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Abstract— A traffic light control protocol is proposed,
which builds compact platoons of vehicles to make efficient
use of green times. It forms short platoons at multiple
links and times traffic lights to concatenate these to form
a single dense platoon, in which vehicles mostly passes many
intersections without stopping. The protocol minimizes the
number of times vehicles stop; by simulation, it roughly halves
that of greenwave under near saturated demand.

I. INTRODUCTION

Road traffic congestion in the US wasted 99 hours per
person and cost $88 billion in lost time and excess fuel in
2019 [1]. To combat this, we developed a new paradigm
to represent traffic dynamics and a new protocol using
that paradigm for coordinating signals along an arterial
road. The protocol extends the traditional green wave [2],
in which a vehicle traveling along with the green wave
will experience a cascade of green lights, and not stop
at intersections.

Little [2] defined the bandwidth for a traffic direction
of an arterial using a bi-directional green wave as the
portion of a signal cycle that allows uninterrupted traffic
flow in a direction along the entire arterial. This has
been extended as follows. Chang et al. [3] include left-
turn phase sequences in addition to green lights. Gartner
et al. [4] allow different bandwidths for each segment of
a single arterial, and Stamatiadis [5] and Gartner and
Stamatiadis [6] consider a network of arterials. Tsay and
Lin [7] and Lin et al. [8] relax the assumption that all
queues at the traffic lights are dissipated within the cycle
time. Recently, to save traffic energy consumption and
network travel time, De Nunzio et al. [9] incorporate
advisory speeds of links. However, if traffic load is
too heavy or close to the intersection capacity, using
such approaches can exacerbate congestion [10] and can
become worse than using fixed cycles. This is because
it causes the green light to start when the next platoon
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arrives, rather than causing the current queue to empty
at that time.

Instead, a model-based control using a model that
delineates the interactions between scheduling green
lights and the response of traffic flow to that schedule
is needed. Such models include [11], [12], [13], based on
various model predictive control frameworks, equilibrium
constraints. However, these models are for optimizing
green time splits of a signal cycle, and lack the precision
needed for determining when to start green lights in
response to traffic situations.

To smooth traffic flow, Dotoli et al. [14], as an aside,
suggest scheduling the green light at an intersection such
that the front vehicle from the intersection upstream ar-
rives at that intersection at the departure time of all ve-
hicles previously in the link joining them. Their approach
computes offsets of green lights based on estimated queue
sizes, computed using dynamic equations that make
the simplifying (but contradictory) assumption that all
cycles at all intersections start simultaneously. Despite
this simplification, simulations show such an approach
can improve performance.

Formally generalizing and implementing the idea of
Dotoli et al. [14] requires relatively sophisticated math-
ematical machinery. We develop a new paradigm of
asynchronous systems to represent the traffic dynamics
and implement it in real-time. The goal is to find times at
which to start the green light of the traffic flow at every
intersection to minimize the number of times vehicles are
delayed. Due to space limitations, all proofs have been
omitted; they are available from the authors.

II. Traffic Model

To align with the progressive movement, the model in
this paper does not directly use the absolute time of a
shared clock. Instead, each intersection has its proxy of
time, which is its current cycle number.

A. General Notation
Bold letters denote vectors or tuples containing ele-

ments of the same type. Let [t1, t2) := {t : t1 ≤ t < t2} and,
given I = [t1, t2), let I + t = [t1 + t, t2 + t), for t ∈ R.

Given value x that depends upon a large number of
parameters, we write x(u) with u ⊆ s, to denote the
dependence of x on the given u, while keeping the
parameters s\u unspecified. When we compare x(u = u1)
and x(u = u2), we assume that those factors not included
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in u can be arbitrary but take the same value in a
comparison.

Let [n] = {1,2, . . . ,n}, and ai be ith element of vector
a. Let |s| be the cardinality of set s.

B. Traffic Path
Consider a K-link traffic path along an arterial whose

intersections with crossing streets are all signalized. Let
π tuple [πi : i ∈ [K]] of links, with the path traversing

π1,π2, . . . ,πK in this order;
θ tuple [θi : i ∈ [K] ∪ {0}] of intersections, with θi

joining πi to πi+1, and θ0 being the source;
li length of πi including the road segment within θi−1;
wi fixed number of traffic lanes of πi;
vi fixed nominal speed of πi;
xi distance from the source θ0 to θi, ∑i

k=1 lk;
λi(t) arrival rate of vehicles entering the arterial road at

θi per unit time at absolution time t;
γi(t) turn ratio of θi at time t, defined as the fraction

of the arrival rate of vehicles entering θi from πi
that continue on to link πi+1, with γ0 = 1. for all
0 ≤ j ≤ i ≤ K.

C. Vehicle Mobility
We now define the vehicle dynamics. The position of a

vehicle e at absolute time t is x(e, t). If e is in the arterial
at t, x(e, t) is the distance from that vehicle to the origin
of the path at absolute time t. If e is not in the arterial
at t, we define x(e, t) = ζ , where ζ ̸∈ R, so both x ≤ ζ
and x > ζ are false for all x ∈ R. Consequently, the set
of possible vehicle positions A = [0,∑K

k=1 lk]∪{ζ}. Given
x∈A\{ζ}, define µ(x) = i if x∈ [∑i−1

k=1 lk,∑i
k=1 lk), in which

∑0
k=1 lk = 0.
Given an arbitrary vehicle e and absolute time t, let

v(e, t) denote the velocity of e at t. Given an arbitrary
vehicle e and absolute time t, define indicator Is(e, t), if e
is stationary at time t, Is(e, t) = 1; otherwise, Is(e, t) = 0.
With slight abuse of notation, let πµ(x) be the link with
xµ(x)−1 < x ≤ xµ(x).

Definition 1: Given the vehicle position x(e,τ), its
future position at t > τ is x(e, t)= x(e,τ)+

∫ t
τ v(e,s)ds until

it leaves the arterial after which x(e, t) = ζ .
The following describe vehicle mobility.

ιi time compensation defined as the time for a
vehicle to accelerate from vi to vi+1 minus the
time traveling the same distance with constant
speed vi+1;

τ†
i start-up lost time of θi defined as the travel time

needed for a vehicle accelerating from rest to vi
minus that for traveling with constant speed vi;

t†
i ιi−1 + li/vi, i.e., the time for a vehicle with free-

flow speed vi passing πi, given it entering πi with
speed vi−1.

In this study, both ιi and τ†
i are given. In addition, we

assume vehicles come out from the source with speed v1,
which implies ι0 = 0.

Assumption 1: Vehicle mobility satisfies the following.

i. Overtaking never occurs.
ii. When the front vehicle is in free-flow, its speed

is the nominal speed of the link it is in or it
accelerates/decelerates due to entering the next link.
In this state, it does not slow the vehicle behind.

iii. A vehicle e in some πi does not stop unless there is
a red signal in front of it, and all lanes from e to
the stop line of that signal are occupied by vehicles
with minimum head-to-head distance. □

D. Road Capacity
Let ri be the capacity of πi defined as the maximum

rate at which vehicles queued in πi can leave at θi. Since
the rate of vehicles in a queue in πi leaving πi is a
strictly increasing function of their speed, this rate is
ri when vehicles leave πi with a speed of vi. We use ri as
the maximum rate of vehicles traveling in πi to ensure
stability.

It is assumed that τ†
i is also the difference between the

actual time taken for mi vehicles to pass and the time
that would have been needed at rate ri, where mi is the
number of vehicles queuing in the front passing the stop
line of πi−1 before attaining rate ri.

Assumption 2: Let γ↑i denote given maximum of γi(t)
over all t. For all i ∈ [K − 1], capacity ri and maximum
turning ratio γ↑i satisfies ri+1 ≥ γ↑i ri. □

That implies roads do not reduce capacity too quickly.
Lemma 1: Suppose in πi there are mwi vehicles queued

in front of vehicle e at time tG when the green signal
starts. If e arrives at θ j, for some j > i, without slowing
down after it leaves πi, it arrives at θ j at

tG + τ†
i +

mwi

ri
+∑ j

k=i+1 t
†
k □ (1)

Definition 2: Consider a vehicle e that queues in πi at
time Gi when the green signal for that queue starts that
has mwi vehicles queuing in front, and e leaves πi in that
cycle and does not leave the arterial before it leaves π j,
for some j > i.

We say that e is delayed (slows down) in π j for the
first time after it leaves πi if it arrives at θ j later than the
time given by (1), but arrives at each θk with i < k < j at
the time computed by (1). Define the indicator function
Ih(e,(i, j)) = 1 if this occurs, and 0 otherwise. In addition,
we say that e is delayed (slows down) in πk if either e
stops in πk for the first time or it leaves πk−1 with speed
vk−1 and the time during which e travels in πk is longer
than t†

k . □

E. Traffic Signals
The optimal time for the green signal to start depends

on both how many vehicles are queuing in the next link
and when the green signal for that vehicle queue starts.
We present a new method for indexing signal cycles along
the considered path and use the cycle index as a proxy
for time.

A cycle at θi, i = 1, . . . ,K, is defined as the interval
between two consecutive times when θi turns green for
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the arterial path. Suppose that the green signals at θi are
started at t1

i , t
2
i , t

3
i · · · , then ci(u) := [tu

i , t
u+1
i ], u = 1,2, . . . ,

is a cycle. Let Ci denote the set of all cycles at θi. Let
|ci(u)|= tu+1

i − tu
i denote the length of cycle u of θi.

Requirement 1: For all i, the duration of the green
light for the path from πi to πi+1 in each cycle is longer
than the time needed for all vehicles in a queue in πi
to successfully leave πi, given no downstream spillback
occurring at θi. This requires that the traffic demand is
below the capacity. □

Next, to simplify the coordination of events at different
intersections, we present how to index cycles consistently
between intersections and use the cycle index as a proxy
for time. To serve this purpose, because vehicles keep on
turning off the arterial, we define a moving particle p
as one that does not leave the arterial until it reaches
intersection θK .

Requirement 2: Particle p does not take space and
does not pass the vehicle in front of it and is not passed
by any vehicles. Except that it keeps on traveling in the
arterial, it has the same mobility as a vehicle, as it starts
moving in πi and stops at a red light or at its place in
the queue. □

This cycle indexing is slightly involved and a coordi-
nation between the indexing of different intersections is
as follows.

Definition 3: Let pi(n) denote a particle that is in the
front of the queue when cycle n of θi starts. Then, a
cycle of θi+1 also has index n if pi(n) leaves πi+1 within
that cycle of θi+1. We use consecutive integers to index
the cycles. For the cycle of θi+1 having index n, pi(n)
does not leave πi+1 before the light of nth cycle of θi+1
turned green but leaves πi+1 before the light of nth cycle
of θi+1 turned red. We consider only signal policies under
which, for any given intersection, consecutive cycles can
be uniquely indexed by the consecutive integers. □

By indexing cycles of traffic lights, we specify which
cycle at an intersection should coordinate with which
other cycle at upstream or downstream intersections of
that intersection.

We model finite acceleration by adjusting the
“nominal” times that the signals change between red
and green to be slightly offset from the “actual” times.
Consider θi ∈ θ and a cycle indexed by n ∈ Z. The next
list describes symbols for specifying traffic lights.

G−
i (n) actual start time of green light, which is also the

start time of the corresponding cycle;
Gi(n) = G−

i (n)+ τ†
i , nominal time that the signal at

θi turns green, adjusted for acceleration time;
Ri(n) nominal time that the signal next turns red,

which is the absolute time in the nth cycle of θi
after which no vehicle could leave πi at nominal
speed vi and enter πi+1 before the n+1st cycle;

gi(n) green duration Ri(n)−Gi(n);
T traffic light policy (Gi(n),Ri(n)) : i = 1, . . . ,K,n ∈

Z] that specifies the (nominal) start times for
the signals along the path.

A vehicle e that is at the stop line of intersection θi
just when the light turns red (x(e,Ri(n)) = xi), is not
stopped by that red light, but no vehicle passes the stop
line as soon as the signal turns to red. From now on,
except in Section IV for simulation, we refer to nominal
start time when we say start time of green light.

Lemma 2: Given Gi(n), Ri+1(n − 1) < Gi(n) + t†
i+1 <

Ri+1(n). □
We consider the case that the traffic from upstream

of the corridor dominates the demand. Formally:
Requirement 3: Schedules under consideration satisfy

(∀n)(∀i ∈ [K −1])Ri+1(n)≤ Ri(n)+ t†
i+1 (2)

< G−
i+1(n+1). (3)

F. State Variables with Respect to Indexed Cycles
It is convenient to study the traffic dynamics relative

to the time specified by the cycle number, rather than the
absolute time; note that the nth cycle at a downstream
link may start after the n+1st cycle at an upstream link.
This involves considerable complexity but simplifies the
later analysis and the computation for controlling the
signals.

We now define state variables for cycles of consecutive
intersections over indices of cycles. The cycle number is a
proxy for time at each intersection. Later in Section III,
we present a dynamic equation for these state variables
for increasing cycle indices. We will show later that
these state variables are directly related to performance
metrics, including the average stopping frequencies of
those vehicles going through the arterial.

Definition 4: Given arbitrary time t, denote the set of
vehicles in πi at time t by Vi(t) = {e : xi−1 < x(e, t)≤ xi}.
Let fi(t), i ∈ [K]∪{0}, be the set of vehicles that enter
πi+1 not before absolute time t, via θi from side streets,
if i ∈ [K], or the origin, if i = 0. Let hi(t), i ∈ [K] be the
set of vehicles that leave πi and enter πi+1 not before
t and, since there is no π0, h0(·) ≡ /0. Suppose that the
second inequality in (2) of Requirement 3 is satisfied.

Let Gi(n) and G−
i (n) be as defined before Lemma 2,

and G0(n) and G−
0 (n) with G0(n) = G−

0 (n) be variables
that depend on G1(n) and the traffic situation in π1 in
cycle n. Define the set ωn

i (Gi(n),Gi−1(n)) of vehicles in
πi, i ∈ [K], that corresponds to cycle index n of θi, as

ωn
i (Gi(n),Gi−1(n))

=Vi(G−
i (n))\ [ fi−1(G−

i (n)− li/vi)⊔hi−1(G−
i−1(n))] (4)

where “⊔” denotes disjoint union. For i ∈ [K], the state
variable Nn

i that corresponds to πi ∈ π for cycle n is the
number of vehicles in ωn

i (Gi(n),Gi−1(n)), that is Nn
i =

|ωn
i (Gi(n),Gi−1(n))|.
Remark 1: For i ∈ [K], ωn

i (Gi(n),Gi−1(n)) is the set of
vehicles that are in πi at the start of the nth cycle of θi,
at absolute time G−

i (n), excluding
i. those entering πi via θi−1 not before G−

i (n)− li/vi,
which are considered as new arrivals during nth cycle
of θi, and
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ii. those leaving πi−1 not before G−
i−1(n), which are

already considered in the vehicle set of the nth cycle
of one of the upstream intersections. □

Those vehicles being excluded from ωn
i (Gi(n),Gi−1(n))

are considered in separate terms when the dynamic
equation is derived. Definition 4 prevents a given vehicle
from being counted multiple times at different links in
a given cycle.

The relevant state variables are:
Nn tuple [Nn

i : i ∈ [K]] of state variables of cycle n;
Nn

i (·) denotes the dependency of Nn
i on some inputs.

G. Traffic Demands
We consider the traffic demand on the considered path

changing over time (dynamic) and define per-cycle traffic
demands of different sources that correspond to state
variables defined in Definition 4 as follows.

Given traffic light policy T, the next list describe
symbols for representing sets of vehicles passing a given
location during given time intervals for each intersection
θi, i ∈ [K]. Let t1 and t2 with t1 < t2 denote two arbitrary
absolute time instances and I = [t1, t2) be a time interval.

εi(I) set of vehicles from side streets (or the source if
i = 1) entering πi via θi−1 during [t1, t2);

κi(I) set of vehicles leaving πi during [t1, t2) including
those leaving the arterial;

η−
i (I) set of vehicles going from πi to πi+1 in [t1, t2);

σi(I) set of vehicles that leave πi−1 and either arrive
at θi in [t1, t2) without halting in πi or would
arrive at θi during [t1, t2), if they did not stop in
πi;

ηi(I) σi+1(I − t†
i+1).

Remark 2: For I = [t1, t2) with t1 ≥ t2,
• εi(I), κi(I), η−

i (I), σi(I), and ηi−1(I) are all /0.
• ηi is introduced to account for start-up lost time

while σi is introduced to specify ηi. □
From now on, we use the following shorthand.

εn
i := εi([G−

i (n),G
−
i (n+1)))

εn
i,− := εi([G−

i (n),G
−
i (n+1))− li/vi)

κn
i := κi([G−

i (n),G
−
i (n+1)))

(η−
i )n := η−

i ([G−
i (n),G

−
i (n+1)))

ηn
i := ηi([Gi(n),Gi(n+1)))

(η−
i,↓)

n := η−
i ([G−

i (n),Gi(n)+gi(n)))

ηn
i,↓ := ηi([Gi(n),Gi(n)+gi(n))).

Lemma 3 follows from Lemma 1 and Definition 1.
Lemma 3: Consider a particle at the front on the

queue in πi at G−
i (n) that leaves πi at G−

i (n) and arrives
at θi+1. If it does not stop in between, then it arrives at
θi+1 at Gi(n)+ t†

i+1 (note Gi(n), not G−
i (n)), and there

exists a small τ ∈ (0,gi(n)) such that
i. a particle leaving πi at some t ∈ [Gi(n)+τ,Ri(n)) will

arrive at θi+1 at t + t†
i+1 and

ii. η−
i−1([G

−
i−1(n), t)) = σi([Gi−1(n), t) + t†

i ) =
ηi−1([Gi−1(n), t)). □

Definition 5: Given policy T, the demand of θ over
cycle n is described by tuple [φn

i (Gi(n)) : i ∈ [K]], whose
element

φn
i (Gi(n)) =

{
|εn

1,−| if i = 1
|ηn

i−1,↓|+ |εn
i,−| if i = [K]\{1}

(5)

where ηn
i−1,↓ and εn

i,− are sets of vehicles defined before.
□

Suppose the queue in π1 at R1(n−1) is empty. Then,
to empty the queue again at R1(n), we set R1(n) to satisfy

ε1([R1(n−1),R1(n))− l1
v1
)≤ r1(R1(n)−G1(n)) (6)

If no downstream spillback occurs, (6) is sufficient for
Requirement 1 for π1 to be satisfied.

The following simplifies analysis, but scarcely affects
performance.

Assumption 3: For all i ∈ [K], no vehicle from outside
can enter the arterial via θi when the signal at θi is green.
□

III. Dynamic Equations
We now present the dynamic equations for the forego-

ing model and then prove that, under a fixed demand,
the traffic light policy under which platoons of individual
queues in the consecutive links concatenate optimally re-
duces the frequency of vehicles slowing down or stopping.

A. Dynamic Equations
By Definition 4, Nn

i is the number of vehicles that
would arrive at θi by G−

i (n) if they did not halt, but
that actually stay in the queue of πi at G−

i (n) due to a
red light.

Theorem 1: Given T, the dynamics of the state vari-
ables Nn by Definition 4 satisfy, for all i > 1,

Nn+1
1 =|ε1([R1(n),G−

1 (n+1))− l1/v1)| (7)
Nn+1

i =Nn
i + |εn

i,−|+ |ηn
i−1,↓|− |κn

i | □ (8)
B. Good Points in Time for Starting Green Signals

We want to have a small number of vehicles slowing
down, defined in Definition 2, in each link in each cycle.

We now introduce the main decision variable of this
paper, G , and define a threshold τn

i (·) that will be shown
to separate departure times from πi that cause vehicles
to slowing down and those that do not.

Definition 6: Given i ∈ [K] and functions ηi−1 and εi,
fix Gi−1(n). Let decision variable Gi(n) be the nominal
start time of a green signal. Define the earliest non-
delaying time τn

i (Gi(n)) as

τn
i (Gi(n)) = min{t ∈ [Gi(n),Gi(n)+gi) : Nn

i (Gi(n))

+ |εi([G
−
i (n)− li

vi
, t − li

vi
))|+ |ηi−1([Gi−1(n), t − t†

i ))|

≤ ri(t −Gi(n))} □ (9)
The term “earliest non-delaying” comes from the

following lemma.
Lemma 4: Given Gi(n) and τn

i (Gi(n)) from Defini-
tion 6, for all vehicles leaving πi+1 during [G−

i (n),Gi(n)+
gi), those leaving πi+1 during I = [G−

i (n),τn
i (Gi(n))) are
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delayed in πi+1 and no others are delayed in πi+1. Cor-
respondingly, there are ri(τn

i (Gi(n))−Gi(n)) vehicles that
are delayed in πi that leave πi during [G−

i (n),Gi(n)+gi).
□

Vehicle platooning helps to use transportation net-
works more efficiently. The stability of platooning on
a freeway under varying inter-vehicle communication
settings has been well studied [18], [19]. Instead, we
control the start times of green signals of consecutive
intersections so that a lasting platoon can be formed by
concatenating platoons of individual queues in consecu-
tive links without inter-vehicle communication.

Definition 7: We say that a time G∗−
i (n) is a prime

point in time for starting the green signal of nth cycle of
θi if it satisfies

Nn
i (G

∗
i (n))+ |εi([G∗−

i (n)− li
vi
,G−

i−1(n)))|

= [(Gi−1(n)+ t†
i )−G∗

i (n)]ri (10)

where Nn
i (G

∗
i (n)) is the state variable of cycle n of θi given

that the corresponding green signal starts at G∗−
i (n). □

Given a traffic path with signals turning green at prime
points, the vehicle at the head of a platoon discharged
from a link will catch up to a vehicle at the tail of a
platoon formed by vehicles slowed in the downstream
link at the exit of that downstream link. This way, a
platoon passing through consecutive intersections can
be formed by concatenating smaller platoons of vehicles
queued multiple links.

Next, we show that starting the green time at a
prime point, Gi(n) = G∗

i (n), minimizes ψn
i , the number

of vehicles that are slowed down in a cycle, except in
two special cases.

Theorem 2: Given i∈ [K] and functions ηi−1 and εi, fix
Gi−1(n). Recall that G is the nominal start time of a green
signal. Fix |κn

i (Gi(n))| ≡ |κi(n)| and gi(n) independent of
Gi(n). Given interval I, let αi(I) be the number of vehicles
arriving at θi during I if they travel free-flow in πi. Let
ψn

i (|κi(n)|,Gi(n)) be the number of vehicles that leave
πi during nth cycle of θi and are delayed in πi when
the nominal green start time is (decision variable) Gi(n).
Let G∗−

i (n) be the prime point of Definition 7, and u =
Gi(n)−G∗

i (n). Then ψn
i (|κi(n)|,G∗

i (n))≤ ψn
i (|κi(n)|,Gi(n))

if and only if either u = 0 or (αi(I1) − αi(I2))u > 0
where I1 = [[t0, t0 +u)), where [ [t1, t2)) denotes the interval
[min(t1, t2),max(t1, t2)) and t0 = τn

i (G
∗
i (n)) is the earliest

non-delaying time for G∗(n), and I2 = [[G∗
i (n),Gi(n)+gi)).

Then ψn
i (|κi(n)|,G∗

i (n)) ≤ ψn
i (|κi(n)|,Gi(n)), for prime

point G∗−
i (n) of Definition 7, iff the following implication

holds: If Gi(n) = G∗
i (n)+u for some u ̸= 0, then (αi(I1)−

αi(I2))u > 0 where I1 = [[t0, t0 +u)), where t0 = τn
i (G

∗
i (n)),

and I2 = [[G∗
i (n),Gi(n) + gi)), and [ [t1, t2)) denotes the

interval [min(t1, t2),max(t1, t2)). □
The condition with u > 0 says the density of traffic flow
from πi−1 gradually decreases; u < 0 says the density of
traffic from streets crossing θi−1 is lower than that of the
traffic from πi−1.

IV. Simulations
To numerically evaluate techniques, we built a simula-

tion testbed using PTV Vissim for a region in Hangzhou,
China, including three arterial roads: Yuhangtang Rd
(9 km, 12 intersections), Wenyi West Rd (11 km, 17), and
Wener West Rd (9.5 km, 20), on the east side beginning
at the overpasses of Changshen Expressway.

We simulated traffic of all streets in the area, and
traffic demand was controlled by adjusting the actual
demand relative to capacity. The cycle time and green
time of the most upstream intersection of each arterial
road are 100 seconds and 30 second, respectively. We
divide each simulation into warm-up, peak, and cool-
down. The 2000 second warm-up stage initializes the
traffic, with up to 70% of the per-cycle capacity. In the
peak stage, the load varies between 80% and 90% for
4000 s. The 1000 s cool-down has 70% load.

The compared control protocols are as follows. The
new developed progressive movement control (PMC)
and progressive movement control with responsive signal
duration (PMC-RSD) in which the green light of the
forward movement at each intersection starts at the
prime point of Definition 7, are used to against the
conventional fixed time control (FTC) and green-wave
control (GWC). For all protocols used in the comparison,
the traffic demands and their variations throughout the
entire simulation process do not vary from one protocol
to another. Moreover, we keep parameters other than
the starting points of green light among protocols FTC,
GMC, and PMC to be the same, while in PMC-RSD, an
additional difference is that the duration of green lights
could be slightly prolonged when the traffic buildups due
to fluctuations of demand are detected.

Consider Yuhangtang Rd. Fig. 1 shows that at the
later stage of the simulations using PMC vehicles stop
on average around 20 times and PMC-RSD around 12
times. Under FTC and GWC this fluctuates around 40
times. Fig. 2 shows that the average vehicle delays of
PMC and PMC-RSD are respectively about two thirds
and one third of the corresponding delays of both FTC
and GWC. Figures 3 and 4 show the similar comparisons
for Wener Rd.

Due to space limitations, other details of the sim-
ulations have been omitted; they are available from
the authors. To understand the benefits, it is useful
to view the videos of 3D-simulations of three roads
at https://youtu.be/ePqFQOk6fVc, https://youtu.be/
JYzPXJwwJuU, and https://youtu.be/Vz29u3mGcfo.
These videos form part of the results section. In each
of these, driver-view simulations of FTC, GWC, PMC,
and PMC-RSD that appear in the same frame in this
order are presented, followed sequentially by aerial views
of simulations of protocols in the same order.

V. Conclusion
A new paradigm for representing traffic dynamics has

been presented, along with a new protocol to coordinate
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Fig. 1. Stop frequencies of vehicles traveling along Yuhangtang Rd.
for four control mechanisms: fixed-time control (FTC), green-wave
control (GWT), progressive movement control (PMC, proposed),
and progressive movement control with responsive signal duration
(PMC-RSD, proposed).

Fig. 2. Delays of vehicles traveling along Yuhangtang Rd. for four
control mechanisms. For Legend, see Fig. 1.

traffic lights using that paradigm to structure progressive
movements along an arterial road. The protocol actively
concatenates vehicle platoons starting at multiple links
to form a single contiguous platoon to pass downstream
junctions. This was proved to minimize the number of
times vehicles stop, and simulations show the significant
improvements achieved over greenwave under near sat-
urated traffic demand.
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