security camera can affect which events can be
observed. Recently, a more fluent observation modality
was introduced. With dynamic communication, agents
decide which event occurrences to communicate and to
whom [5]. With dynamic information acquisition, agents
adjust the selection of events to be observed [6], [7].
Both dynamic communication and dynamic information
acquisition are forms of dynamic observation, in which
the observation of a particular event occurrence depends
on the string of events leading to that occurrence [8], [9].

Delayed observations have also been studied, but
exclusively for the process of a supervisor observing
only events. In the early work by Balemi [10] and
Balemi and Brunner [11], the system is modeled as the
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connection of two input/output processes, the plant and
the supervisor, and each one outputs events in response
to the inputs from the other. Each process immediately
observes outputs by itself, but the observations of output
events of the other could be delayed. Using the paradigm
of supervisory control by Ramadge and Wonham [1],
recent research, e.g., [12], [13], [14], focuses on the
existence and construction of a supervisor that tolerates
the delays in event observations. In contrast, Tripakis
[15] and Zhang et al. [16] consider the delay of supervisors
communicating their observations. Most of the above
work measures the delay in terms of the number of events
that occur in between the time an event occurs and the
time a supervisor observes that event.

Moreover, for example in [17], supervisors can di-
rectly sense states along with observing events. Directly
observing states is essential in important applications
including robotics and medical diagnosis [17]. Kumar
et al. [18] define the problem of supervisory control
under incomplete state observation as “observability of
predicates”. A “predicate” is a Boolean function that
specifies a subset of the state space. Then, Cao et al. [19]
show the reduction from the problem of state observation
to the problem of event observation in supervisory
control. Ushio and Takai [20] model state observation
as the supervisor observing strings of state-dependent
nondeterministic output symbols. All the above work
implicitly assumes that state observations can always be
performed instantaneously.

We introduce the combined observation of states and
event occurrences with delay for supervisory control. We
also develop a polynomial time verifier for testing the
existence of a supervisor under the new definition of
observation. Due to space limitations, all proofs have
been omitted; they are available from the authors.

II. System Model and Observation Models
In this section, we discuss distributed supervisory

control, introduce the transition-based event observation,
and incorporate partial state-change perception with
such observation.

Notation 1: The following notation is used through-
out.
a. Let a suffix ! after an expression denote “is well

defined”.
b. Let “:=” denote “is defined as”.
c. Let “w.r.t.”, “s.t.”, and “o.w.” denote “with respect

to”,“such that”, and “otherwise”, respectively.
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d. Let [n] = {1,2, . . . ,n} for n ∈ N.
A. General Settings

We consider a DES modeled as a deterministic finite-
state automaton (FSA) G := (X ,E, f ,x0), where X is a
finite set of states, E is a finite set of events, partial
function f : X×E→ X is a transition function, and x0 is
the initial state.

Let ε denote the empty event string and E∗ denote the
Kleene-closure of E. Given s ∈ E∗, |s| is its length. Let
s = {u ∈ E∗ : (∃ v ∈ E∗) s = uv} denote the prefix-closure
of a string s ∈ E∗. Given language L defined on E, let
L = {t ∈ E∗ : (∃s ∈ L)t ∈ s} be the prefix closure of L. We
say L is prefix-closed if L = L.

Let T (G) := {(x,e) ∈ X×E : f (x,e)!} denote the set of
transitions of G. The transition function f is extended for
the strings of events as follows. Given x ∈ X , s ∈ E∗, and
e∈E, f (x,se) := f ( f (x,s),e) if both f (x,s) and f ( f (x,s),e)
are defined and is undefined otherwise. Let L (G) := {s∈
E∗ : f (x0,s)!} denote the language generated by G. L (G)
is prefix-closed by construction. For simplicity’s sake,
given s ∈L (G), let f (s) denote f (x0,s). We assume that
G is accessible, i.e., ∀x ∈ X [∃s ∈L (G)x = f (s)].

Given automaton M, let ω(M) denote the state space
of M. For example, X = ω(G). Given automata A and B,
let A×B denote the product of A and B.

If automaton G := (X ,E, f ,x0) is nondeterministic, its
transition function has the form f : X × E → 2X . f
is extended to strings in E∗ as, given se ∈ E∗ with
some e ∈ E, f (x0,se) = {x ∈ X : (∃y ∈ f (x0,s))x ∈ f (y,e)}.
Correspondingly, L (G) = {s ∈ E∗ : f (x0,s) ̸= /0}. A non-
deterministic automaton G is called accessible if every
state x ∈ X has x ∈ f (x0,s) for some s ∈ L (G). An
automaton is deterministic by default unless we say it is
nondeterministic.

Binary relations A ⊏ A′ and A ⊑ A′ of automata A
and A′ denote “A is a subautomaton of A′” and “A is
a subautomaton A′ or A = A′”, respectively.

B. Supervisory Control
Our goal is to use supervisory control to achieve a

given desired language K ⊆L (G). To achieve this goal,
following any string in K, an event should be disabled
by the supervisor if and only if an occurrence of that
event causes the system to leave K. We assume K is
generated by automaton H = (Y,E,h,y0), i.e., K =L (H).
We assume H ⊑ G.

The control is implemented by a supervisor S, in which
S : L (G)→ 2E is a function over the language L (G).
With a slight abuse of notation, use S to denote both the
supervisor and the function it implements. Let Ec denote
the set of events controllable by S, and Euc := E \ Ec
denote the set of uncontrollable events.

The controlled language was defined by Ramadge
and Wonham [1], from which we inherit. Definition 1
defines the controlled language L (S/G) resulting from
S controlling G.

Definition 1: Given G, Euc, and S, the controlled
language L (S/G) obtained by S controlling L (G) is
iteratively defined as: Initially, L (S/G) ← {ε}. Then
L (S/G) ← L (S/G) ∪ {se ∈ L (G) : s ∈ L (S/G) ∧ e ∈
[S(s)∪Euc]} indefinitely. Equivalently,

L (S/G) := {t ∈L (G) : t = ε
∨(∀t ′e ∈ t)e ∈ [S(t ′)∪Euc]} □ (1)

Given DES G, desired language K = L (H), and Ec,
we are interested in the existence of supervisors S
under which K is the controlled language. Under perfect
observation, the controllability theorem in [1] addresses
such existence. From now on, we define the supervisors
over the product of K and its decision space of disabling
events, instead of over the product of L (G) and its
decision space.

C. Event Observation and State Observation
Transition-based event observation was introduced in

[8], [9] and is defined as follows.
Definition 2 (information mapping): A supervisor can

observe a subset of transitions in H. Function I⋆ : T (H)→
{0,1} specifies the transitions that can be observed by S.
Here I⋆(x,e) = 1 means that, for all s ∈L (G) such that
x = f (s) (shorthand for f (x0,s)), the occurrences of last
event e in se is observable to S, and I⋆(x,e) = 0 means it
is not.

The observation of S is given by the information
mapping θ⋆ : L (H)→ E∗:

θ⋆(ε) := ε;

θ⋆(se) :=
{

θ⋆(s)e if I⋆(h(s),e) = 1;
θ⋆(s) if I⋆(h(s),e) = 0

for all se ∈L (H) with some e ∈ E. □

(a) System G. (b) H and its observation by S.

Fig. 1. System G and desired system H with noted supervisor
observations, in which brackets are placed around events in super-
visor’s diagram that cannot be observed by the supervisor.

Example 1: For the example running throughout this
paper, we consider the system G in Fig. 1a that has event
set E = {a,b,d,e,u} and the supervisor with Ec = {a,u},
the sets of controllable events. Fig. 1b shows the desired
system H and transition-based dynamic observations for
the supervisor. In G, the transitions of broken lines are in
T (G)\T (H), and the occurrences of events are disallowed
transition-wise. □

If no delay, then after s occurs, S observes θ⋆(s).
In addition to observing event occurrences, a supervi-

sor also directly observes hints about the current state.
We model this by partitioning the state space, and
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allowing the supervisor to observe which part contains
the current state [18], [19]. We allow such observation to
involve delay.

Definition 3 (partial state observation): Let ∆ denote
a partition of state space Y whose elements can be
distinguished by supervisor S, and δ0 ∈ ∆ denote the
element that has initial state y0 ∈ δ0. We use η : Y → ∆ to
describe the direct observation of state space such that,
for all y∈Y , η(y) is the element in ∆ that contains y. We
assume that, to the supervisor, the order of observing
states is consistent with the order of perceivable state
changes. □

With the obvious abuse of notation, we now define a
new function η : Y ×E∗→ (∆)∗ to model state observa-
tions.

Definition 4: Given H = (Y,E,h,y0) and ∆, for arbi-
trary y ∈ Y and arbitrary s ∈ E∗ such that h(y,s) is
defined, we write sm ∈ s such that |sm| = m. Then, for
each m ∈ [|s|], iteratively define η(y,s0) = η(y) and

η(y,sm) :={
η(y,sm−1) if η(h(y,sm−1)) = η(h(y,sm))

η(y,sm−1)η(h(y,sm)) if η(h(y,sm−1)) ̸= η(h(y,sm)) □
Assumption 1 (state observation): This paper

assumes that the observation of a state always
completes before the observation of the next observed
event. Moreover, this paper allows delays in observing
events, but it assumes that for the supervisor S, there
is a set Eb of events such that the observations of any
observed event in Eb are instantaneous. Finally, the
order of event observations is consistent with the order
of event generations.

D. Supervisor over Observations of Events and States
We investigate the existence of a supervisor under

which a given desired language can be obtained under
the model of delayed partial observations specified by
Definitions 2 and 4, and Assumption 1.

We need following notation to consider observations
of events in the combined observation.

Notation 2: The following notation is used for speci-
fying the supervisors considered in this paper.
a. Given H, θ⋆, and Eb, for an arbitrary s ∈L (H) and

S, let a j denote jth event in θ⋆(s). Let s|0 = s0 = u0,
and for each k ∈ [l], s|k, sk, and uk denote substrings
of s s.t. s|k = s|k−1akuk ∈ s̄, sk = akuk, and θ⋆(s|k) =
θ⋆(s|k−1ak) = θ⋆(s|k−1)ak. Then s = s|l = s0s1 . . .sl =
u0a1u1 . . .alul .

b. Let α(s) = max{k ∈ [l] : ak ∈ Eb} be the position of
the last instantaneously observable event occurrence
in θ⋆(s) if one exists, and α(s) = 0 otherwise.
Definition 5 (pruned supervisor): Given G, H, θ⋆, ∆,

and Eb, a supervisor S is said to be pruned for the delayed
observations specified by (θ⋆,∆,Eb) if for arbitrary s =
u0a1u1 . . .alul , t = v0b1v1 . . .blvl ∈ L (H) (Notation 2a),
the following holds: if the decisions of S implemented
following s and following t are different, i.e., S(s) ̸=

S(t), then S can distinguish between s|α(s) and t|α(t)
(Notation 2b) either by observing events or by observing
states at the beginning or in between an observed event
and another subsequently observed event, i.e., either
(a) θ⋆(s|α(s)) ̸= θ⋆(t|α(t)) or (b) α(s) ̸= 0 (at least one
occurrence of an event in Eb is observed by S) and there
exists k∈ [α(s)−1]∪{0}, η(h0(s|k−1),sk) ̸=η(h0(t|k−1), tk)
with s|−1 = t|−1 = ε.

A pruned supervisor always responds consistently,
regardless of the randomness of the observations caused
by delays. By definition, it satisfies conditions as follows.
a. The combined observations of events and states have

the same order as that in which they occur in the
system.

b. S observes any event in Eb instantaneously if it is
observable, while the observations of visiting states
and other events can be delayed by a random amount,
but at most until an event in Eb is observed.

c. Following all strings that may possibly appear iden-
tical, depending on random delays, S uses the same
decision.
We now define information mappings that combine

the mode of event observation and the mode of state
observation.

Definition 6 (event/state information mapping): To
model the refined observation due to directly detecting
states, we augment the set of events to E = E ∪∆ where
an event δ ∈∆ is interpreted as entering a state in the set
δ from a state outside that set. Then, define information
mapping θ : L (H)→ (E)∗ for i∈ [A] as, for all se∈L (H)
with some e ∈ E, θ(ε) := δ0 and θ(se) := θ(s)wz, in
which w = e if I⋆(h(s),e) = 1 and w = ε if I⋆(h(s),e) = 0,
and z = η(h(se)) if η(h(s)) ̸= η(h(se)) and z = ε if
η(h(s)) = η(h(se)). □

Since only an event occurrence can cause a state
change, at most one partial state observation can be
made per actual event occurrence. So, without delay,
supervisor S observes θ(s) when a string s ∈ L (H)
occurs, which means that we can write S = S† ◦θ , where
S† is a function over θ(L (H)). However, the fact that
state observations can be delayed after an event captures
the fact that states can be observed later.

We model the delay in observations using Definition 7
and relate it to the supervisors being pruned in Definition
5 using Theorem 1 below.

Definition 7: Given s ∈ L (H), let L(s) = {t : θ(s) =
tt ′ for some t ′ ∈ (E \Eb)

∗}. Since this depends on s only
through θ(s), we can define ψ ◦θ(s) to be the string in
L(s) that has the minimum length among strings in L(s),
i.e., [ψ ◦θ(s) ∈ L(s)]∧ [(∀t ∈ L(s))|ψ ◦θ(s)| ≤ |t|]. □

Note that, by definition, ψ ◦ θ is a deterministic
function.

The following theorem explains how a pruned super-
visor S apply the information mapping being subjected
to the delays bounded by any observation of events in
Eb.
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Theorem 1: Given G, H, θ⋆, ∆, and Eb, a supervisor
S is pruned for the delayed observations of events and
states specified by θ⋆, ∆, and Eb iff there exists a function
S† such that S = S† ◦ψ ◦θ . □

Theorem 1 shows that a supervisor S making decisions
over ψ ◦θ(L (H)) is a pruned supervisor (Definition 5).

Example 2: Let L= {ab,ca} with E =Eb = {a,b,c} and
consider language L with its automaton model H that
has initial state 0 and state space Y = {0,1 = h(0,a),2 =
h(0,c),3 = h(0,ab) = h(0,ca)}. Suppose supervisor S has
∆= {δ0,δ1} with δ0 = {0,1,2} and δ1 = {3}. Suppose also
the occurrence of a is always observable to S and any
occurrence of b or c is not observable to S. Because of the
delay in detecting state changes, S cannot distinguish ab
from ca, which is different from the case of no delay.

III. Existence of a Supervisor
Given desired language L (H), we study the existence

of a pruned supervisor (Definition 5) using the new
information mapping (Definition 6) with the observation
delay that has the upper bound of Definition 7.

A. Equivalent Condition
Theorem 2: Given L (G), I, ∆, Eb, Ec, and L (H),

there exists a pruned supervisor S controlling L (G) such
that the controlled language is L (H), i.e., L (S/G) =
L (H), iff for all s ∈ L (H) and all e ∈ E such that
se ∈ L (G) \L (H), we have (i) e ∈ Ec and (ii) for all
t ∈L (H) with ψ ◦θ(t) = ψ ◦θ(s), te ̸∈L (H).

Conditions (i) and (ii) above say that there is a
supervisor that can disable an undesired occurrence of
an event after any desired string without any observation
ambiguity. We propose a constructive technique to test
these conditions.

B. Extended Automaton for Observing State-Changes
Supervisor S can observe sets of states in ∆ directly. To

incorporate this information for supervisor S, we define
automaton H ′ for S as follows:

Definition 8: Given H = (Y,E,h,y0), define automaton
H ′ = (Y ′,E ′,h′,y′0) as follows: Let ζ : Y → ζ (Y ) be a
bijection with Y ∩ζ (Y ) = /0 and y′0 = ζ (y0). Then, H ′ has
E ′ = E ∪∆ and transition function h specified as follows:
Initially, set h′(δ0) = y0. Iteratively, for all e ∈ E and all
yk,yl ∈Y such that h(yk,e) = yl , if η(yk) ̸= η(yl), then set
h′(yk,e) = ζ (yl) and h′(ζ i(yl),η(yl)) = yl ; if η(yk) = η(yl),
then set h′(yk,e) = yl . Finally, Y ′ consists of those states
in Y ∪ζ (Y ) that are accessible from y′0. □

Intuitively, H ′ splits a transition involving an ob-
servation of state change into two: the first represents
only the event and the second represents only the state
observation.

Notation 3: Given H ′ = (Y ′,E ′,h′,y′0), define χ : Y ′→Y
as χ(y) = y if y ∈ Y , and χ(ζ (y)) = y if ζ (y) ∈ Y ′. □

Based on the definition of H ′, we specify the obser-
vation of supervisor S by defining indicator functions I
and I↑ and information mapping ϑ as follows:

Definition 9: Define indicator function I : T (H ′) →
{0,1} as, for all (y,e) ∈ T (H ′),

I(y,e) :=
{

I⋆(y,e) if e ∈ E
1 if e ∈ ∆ (2)

Here I(y,e) = 1 means that the transition (y,e) is observ-
able to supervisor S and I(y,e) = 0 means that it is not.
Moreover, define indicator functions I↑ : T (H)→ {0,1}
as, for all (y,e) ∈ T (H),

I↑(y,e) :=
{

I⋆(y,e) if e ∈ Eb
0 otherwise (3)

Here I↑(y,e) = 1 means that the transition (y,e) is always
instantaneously observable to supervisor S and I↑(y,e)= 0
means that it is not.

Define information mapping ϑ : L (H ′)→ (E ′)∗ as:

ϑ(ε) := ε;

ϑ(se) :=
{

ϑ(s)e if I(h′(s),e) = 1;
ϑ(s) if I′(h′(s),e) = 0

for all se ∈L (H ′) with some e ∈ E ′. □
Notation 4: Given s ∈L (H ′), let φ(s) ∈ s denote the

shortest prefix of s that satisfies ϑ(φ(s)) = ϑ(s). □
Definition 10: Define natural projection P′ : (E ′)∗→E∗

as follows: P′(ε) = ε; for all e ∈ E, P′(e) = e; for all
e∈∆, P′(e)= ε; for all st ∈ (E ′)∗, P′(st)=P′(s)P′(t). Given
L ⊆ (E ′)∗, let P′(L) = {P′(s) : s ∈ L} be the projection of
L. Moreover, given s ∈ E∗, define (P′)−1(s) = {t ∈ (E ′)∗ :
P′(t) = s}. Given s ∈ E∗, let ρ(s) = (P′)−1(s) ∩L (H ′)
denote the set of strings in L (H ′) having projection s.
□

Lemma 1 follows immediately from the definition of
ρ.

Lemma 1: For all s ∈ L (H), |ρ(s)| ∈ {1,2} and, if
|ρ(s)| = 2, we can write ρ(s) = {t, tη(h(s))} for some
t ∈ (E ′)∗. Moreover, let w be the longest string in
ρ(s), then, for all se ∈L (H) with some e ∈ E, ρ(se) =
{we,weη(h(se))} if η(h(s)) ̸= η(h(se)), and ρ(se) = {we}
otherwise. □

Notation 5: Given ρ(s), s ∈L (H), let ν(s) and µ(s)
denote the element in ρ(s) that has minimum and
maximum length (t in Lemma 1), respectively. □

Lemma 2 shows the relation between θ and ϑ .
Lemma 2: For all s ∈L (H), θ(s) = ϑ(µ(s)). □

C. Unobservable cluster
The unobservable clusters, which are the maximal

subgraphs reachable through unobservable transitions,
are basic components used for the verifier.

Definition 11: Given automaton M = (Y,E, f ,y0), W ⊆
Y , and the indicator function I of observation defined
over T (M), define the unobservable reach subgraph
UR(W,M, I) of M consisting of unobservable transitions
in M that are reachable via unobservable transitions
from states in W ⊆ Y . The transitions TUR(W,M, I)
of UR(W,M, I) are the closure of TUR(W,M, I) ←
{(y,e) ∈ T (M) : y ∈W ∧ I(y,e) = 0} under TUR(W,M, I)←
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TUR(W,M, I)∪{(x,e) ∈ T (M) : [(∃(x′,e′) ∈ TUR(W,M, I))x =
f (x′,e′)]∧ [I(x,e)= 0]}. Moreover, UR({y},M, I)⊑M spec-
ifies an automaton with initial state y and set of
transitions TUR({y},M, I). □

Definition 12: Let W = {y ∈ Y ′ : y = y′0 ∨ [(∃(y′,e) ∈
T (H ′))y = h′(y′,e)∧ I(y′,e) = 1]} be the set of all states at
each of which an observable transition ends. Define the
unobservable cluster c(y)⊑H ′ for state y ∈W as c(y) :=
UR({y},H ′, I). For those y ∈ Y ′ \W , c(y) is undefined. y
is called the cluster head of c(y). Let Φ denote the set
of clusters c(y)⊑ H ′. □

Example 3: (Continuation of Example 1.) Given
transition-based dynamic observation as in Fig. 1b,
suppose ∆ = {δ0,δ1} has δ0 = {0,2}, δ1 = {1,3,4,5}.
Then, the sets of clusters for supervisorsS using H ′ are
shown in Fig. 2. In the figure, for all y ∈ Y such that
ζ (y) ∈ Y ′, ζ (y) = y′.
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Fig. 2. Clusters for supervisor S based on H ′.

Because of delay, all of the observations between two
observed occurrences of events in Eb, may occur at
supervisor S in a burst just before the second observed
occurrence of events in Eb. The cluster c↑(y)⊑H models
this.

Definition 13: Let W = {y ∈ Y : y = y0 ∨ ((∃(y′,e) ∈
T (H)) y = h(y′,e)∧ I↑(y′,e) = 1)}. Define cluster c↑(y)⊑H
for y ∈W as c↑(y) := UR({y},H, I↑). For y ∈ Y \W , c↑(y)
is undefined. Let Φ↑ denote the set of clusters c↑(y)⊑H.
□

c↑(·) can be obtained using the same iteration as in
Definition 11 for c(·), except using Y , E, and I↑ in place
of Y ′, E ′, and I.

Example 4: (Continuation of Example 3.) Given H in
Fig. 1b with Eb = Eo, we have I↑ = I. Then, the clusters
w.r.t. I↑ are shown in Fig. 3.
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Fig. 3. Clusters of H by Definition 13.

D. Verification of Existence
To test the existence of a pruned supervisor for

obtaining a given desired language, we construct a
nondeterministic automaton C(G,H,H ′, I,Eb) := (Ω,E ∪
∆,g,c([y′0,y0],y′0)), called the C-Machine, which is param-
eterized by its state space Ω and transition function g(·).

Each state of the C-Machine is defined by three clusters
([c(x),c↑(χ(y))],c(z))∈ [(Φ∪{c(d)})×Φ↑]×Φ, where d ̸∈
Y ′ denotes a “dump state” used to model the delay of
observation; χ(·) is defined by Notation 3. c(x) is any
cluster the system may be in, based on the supervisor’s
observations. By examining any χ(y), the supervisor can
find the set of events that should be enabled to ensure
all desired strings are admitted. c(z) is the cluster the
system is actually in, and the set of events that should
be disabled can be found from c(z).

Let c([x,χ(y)],z) denote ([c(x),c↑(χ(y))],c(z)) for sim-
plicity’s sake. Recall that ω(c(·)) is the set of states of
c(·).

Definition 14: The transition function g(·) is as fol-
lows. Define, given some c(x) ∈ Φ and some e ∈ E ′,
β (x,e) := {(w,e) ∈ T (H ′) : w ∈ ω(c(x)) ∧ I(w,e) = 1}.
Let c([x,χ(y)],z) ∈ Ω and e ∈ E be arbitrary. Then,
c([p,χ(q)],r)∈ g(c([x,χ(y)],z),e) if it satisfies the follows.
a. If e ∈ Eb, then (∃(u,e) ∈ β (x,e))(∃(v,e) ∈ β (z,e))[p =

q = h′(u,e)∧ r = h′(v,e)].
b. If e∈ E ′ \Eb, then, (∃(v,e)∈ β (z,e))h′(v,e) = r and q =

y and, if β (x,e) ̸= /0, then (∃(u,e) ∈ β (x,e))p = h′(u,e),
otherwise p = d. □
Consider (a) in Definition 14. The system can enter

any cluster such that the true head is q and the
supervisor thinks it may be in any cluster headed by
p, if e is observable in states u and v. Moreover, since
the observation of e is instantaneous, the supervisor may
update its decision according to clusters headed by some
χ(p).

Consider (b) in Definition 14. We consider first e is
an event, i.e., e ∈ E \Eb. If both β (x,e) and β (z,e) are
non-empty, (b) is the same as (a) except that χ(y) is not
updated because the observation is not instantaneous,
and so the decision must be maintained, as a different
random outcome may have resulted in this e not being
observed yet. If β (x,e) is empty but β (z,e) is non-
empty, the supervisor knows that if the system is in
c(x), the real system cannot have e being observed. But
the observation of e can be delayed, the supervisor has to
maintain its decision until e is observed. Consequently,
the supervisor will continue to have the dumping state
d as its first component until an event in Eb is observed.
Then these branches of the nondeterministic evolution
will terminate, but the other branches will continue.
Consider then e represents a state change, e ∈ ∆. Note
that in this case e is always observable, and we can write
v = ζ (r) and, if β (x,e) ̸= /0, u = ζ (p). Besides that, this
case is the same as the case of e ∈ E \Eb.

Definition 15: Define C(G,H,H ′, I,Eb) s.t. its compo-
nents are the closure of the corresponding components of
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automaton ({c([y′0,y0],y′0)},E ′, /0,c([y′0,y0],y′0)) under Def-
inition 14, which specifies the expansion of its transition
function g(·) and space of states reached by g(·). □
Let C denote C(G,H,H ′, I,Eb) if variables are known by
the context. By definition, C is computed by starting
at the initial state c([y′0,y0],y′0) and iteratively applying
Definition 14 until no transition can be augmented.

The time complexity of computing C is as follows. Ω
is a subset of [(Φ∪{c(d)})×Φ↑]×Φ. Since |Y ′| ≤ 2|Y | by
Definition 8, its size |Ω| has an order of O(|Y |3). Imple-
menting Definition 14 for each state in Ω has an order of
O((|E|+ |∆|)|Y |2). Hence, the overall computation has an
order of O((|E|+ |∆|)|Y |5). This bound is tight because
the number of labeled edges in C has the same order.

Definition 16 gives a criterion for deciding the existence
of a pruned supervisor.

Definition 16: Given G, H, H ′, I, Eb, and Ec, it is said
that a state c([x,y],z) of C is corrupted if there exists
e∈E and p∈ω(c(z)) with (p,e)∈ T (G)\T (H) s.t., either
e ∈ Euc or there exists q ∈ ω(c↑(y)) s.t. (q,e) ∈ T (H). □

Theorem 3 relates the existence of a corrupted state
in C to the existence of a supervisor for obtaining L (H).

Theorem 3: Given G, H, H ′, I, Eb, and Ec, there
exists a pruned supervisor S under which the controlled
language is L (H) ⊆ L (G) exactly iff no state in C is
corrupted. □

a

Fig. 4. c([1,0],1) in C is ambiguous.

Example 5: (Continuation of Example 4.) Assume
that only supervisor S controls the system and the set
of controllable events is Ec = {a,b,u}. In G, supervisor
S must disable transitions (2,b), (3,a), (5,u), enabling
which causes the system leaving L (H), but all transi-
tions in T (H) should be enabled. A part of C is shown
in Fig. 4. The construction starts at the initial state
c([0′,0],0′) (0′ is a state of H ′), which is not corrupt. In
c([0′,0],0′), if δ0 occurs, the system goes to c([0,0],0),
which is not corrupt. In c([0,0],0), if δ1 occurs, the
system goes to c([1,0],1), in which a needs to be enabled
at 0 in c↑(0) but to be disabled at 3 in c(1). Then, by
Definition 16, c([1,0],1) is corrupt. Hence, by Theorem
3, no pruned supervisor can be used to obtain L (H). □

IV. Conclusion

Acknowledging that a supervisor is often capable of
directly observing states and observation of both event
and state often involves some delay, we model super-
visory control with delayed dynamic event observations
and state observations. We also developed a polynomial-
time process for testing the existence of such a supervisor
under this broadened version of partial observation.
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