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Abstract— In this paper we present a novel approach to
address the lane change maneuver for Autonomous Vehicles
(AVs). We frame this challenge as a parametric Model Pre-
dictive Control (MPC) problem, recognizing that the successful
execution of lane changes requires two critical components: the
decision on when to initiate these maneuvers and the actual
generation of the maneuvers. Unlike existing approaches that
often decouple decision-making and planning tasks, leading
to performance bottlenecks and conservative solutions, our
approach adopts a hybrid perspective. Specifically, we tackle
the problem of capturing the lane change decision-making
through an upper-level policy search, which, in turn, guides
an MPC policy in generating the maneuver. The proposed
approach leverages a weighted maximum likelihood technique
for policy learning, effectively optimizing the lane change
strategy. Furthermore, we incorporate self-supervised learning
techniques to adapt to dynamic and online scenarios, ensuring
that the AV can handle unexpected changes in its environment.
We provide numerical results demonstrating the effectiveness of
the proposed approach, highlighting its potential for improving
AV maneuvering in dynamic environments.

Index Terms— MPC, reinforcement learning, autonomous
driving.

I. INTRODUCTION

Autonomous Vehicles (AVs) play a crucial role in the
future of transportation, offering the potential to enhance
safety and efficiency. Typically, in order to navigate in com-
plex environments, AVs need to execute various maneuvers,
including lane changes [1], overtaking [2], [3], and merging
maneuvers [4], [5]. These tasks require advanced algorithms
that enable an AV to perceive its surroundings, reason in a
timely manner (to reach human-level reliability) and execute
maneuvers safely. Lane change, in particular, has gained
significant research attention, evident in a growing body of
literature (see, e.g. [6]–[8]). However, successfully executing
a lane change is challenging due to the need to generate
collision-free trajectories and the complex decision of when
to initiate the maneuver. Typical approaches to address this
challenge have often decoupled decision-making and plan-
ning tasks. The most common solution employs rule-based
lane change models for decision-making and then integrates
the decision logic into a trajectory planning module.
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In rule-based models, AVs determine lane change deci-
sions based on predefined rules, such as lane preference or
the feasibility of the maneuver (see, e.g., [9]). However, they
may lack accuracy and fail to capture all relevant influencing
factors when applied only through threshold-based condi-
tions to assess driving intentions. Other approaches address
the problem of capturing the lane change decision as a
classification problem. In [10], a data-driven approach is used
to “mimic” human driver behavior during lane changes. Real-
world data are collected in typical lane change scenarios, and
an SVM classifier is employed to predict when a lane change
should be initiated based on a specific driver’s preferences.
However, feature selection and transformation are required
to achieve good performance.

Once an AV has determined its driving intention, gen-
erating a safe trajectory becomes crucial. Among various
control techniques, Model Predictive Control (MPC) has
gained popularity due to its ability to handle nonlinear
dynamics and state-input constraints, see e.g. [11], [12]. For
example, in [13], an MPC-based lane change algorithm is
proposed to integrate path planning and path following layers
with a utility function to automatically determine the target
lane. However, the performance of the MPC in closed-loop
operation depends on the design choices of the heuristic
decision function, leading to approximations that can result
in conservative solutions. On the other hand, Reinforcement
Learning (RL), specifically policy search approaches [14],
has recently emerged as an innovative method for learning
driving policies, as seen in e.g.and [15]. RL involves training
a policy through iterative trial and error to maximize a
performance function, referred to as the “return”, directly
translating sensor inputs into actuation commands for the
AV. However, it is important to note that RL-based methods
typically require large amounts of training data to achieve
satisfactory results and may struggle to adapt to unseen
situations. Another major concern is the limited safety and
stability guarantees provided by RL methods, especially
when used in the context of AVs.

In this paper, we adopt a hybrid perspective: we assume
that a perception system provides information about the
future intentions of other moving vehicles, and we focus on
the task of deciding and generating a lane change maneuver
through an upper-level policy search within a parametric
MPC framework. Various approaches have been explored
to combine learning and control in autonomous systems.
In [16], a sampling-based MPC approach was developed
for AV, with a focus on obstacle avoidance. However, a
notable challenge arises from the need to generate a large
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amount of samples in real-time, often accomplished through
computationally expensive parallel processing. In [17], an
approach was introduced that integrates machine learning
and MPC within an imitation learning framework, applied
to lane-keeping maneuvers. Nonetheless, this method in-
volves training deep neural network policies using supervised
learning, which relies on ground-truth labels and may have
limitations in certain scenarios.

The contributions of this paper are as follows. First,
we propose a novel approach to address the lane change
problem as a parametric model predictive control problem.
The parameter within this framework determines whether to
remain in the current lane or transition to an adjacent one.
Second, we address the challenge of finding the parameter
to execute the lane change maneuver by formulating it as a
probabilistic policy search problem. Our approach employs
a weighted maximum likelihood method for learning the
policy parameter, offering a closed-form solution for policy
updates. Third, inspired by the work outlined in [18], [19],
which focused on maneuvering a quadrotor through the
center of a rapidly moving gate, we employ a self-supervised
learning approach. This enables to generate the parameter
online based on observations of the surrounding environment.
Finally, through numerical simulations, we demonstrate the
effectiveness of our proposed approach and discuss interest-
ing features related to the generated maneuvers.

The rest of the paper is organized as follows. In Section II,
we describe the lane change problem and formulate the
parametic MPC framework. In Section III, we describe the
strategy for effectively solving the lane change problem.
This strategy is evaluated through numerical computations
and illustrated in Section IV. The conclusions are given in
Section V.

II. PROBLEM FORMULATION

Let us consider the scenario depicted in Fig. 1. The road
is composed of two parallel lanes, called the ego lane and
the target lane. The AV (from now on, referred as the
ego-vehicle) is traveling along the ego lane, while a front
vehicle, indicated as the FV , is moving on the same lane.
We assume that the FV is traveling slower than the ego-
vehicle, which motivates a lane change maneuver. In such
a scenario, we are interested in generating a lane change
maneuver by designing an MPC with an upper-level decision
variable. This variable selects the “right time” to execute the
maneuver while avoiding the lateral vehicle, indicated as the
LV , moving on the target lane.

Fig. 1: 2D representation of lane change scenario.

A. Ego-Vehicle Motion

In the given scenario, we describe the 2D motion of a
car-like vehicle with the following equations:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ ,

v̇ = a ,

(1)

where (x, y) represent the longitudinal and lateral coordi-
nates in the inertial frame, ψ is the heading angle, and v is the
velocity. Control over the ego-vehicle’s motion is achieved
by manipulating the curvature κ, where κ = tan δ/L (with δ
as the steering angle and L denoting the wheelbase), and the
acceleration a. This simplified model is particularly suitable
for scenarios with relatively low acceleration inputs and
closely approximates the behavior of more complex dynamic
models, as detailed in [20]. In the next section, we introduce
a new coordinate system defined by the longitudinal and
lateral coordinates (s, ey). Here, s represents the position
along the center-line of the ego lane, while ey indicates the
displacement transverse to this center-line, see in Fig. 2. This
coordinate system is particularly useful for lane changes,
where it is more intuitive to consider the lateral distance from
the desired lane position rather than Cartesian coordinates.

B. Longitudinal and Transverse Coordinates

We assume that the ego lane has a reasonably smooth
(at least C2) arc-length parametrized center-line, denoted
as (x̄(s), ȳ(s)). The course heading ψ̄(s) and the curvature
κ̄cl(s) are related through differentiation:

dx̄(s)

ds
= cos ψ̄(s) ,

dȳ(s)

ds
= sin ψ̄(s) ,

dψ̄(s)

ds
= κ̄cl(s) .

(2)

Fig. 2: Local coordinates around the ego lane. The bold
triangle indicates the ego vehicle. The solid lines indicate
the center-line of the ego lane.
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Using the arc-length parametrization, the ego-vehicle’s coor-
dinates can be expressed as:[

x
y

]
=

[
x̄(s)
ȳ(s)

]
+Rz(ψ̄(s))

[
0
ey

]
, (3)

where

Rz(ψ̄(s)) =

[
cos ψ̄(s) − sin ψ̄(s)
sin ψ̄(s) cos ψ̄(s)

]
is the rotation matrix transforming vectors from the velocity
frame into the inertial frame.

Next, we describe the ego-vehicle position with respect to
the (s, ey) coordinates. Following the calculations in [21],
see also [22], we differentiate (3) with respect to time. By
employing equations (1) and (2), we obtain:

ṡ =
v cos eψ

1− eyκ̄cl(s)
,

ėy = v sin eψ ,

ėψ = vκ− κ̄cl(s)ṡ ,
v̇ = a ,

(4)

where eψ = ψ − ψ̄ represents the local heading error. In
equation (4) the state and the control vector are denotes as
x = [s, ey, eψ, v] and u = [κ, a], respectively.

Remark II.1: The inverse mapping (s, ey) 7→ (x, y) is
well-defined when the ego-vehicle position lies within a
tube around the center-line of the ego lane, specifically for
1− eyκ̄cl(s) > 0.

C. Model Predictive Control Formulation

In order to address the lane change problem, we set up
a parametric nonlinear MPC problem. In this section, we
define state-input constraints and formulate the cost function
for optimization.

First, we define constraints. The ego-vehicle is required
to satisfy the road boundaries, which, in the new coordinate
system, take a simple form:

eymin
≤ ey ≤ eymax

. (5)

Additionally, we account for the operational limits of the
kinematics model and the passenger comfort by imposing
state and input constraints on (4) as follows. The velocity is
bounded by two constants, i.e.,

vmin ≤ v ≤ vmax , (6)

while the longitudinal acceleration is bounded as follows,

amin ≤ a ≤ amax . (7)

Moreover, in order to take into account the limited wheel
steer angle, the curvature is bounded in module as follows,

|κ| ≤ κmax . (8)

We design the cost function J as follows. The ego-
vehicle is supposed to travel on the ego lane. In order to
execute the lane change maneuver, it needs to minimize the
distance from the target lane. Hence, the ego-vehicle needs
to stop following the ego lane and start following the target

lane. Thus, we design the cost function as a sum of three
components as follows:

J(x,u) = Jel(x,u) + Jtl(x,u) + Ju(u) , (9)

where Jel penalizes deviance from the ego lane and a desired
velocity, vel:

Jel = γ(θ)(q1s
2 + q2e

2
y + q3(v − vel)2) ;

Jtl penalizes the deviance from the target lane and its
assigned velocity vtl:

Jtl = (1− γ(θ))(q4s2 + q5(ey − etly )2 + q6(v − vtl)2) ;

and Ju penalizes the control effort:

Ju = r1κ
2 + r2a

2 .

The time-varying switch term γ(θ) is defined as:

γ(θ) =
1

1 + exp(α(t− θ))
,

where α ∈ R+ controls the temporal spread, and θ controls
the transition between following the ego lane and following
the target lane. For t ≤ θ, γ ≈ 0, indicating the ego-vehicle
should follow the ego lane, while for t > θ, γ ≈ 1, which
implies following the target lane.

We are ready to formulate the MPCθ(x,u) problem:

min
x(·) u(·)

∫ tf

0

J(x(τ),u(τ), θ) dτ +m(x(tf ))

s.t. ẋ(t) = f(x(t),u(t)) , x(0) = x0
h(x(t),u(t)) ≤ 0 ,

(10)

where tf > 0 is the time horizon, ẋ = f(x,u) represents
the nonlinear dynamics (4), h(x,u) denotes state and input
constraints (5), (6), (7), (8), J(x,u, θ) is the stage cost as
in (9), and m(x(sf )) minimizes the square distance between
the ego-vehicle state and the desired end state x(tf ).

It is important to highlight that a key requirement to
solve the problem is to determine optimal θ in advance. We
determine θ through a probabilistic policy search approach,
which will be detailed in the following section.

III. UPPER-LEVEL POLICY LEARNING

We formalize the problem of selecting the parameter θ of
the MPCθ(x,u) problem, (10), by introducing the concept
of learning an upper-level policy πω(θ). This selection
process can be captured by modeling πω(θ) as a Gaussian
distribution:

πω(θ) = N (θ|ω) ,

where ω =
[
µ, σ2

]
represent the mean µ and the variance

σ2 of the distribution. In order to address the upper-level
policy search problem, we approach it as a probabilistic
inference problem, see Fig. 3. To this end, we introduce the
“return event” as the observable variable. The probability
of observing the return event is expressed as p(R = 1|θ) =
p(R|θ). Our objective is to find the optimal ω that maximizes
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Fig. 3: Graphical representation of upper-lever policy search
as a probabilistic inference problem.

the probability of this return event. In other words, we aim
to solve the following maximum likelihood problem:

max
ω

log pω(R) = log

∫
θ

p(R|θ)πω(θ) dθ . (11)

We solve (11) by using the Monte Carlo Expectation Maxi-
mization (MC-EM) algorithm [23], a well-known technique
for finding maximum likelihood solutions. Before intro-
ducing the algorithm, we need to define the return R by
specifying the different contributions that concur to define
the task of performing a lane change when necessary.

First, the ego-vehicle needs to avoid collision with obsta-
cles. In order to penalize collisions, we employ a trajectory
evaluation mechanism in which we assign negative rewards
to collision states. This evaluation is expressed as follows:

Nc(x) =

{
−p1, if c(x, xV ) > 0, V ∈ {FV,LV }
0, otherwise

, (12)

where p1 is a positive constant that weighs the penalty. By
assigning negative values to collision states, the ego-vehicle
is effectively discouraged from entering such states and
encouraged to prioritize safe trajectories that avoid collisions.
In (12), the function c(x, xV ) evaluates whether a collision
occurs between the ego-vehicle and the obstacles. This func-
tion is defined by considering an ellipse centered at the axes
of the obstacle relative to the new set of coordinates (s, ey).
Specifically, given the positions and future predictions of the
obstacles, xV = [sV , eVy ], we evaluate the collision avoidance
as follows,

c(x, xVo ) = −1 +
(
s− sV

s̄

)2

+

(
ey − eVy
ēy

)2

, (13)

where s̄ and ēy represents the longitudinal and lateral safety
distance, respectively.

Second, in order to discourage unnecessary lane changes,
we introduce a contribution penalizing trajectories in which
a change in the lateral coordinate ey occurs. The formulation
of this contribution is presented below:

Nlc(x) =

{
−p2, if |ey(t)− ey(t+ 1)| > 0

0, otherwise
, (14)

where p2 is a positive constant.
Third, in order to discourage trajectories that anticipate

changing the lane to avoid the FL, we penalize lateral
coordinates ey that deviate from the ego lane center-line.

The lateral displacement penalty is defined as:

Ney (x) =

{
−p3, if ey < 0

0, otherwise
, (15)

where p3 is a positive constant.
Finally, we can formulate our return as the sum of

(12),(14),(15), resulting in the following expression:

R(x) =

∫ tf

0

(
Nc(x) +Nlc(x) +Ney (x)

)
dt . (16)

Maximizing this return guides the upper-level policy πω(θ)
to select parameter θ that enable the ego-vehicle to success-
fully avoid the FV and the LV by performing lane changes
when necessary.

We are now ready to describe the MC-EM algorithm. Sim-
ilar to the standard EM algorithm, we begin by decomposing
(11) into two terms with the introduction of a variational
distribution q(θ):

log pω(R) = Lω(q(θ)) +KL(q(θ)||πω(θ)) ,

where with KL(·) we denote the Kullback-Leibler diver-
gence. Since the KL-divergence is always larger or equal
to zero, the term Lω(q(θ)) is a lower bound of the log
marginal-likelihood log pω(R). The two update steps in EM
correspond to maximizing the lower bound L and minimizing
the KL-divergence term. In the MC version of EM algorithm
we use a sample-based approximation for the variational
distribution q(θ), i.e., in the E-step, we minimizes the KL-
divergence by using samples

θi ∼ π(θi|ωk) .

Then, these samples θi are used in the M-step to estimate
the expectation of the complete data log-likelihood by max-
imizing the following objective:

ωk+1 = argmax
ω

∑
i

wi log π(θi|ωk) , (17)

where wi = f(Ri) are the wights. In order to transform
the return R into an improper probability distribution, we
employ the exponential transformation [24]:

wi = exp(βk(Ri −maxRk)) .

The parameter βk serves as the “temperature” of the distri-
bution and can be determined using the following heuristic
[25]:

βk =
β0

maxRk −minRk
.

It is worth noting that higher values of β lead to more
greedy policy updates. The MC-EM algorithm iteratively
refines the upper-level policy, until convergence is achieved.
Convergence is typically indicated when parameter estimates
stabilize. The MC-EM algorithm has a closed-form solution
for a Gaussian policy. Algorithm 1 gives a pseudocode
description of the strategy.
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Algorithm 1 Upper-level Policy Learning

Input: initial policy params ω0,
initial temperature param β0,
initial traj (x0,u0), k = 0

repeat
for i = 1 to I do

Sample θi from π(θi|ωk)
Solve (x,u)i = MPCθi(x0,u0)
Evaluate Ri = R(xi)

end for
Construct Rk = [R1, ..., RI ]
Calculate weights:
wi = exp(βk(Ri −maxRk)), i = 1 to I ▷ E-step
Maximize objective:
ωk+1 ← argmaxω

∑
i wi log π(θi|ωk) ▷ M-step

Update temperature: βk+1 ← β0

maxRk−minRk

until Convergence criteria met
Output: Optimized policy parameters ω∗

A. Deep Upper-Level Policy

In order to address dynamic scenarios where the environ-
ment rapidly changes, we combine the MC-EM algorithm
with a self-supervised learning approach to adaptively select
the parameter θ based on the environment’s observation.

First, we characterize the observation vector. At any given
time t, the observation vector, ot, captures relevant informa-
tion about the ego-vehicle and surrounding obstacles. Specif-
ically, it includes the ego-vehicle’s position and velocity,
oegot = [s, ey, eψ, v]t, as well as the positions and velocities
of obstacles, oVt = [s, ey, eψ, v]

V
t . Formally, the observation

ot is defined as:

ot = [oegot − oFVt , oegot − oLVt ] .

Second, we collect a dataset D by simulating various
scenarios as follows. Each scenario begins with random
initial states for the ego-vehicle and the two obstacles. This
randomization is crucial as it allows us to explore a wide
range of possible situations. Then, we record the observation
vector ot. In order to identify the optimal parameter θ∗t for
executing a lane change, we employ the MC-EM algorithm.
With the optimal parameter θ∗t in hand, we solve (10),
yielding the first optimal control input, applied to the ego-
vehicle. After executing the first optimal control input, we
record the next observation ot+1. We repeat this process
until either the scenario reaches its maximum simulation
steps or no collision-free lane change maneuver is found.
This systematic approach constructs our dataset D, which
includes observations and corresponding optimal parameters
(ot, θ∗t ) from different scenarios.

Third, we use dataset D to train a general-purpose
neural network, denoted as fϕ, with ϕ representing the
network’s parameters. We optimize ϕ using the following
Mean Squared Error (MSE) loss function:

argmin
ϕ
|fϕ(ot)− θ∗t |2 ,

which minimizes the difference between the neural network’s
predictions, fϕ(ot), and the optimal parameter θ∗t for a given
observation ot.

Finally, once the neural network is trained, it can be
employed online in the inference phase to handle unseen
situations. Given the current observations, the model pre-
dicts the optimal parameter to execute a lane change. It is
important to note that the MPC control policy (10), used
to construct dataset D, do not take into account explicitly
avoidance constraints. As a consequence, the neural network
is trained to provide an upper-level parameter θ even when
generating a collision-free lane change is impossible. In order
to ensure collision-free maneuvers in the inference phase, the
(10) is augmented with avoidance constraints (13), providing
safety if the lane change maneuver cannot be executed.

IV. NUMERICAL COMPUTATIONS

In this section, we present numerical computations that
demonstrate the effectiveness of the proposed approach.

First, we consider a setup where all vehicles involved start
from fixed initial conditions. Given the vehicle’s dynamic,
we want to plan a trajectory over a fixed time horizon,
such that the planned lane-change maneuver is collision-free.
To achieve this, we leverage CasADi, an open-source tool
for nonlinear optimization and algorithm differentiation, for
implementing problem (10). We employ a discretization step
of dt = 0.1 s and a planning horizon tf = 10 s.

Second, we incorporate observation vectors and train an
upper-level policy capable of adaptively generating a lane
change maneuver when feasible. We use a simulation time
of ts = 20 s and apply the same planning settings as in the
first setup.

The constraint parameters of problem (10) are based on
[20] and on practical driving experience: vmin = 0 m/s,
vmax = 19.5 m/s, amin = −2.0 m/s2, amax = 1.5 m/s2,
κmax = 0.02 m−1, eymin

= −3.75 m, eymax
= 1.25 m,

s̄ = 10 m and ēy = 0.5 m.

A. Upper-level Policy for Lane Change Trajectory Genera-
tion

The ego-vehicle’s initial position is set at (x0, y0) =
(80, 0), with heading angle ψ0 = 0, and a velocity of
v0 = 35 km/h (i.e., almost 9.7 m/s). The FV obsta-
cle starts at the position (xFV (0), yFV (0)) = (130, 0)
and moves along the ego lane at a constant velocity of
vFV = 11 km/h (3 m/s), while the LV obstacle starts
at position (xLV (0), yLV (0)) = (37, 2.5) and travels along
the target lane with at a constant velocity of vLV =
30 km/h (8.3 m/s).

In order to provide an example of finding the parameter
θ using the MC-EM algorithm, let us consider the learning
progress of the upper-level policy πω using a fixed value of
β = 3, see Fig. 4. As discussed before, the algorithm starts
by randomly generating a list of I samples of θi. In the
example, I is set to 20. Each θi is drawn from the upper-level
policy πω(θ), which is modeled as Gaussian distribution with
parameters ω = (µ, σ2). In the first iteration, see Fig. 4b,
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Fig. 4: Learning progress of the upper-level policy. The
top sub-figure depicts the return curve with a temperature
parameter β = 3.0, while the bottom sub-figures illustrate the
policy distribution at various iteration stages (0, 3, 6, and 9).

the variance σ2 is set to a large value. This high variance
encourages a wide exploration of the θ domain. Then, a
set of predicted trajectories (x,u) are obtained by solving
I optimization problems (10). These trajectories represent
different potential lane change maneuvers based on the sam-
pled values of θi. The quality of these sampled trajectories
is evaluated using the return (16). Next, the parameters ω
(mean and variance) are updated solving (17), see Fig 4c
and 4d. This update process is repeated until the return no
longer converges, see Fig. 4a.Once convergence is achieved,
the policy can be represented by the bell-shaped distribution
as the one shown in Fig. 4e (in this case, convergence is
achieved after 9 iterations).

The optimal trajectory is depicted in Fig. 5. Next, we
highlight some interesting features of the generated trajec-
tory. At first glance, we can identify the planning of a
lane change maneuver. The ego-vehicle trajectory transitions
from its current lane to the target lane, in order to avoid
the FV obstacle, which is moving at a slower velocity.
At the same time, it avoids a potential collision with the
LV , which is travelling on the target lane (it is worth
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Fig. 5: Lane change maneuver. The ego-vehicle’s optimal
maneuver (solid green line) is shown, while the maneuvers
of the FV and the LV are depicted in dash-dotted blue and
black lines, respectively. The optimal switching parameter
θ∗ = 6.7 s is highlighted by the vertical orange line.

noting that the collision avoidance constraint is always
satisfied, see Fig. 5e). Next, we highlight three distinct
phases. Initially, at a considerable distance from the FV ,
the ego-vehicle maintains alignment with its current lane’s
center-line, aiming to minimize the cost function Jel. During
this phase, lateral displacement from the center-line remains
nearly zero (see Fig. 5c). Then, at around t = 5.7 s, the
cost function Jtl is minimized. During this phase, the ego-
vehicle steers by applying a negative curvature, see Fig. 5d,
and moves towards the center-line of the target lane, see
Fig. 5a. Finally, the ego-vehicle approaches the center-line
of the target lane and proceeds along it, thus confirming the
successful execution of the lane change. We highlight that
θ, depicted by the vertical line in Fig. 5b, does not denote
the timing for executing a lane change. Instead, it serves as
a critical time parameter governing the convex combination
of the ego and target cost function.
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B. Deep Upper-level Policy for Online Scenarios

Next, we want to find an upper-level policy that enables to
select online the parameter for executing a lane change based
on the environment observations. To do this, we leverage
a combination of MC-EM algorithm and self-supervised
learning technique as follows.

In order to construct D, we collect 100K samples of
(ot, θ

∗
t ) pairs. Then, we use D to train a MultiLayer Percep-

tron (MLP) model. We employ TensorFlow [26], a versatile
machine learning framework, to implement the MLP. We
chose an architecture that consists of 32 hidden layers,
each comprising 32 units. Rectified Linear Unit (ReLU)
nonlinearities are applied to these layers to enhance the
model’s capacity to learn and generalize from the data.
Finally, ADAM optimization is then used to update the
weights during the backpropagation phase.

We encourage the reader to refer to the video attachment1

related to the execution of 20 random maneuvers. Next, we
highlight some interesting features related to the first two
maneuvers of the attached video.

In the first example, depicted in Fig. 6a, we can identify
two consecutive lane change maneuvers. The scenario begins
with both the ego-vehicle and the FV positioned on the same
lane, as illustrated in Fig. 6b. However, there is a significant
difference in their velocities: the ego-vehicle and the FV are
traveling at 9.7m/s and at 3.8m/s, respectively, see Fig. 6c.
As a result, a decision is made by the deep upper-level
policy at time t = 0 s, leading to a lane change maneuver,
as depicted in Fig. 6a. After such a lane change, the ego-
vehicle is traveling along the target lane. However, the LV
is also traveling on the same lane (i.e., the target lane) with
a velocity of 6.5 m/s. In this situation, the deep upper-level
policy once again intervenes by selecting an appropriate θ
parameter for the MPC. This decision allows the ego-vehicle
to perform another lane change maneuver at about t = 10 s,
effectively avoiding a collision with the LV . It is important
to highlight that during the execution of this maneuver, the
avoidance constraint is always satisfied, see Fig. 6e.

In the second example, illustrated in Fig. 7, we can observe
a different behavior compared to the previous case. In this
case, the initial positions (see Fig. 7b) and velocities (see
Fig. 7c) of the ego-vehicle and the two obstacles do not allow
the generation of a collision-free lane change trajectory.
Indeed, there is no sufficient time-space gap available in
order to perform a safe lane change maneuver. In such a
case, in order to keep a safety distance from the FV , the
ego-vehicle decreases its velocity by applying a negative
acceleration, see Fig. 7d. As expected, also in this case, the
safety distance imposed by the avoidance constraint is always
satisfied, see Fig.7e.

This last scenario highlights the essential requirement to
include hard collision avoidance constraints in our proposed
formulation. This constraint becomes particularly crucial
in situations where the upper-level policy cannot feasibly
determine an appropriate θ to ensure collision-free maneuver.

1https://youtu.be/oJjOMCAav7I
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Fig. 6: Double lane change maneuver. The ego-vehicle’s op-
timal maneuver is shown in solid green line. The maneuvers
of the FV and the LV are in dash-dotted blue and black
lines, respectively.

V. CONCLUSION

In this paper we have presented a novel approach to tackle
the lane change maneuver challenge for Autonomous Vehi-
cles (AVs) by framing it as a parametric Model Predictive
Control (MPC) problem. Unlike conventional methods that
decouple decision-making and planning, our hybrid approach
integrates upper-level policy search with MPC-based low-
level policy generation to optimize the lane change strategy
effectively. We employed a weighted maximum likelihood
approach for policy learning and incorporated self-supervised
learning techniques to adapt to dynamic online scenarios,
ensuring adaptability to unexpected environmental changes.

While the numerical results presented focus on a straight-
line scenario for the sake of presentation, it is important
to note that our approach is easily extendable to different
types of road layouts. The effectiveness of our method are
showcased through these results, indicating its potential to
enhance AV maneuvering in dynamic environments.

3155



0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

4

(a)

0 2 4 6 8 10 12 14 16 18

100

120

140

160

180

200

220

240

260

280

300

(b)

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

(c)

0 2 4 6 8 10 12 14 16 18

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d)

0 2 4 6 8 10 12 14 16 18

-0.5

0

0.5

1

1.5

(e)

Fig. 7: Longitudinal avoidance maneuver. The ego-vehicle’s
optimal maneuver is shown in solid green line. The maneu-
vers of the FV and the LV are in dash-dotted blue and black
lines, respectively.
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