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Abstract— The stabilization of first and second-order systems
in the presence of disturbances has been investigated in this pa-
per. A novel sliding variable is designed utilizing the Gauss error
and arctangent functions. This results in a new control rule
characterized by its robustness and ease of fixed-time stability
implementation. Subsequently, sliding-mode control is applied
to achieve the global robust finite-time stabilization of a class
of uncertain nonlinear second-order systems. In the simulation,
every result is presented. The proposed controller is employed
for lateral control of autonomous vehicles. The effectiveness of
the suggested method for controlling an autonomous vehicle
while considering disturbances is evaluated through nonlinear
simulation.

Index Terms— Robust fixed-time stability; sliding mode con-
trol; Autonomous vehicles; Lateral Control.

I. INTRODUCTION

Several finite-time controllers have been developed based
on various sliding modes [1], terminal sliding mode [2],
and integral sliding mode [3] techniques. However, the con-
vergence time of finite-time controllers typically increases
unboundedly with the system’s initial conditions. Fixed-
time stability ensures that the settling time is independent
of the initial conditions, in addition to finite-time stability
[4], [5], [6], [7], [8]. For engineering applications, fixed-
time stabilization offers a predetermined convergence time to
the equilibrium, making it a desirable attribute [4], [5], [6],
[7], [8]. Specifically, a solution to the singularity problem
has been proposed in [4], [5], [6], [7], [8], [9], [11] by
employing fixed-time stabilization through the sliding mode
control (SMC) technique.

The convergence time of a globally finite-time stable sys-
tem is constrained and independent of the initial conditions,
thanks to fixed-time stability, which is stronger than finite-
time stability. This attribute proves particularly beneficial for
estimation and optimization in hybrid or switching systems
with specific stay times [12]. For the fixed-time stability of
nonlinear systems, studies [13]-[15] derive certain Lyapunov
characteristics. Additionally, various fixed-time controllers
have been developed [3] using the terminal sliding mode
manifold. Despite the appealing features of fixed-time con-
trollers mentioned above, tuning the controller gains to
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achieve convergence within a specific preset settling time is
sometimes challenging and, in some cases, impossible. Cer-
tain works have recently expanded the application of these
findings to second-order systems. An interesting application
is in the control of lateral vehicle dynamics: in [16], a fixed-
time controller was proposed for autonomous vehicles with
saturated input. The lateral control of autonomous systems
is a crucial component of autonomous vehicle control [17],
[18]. However, designing control systems with a convergence
rate for these systems is a challenging task, as indicated by
the numerous publications on this topic [17], [18].

This study introduces a novel generic design for achieving
fixed-time stability and finite-time stabilization in nonlinear
systems subject to matched perturbations. The proposed
control scheme ensures fixed-time convergence based on a
sliding variable. This sliding variable design incorporates the
Gauss error and arctangent functions, which are leveraged
to enhance fixed-time stability. Through the utilization of
these functions, a new sliding variable is formulated to
improve the convergence of the system state. Additionally, it
is shown that the closed-loop system achieves global finite-
time stability via the application of Lyapunov theory. The
theoretical findings are then applied to the lateral control of
an autonomous vehicle. The key contributions of this work
include: proposal of an accurate and straightforward method
for estimating the settling time, which is less complex
compared to existing fixed-time stability approaches [9],
[10], [19], [20] . Validation of fixed-time regional stability
with lower parameter requirements than previous methods
[1], simplifying its adjustment. The proposed control strategy
is demonstrated in the lateral control of autonomous vehicles
in the presence of matched uncertainties.

The notations are introduced in the next section. Based
on the Gauss error and arctangent functions, Section II
introduces a novel family of fixed-time stability with matched
perturbations and its application to robust sliding mode con-
trol. The application of the proposed controller is tested on
lateral vehicle dynamics (theory and nonlinear simulation),
which is presented in Section III. The article is concluded in
Section IV.

Notation

The following notations are used. The real numbers set is
R; R>0 = {z ∈ R : z > 0}; R≥0 = R>0 ∪ {0}; R≥0 =
R̄>0 ∪ {∞}. A function λ(z) ∈ PD (positive definite) if
λ : R≥0 → R≥0 is continuous and λ(0) = 0, λ(z) > 0
for all z > 0. A function λ : R≥0 → R≥0 is of class K
(or K−function) if λ ∈ PD and it is strictly increasing. A

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3683



scale function λ : R≥0 → [0, 1) is of class K1 if λ ∈ K
and limz→∞ λ(z) = 1. Then, λ ∈ DK1 if λ ∈ K1 and
λ ∈ C0. Let erf(z) = 2√

π

∫ z

0
exp

(
−t2

)
dt, with erf(z) is

the error function. Finally, let sgn(z) be a function such that
sgn(z) = 1 if z > 0, sgn(z) ∈ [−1 , 1] if z = 0, and
sgn(z) = −1 if z < 0. the error function.

II. MAIN RESULTS

A. Robust Fixed-time Stability

In this subsection, a robust approach with fixed-time
stability is proposed. The main objective of Theorem 1 is
to design a new robust fixed-time stability result based on
the arctangent and Gauss functions.

Theorem 1: The following system: ẋ = −
√
πk1 (| arctan(erf(x))|)0.5 exp

(
x2

)
(1 + erf2(x))sign(x)− k2sign(x) + d(t),

x(0) = x0.
(1)

with k1 ∈ R∗+, k2 ∈ R∗+, and d(t) is a perturbation
assumed to be bounded as |d(t)| < ∆ with k2 > ∆, is
globally fixed-time stable and the estimate of the settling-
time satisfies Ts(x) ≤ 1

k1

√
π
4 ,

Proof: Consider the Lyapunov function:

V (x) = |x|. (2)

Its derivative is given by,

V̇ (x) =−
[√

πk1 (| arctan(erf(x))|)0.5 exp
(
x2)

(1 + erf2(x)) + k2
]
sgn(x) + d(t) sgn(x) (3)

where sgn(x) sgn(x) = 1. By utilizing |d(t)| < ∆, we
obtain

V̇ (x) ≤−
√
πk1 (| arctan(erf(x))|)0.5 exp

(
x2)(1 + erf2(x))

− k2 +∆

≤− (| arctan(erf(x))|)0.5 exp
(
x2)

(1 + erf2(x))
[√

πk1
]

(4)

Using V for V (x) and (2), we have

V̇ ≤−
[√

πk1
]
(| arctan(erf(V ))|)0.5

exp
(
V 2)(1 + erf2(V )) (5)

It holds that,

dV

(| arctan(erf(V ))|)0.5 exp(V 2)(1 + erf2(V ))

≤ −[
√
πk1]dt (6)

and the solution of (6) is
√
π[arctan(erf(x)))0.5 −

arctan(erf(x(0))))0.5] = −[
√
πk1]t, then the settling-time

is given by:

Ts(x) =
(|arctan(erf(x(0)))|)0.5

k1
≤ 1

k1

√
π

4
. (7)

It is proved that the settling-time is independent of x(0).
The trajectory of the state system (1) and u(t) =

−
√
πk1(| arctan(erf(x))|)0.5 exp

(
x2

)
sgn(x) − k2 sgn(x)

with k1 = 10, k2 = 6, and d(t) = sin(12t), then ∆ = 1
and the estimate of the settling-time leads Ts(x) ≤ 0.8s
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Fig. 1. Illustration of the state x and input u(t).
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Fig. 2. Illustration of Zoom on the steady state x.

are plotted in Fig. 1. Figure 2 displays the steady state x
converging to zero without high oscillation.

Remark 1: The settling-time proved in Theorem 1 de-
pends only on two parameters k1 and k2, making it simple
and easy to tune.

B. Robust fixed-time sliding mode control

Consider a second order non-linear with uncertainties as:

ż1 = z2

ż2 = φ1(z) + φ2(z)u+ d(t) (8)

zi ∈ R the state, φ1(z) and φ2(z) are non-linear function
satisfying φ2(z) ̸= 0 and |d(t)| < ∆. Based on Theorem 1
and the induced sliding variable as:

sa(z) =z2 +
√
πα3(| arctan(erf(z1))|)0.5

exp
(
z21
)
(1 + erf2(z1)) sgn(z1) (9)

and the controller,

ua(z) =− 1

φ2(z)

[
φ1(z) + α3((1 + arctan(erf(z1)))·

(
2

π
z1z2(1 + (erf(z1))

2) + 4 erf(z1))
1√

|erf(z1)|
)

+
√
πα1(| arctan(erf(sa))|)0.5 exp

(
s2a
)

(1 + erf2(sa)) sgn(sa) + α2 sgn(sa)
]

(10)

Corollary 1: The system (8) with sliding variable (9)
controlled by the law (10) is the global fixed-time stable
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Fig. 3. Top: State variable z = (z1(t), z2(t)), Center: input ua(t),
Bottom: Sliding variable sa(t).
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Fig. 4. Sliding variable sa(t) with different initial conditions.

and the settling-time satisfies

Ts(z) ≤
1

α1

√
π

4
+

1

α3

√
π

4
(11)

Proof: Consider the Lyapunov function V (sa(t)) =
|sa(t)|, One has,

V̇ (sa) =−
√
πα1(| arctan(erf(sa))|)0.5 exp

(
s2a
)

(1 + erf2(sa))− α2 + |d(t)|
≤ −

√
πα1(| arctan(erf(sa))|)0.5 exp

(
s2a
)

(1 + erf2(sa))− α2 +∆

≤− (| arctan(erf(sa))|)0.5 exp
(
s2a
)

(1 + erf2(sa))[
√
πα1] (12)

Using Theorem 1, the first part for clossed-loop system (8)-
(10) presented in (12) is confirmed and the settling time
satisfies Ts1(z0) ≤ 1

α1

√
π
4 . On the other hand, consider the

system (9) when sa = 0 as

ż1(z) =−
√
πα3(| arctan(erf(z1))|)0.5 exp

(
z21
)

(1 + erf2(z1)) sgn(z1) (13)

Based on the results of Theorem 1, the system (13) reaches
their origin in the fixed-time satisfies Ts2 ≤ 1

α3

√
π
4 . Finally,

the robust fixed-time is ensured of the closed-loop system
(8)-(10).
For the simulation, consider the function φ1(z) = 0 and
φ2(z) = 1, d(t) = 2 sin(13t), the parameters α1 = 10, α2 =

Fig. 5. Autonomous Robot ciTHy M (https://www.twinswheel.fr/).

6, α3 = 2 then ∆ = 2 and z(0) = (z1(0), z2(0)). The
evolution of the states, the inputs, and sliding variable are
plotted in Fig.3. The evolution of the sliding variable sa(t)
is depicted 4 for different initial conditions. It can be seen
that the stabilization time of the sliding variable does not
depend on the initial conditions.

Remark 2: In order to address the singular problem aris-
ing in the time derivative of the terminal sliding manifold,
several alternative methods can be employed. One such
approach involves introducing a tolerance parameter within
the sliding surface. This parameter serves to ensure global
practical stabilization, thereby avoiding singularity and en-
abling a regional stability result. This strategy does not
necessitate restricting the set of admissible initial conditions,
albeit it may result in a reduction in performance.

sa(z) =z2 +
√
πα3(| arctan(ϵ+ erf(z1))|)0.5

exp
(
z21
)
(1 + erf2(z1)) sgn(z1) (14)

with ϵ > 0 an arbitrarily small parameter.

III. APPLICATION TO LATERAL CONTROL OF AN
AUTONOMOUS VEHICLE

The application of the proposed strategy to lateral control
of an autonomous vehicle is devoted in this section. The
remainder of this section is broken down into three sections.
The control oriented model is shown first. A feedback
controller is constructed. The outcomes of the real-time
simulation are then displayed. The numerical parameters are
taken from the SOBEN company of a small four wheels
“ciTHy M” range (see Fig. III). This autonomous robot is
used for meal distribution and home delivery.

A. Vehicle model and problem formulation
The lateral vehicle behaviour is here stated through the

well know bicycle model assuming that the longitudinal
speed vx is constant and explained in [21], [22]. It is
represented in Fig. 6 and given by the dynamics equations

v̇y =− vxr +
1

m
(Fyf + Fyr + Fwy) (15a)

ṙ =
1

Iz
(lfFyf − lrFyr + lwFwy) (15b)

where the lateral tyre forces of the front and back wheels,
respectively, are Fyf and Fyr. The longitudinal speed is
represented by vx, while the yaw rate is r. The entire mass
is m. lf and lr represent the front and rear tires’ individual
distances from the vehicle’s mass center, while Iz represents
the vehicle’s moment of inertia about the yaw axis.
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The side wind force Fwy is regarded as an external
perturbation in this scenario and the tire’s lateral slip forces
Fyi are roughly approximated by linear stiffness with respect
to tire slip angles. As a result, the state space representation
of the lateral vehicle is provided by

[
v̇y
ṙ

]
=



f1︷ ︸︸ ︷
−2µ

Cf + Cr

vxm

f2︷ ︸︸ ︷
2µ

−Cf lf + lrCr

vxm
− vx

2µ
−lfCf + lrCr

vxIz︸ ︷︷ ︸
f3

−2µ
Cf l

2
f + l2rCr

vxIz︸ ︷︷ ︸
f4


[
vy
r

]

+



g1︷ ︸︸ ︷
2µ

Cf

m
µlfCf

Iz︸ ︷︷ ︸
g2

 δ +

[
1
lw

]
Fwy

(16)

The variables and parameters are presented in Table I.

TABLE I
SYSTEM ABBREVIATIONS, NOTATION, AND PARAMETERS.

vy , vx lateral and longitudinal velocities
δ, ψ, r vehicle steering, yaw angle and yaw rate
yL, ψL lateral and heading error
ρ, µ curvature and road friction
m, Iz mass and z inertia (160kg, 40kg.m2)
Cf , Cr tires stiffness (6e3, 5e5)N/rad
lf , lr wheelbase (0.8, 0.7)m
lw, ls preview distance 5m

In order to handle the lane keeping objective, the heading
error ψL and the lateral error yL should converge in fixed-
time to zero, the vehicle axis should always be parallel to
the planned trajectory tangent axis, and the vehicle lateral
deviation should always be close to the nearest trajectory
point. The dynamics of both variables are [23]

ψ̇L =r − ρvx (17a)
ẏL =vy + ψLvx + rls (17b)

where ρ stands for the lane’s (the reference trajectory’s)
curvature. For control purpose, the extended model (16)-(17)
is considered as in [23].

l s

Fig. 6. Graphical definitions of variables yL and ψL in lane keeping cases;

Definition 1: The control issue for lateral motion is shown
in the formulation that follows. Find a robust controller that,
given the system’s (16)-(17) and the time history of the
possible road curvature, has the closed-loop features listed
below. ρ(t).

P1) the control effort δ(t) is bounded and satisfying δ(t) ≤
δmax and |δ̇(t)| ≤ vmax.

P2) the tracking errors converge to zero in fixed-time and
the state variables vy(t) and r(t) converge to their
references.

P3) the closed-loop system with the proposed controller is
fixed-time stable.

B. State feedback control law design

In order to develop the lateral controller, the lane keeping
and the lateral dynamics of the vehicle are considered as in-
tegrated subsystems. This section discusses the application of
the fixed-time stability proposed in this paper. Consider the
error surface to reduce lane tracking position and orientation
errors as:

e = c1lpψL + c2yL, (18)

Assumption 1: Define a new variable of disturbances as
Θ(t) = c2Fwy + lwFwy(c1lp + c2ls), assuming the distur-
bances Θ(t) is bounded and |Θ(t)| ≤ ℏ.
where c1 and c2 are positive coefficients. Given that a
terminal sliding surface has a relative degree of 2 of the
error being considered, it can be defined as:

s(e) =ė(t) +
√
πκ1(| arctan(ϵ+ erf(e))|)0.5

exp
(
e2
)
(1 + erf2(e)) sgn(e) (19)

and the controller is chosen as:

δ =− 1

φa
[φb + κ1((1 + arctan(erf(e)))

(
2

π
eė(1 + (erf(e))2) + 4 erf(e))

1√
ϵ+ |erf(e)|

)

+
√
πκ3(| arctan(erf(s))|)0.5 exp

(
s2
)

(1 + erf2(s)) sgn(s) + κ2 sgn(s)] (20)

with φa = (c1lp+c2ls)g2+c2g1 and φb = (c1lp+c2ls)g2+
c2g1c2(f1vy + f2r)+ (c1lp + c2ls)(f3vy + f4r)− c1lpρ̇vx +
c2ψ̇Lvx.

Corollary 2: Consider the dynamical lateral in qre-
flinearsystem with the perturbation Θ(t), then the closed-
loop lateral extended system (16), (17), (19), and (20) is
globally fixed-time stable and the settling-time satisfies

Ts ≤
1

κ3

√
π

4
+

1

κ1

√
π

4
(21)

Proof: Consider the Lyapunov function V (s(t)) =
|s(t)|, Its derivative given by,

V̇ (s) =−
√
πκ3(| arctan(erf(s))|)0.5 exp

(
s2
)
(1 + erf2(s))

− κ2 + |Θ(t)|
≤ −

√
πκ3(| arctan(erf(s))|)0.5 exp

(
s2
)
(1 + erf2(s))

− κ2 + ℏ
≤− (| arctan(erf(s))|)0.5 exp

(
s2
)
(1 + erf2(s))

[
√
πκ3 + (κ2 − ℏ)] (22)

Using Theorem 1, the first part of system (22) is confirmed
with the settling time satisfies Ts1(e) ≤ 1

κ3

√
π
4 . For {s(0) =

0}, we can obtain Ts2(s0) ≤ 1
κ1

√
π
4 by using the same steps
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Fig. 7. Case 1: Illustration of the lateral deviation yL, heading error ψL,
yaw rate r and lateral speed vy .

given in the proof of Theorem 1, then the robust global fixed-
time is ensured of the lateral closed-loop system.

C. Validation on droid delivery manufacturer (“twinswheel
ciTHy M”) using real data

In this section, a nonlinear simulation based on a 7-degree-
of-freedom (DOF) model is employed. The model encom-
passes yaw rotations, longitudinal and lateral displacements,
as well as four-wheel rotations with tire longitudinal slip.
This simulation aims to demonstrate the effectiveness of
the developed control strategy through scenarios involving
uniform circular motion and real trajectory data.

Remark 3: Due to discontinuous input, we encounter the
chattering problem. To mitigate this issue, the tangent func-
tion has been employed as a substitute for the signum
function.
The external disturbance represents the resistive wind force
using the equation Fwy = cyv

2
x. The parameter values for

the “ciTHy M” robot in each simulation are also included in
Table I. Two simulation cases are used as:

• Case 1
It should be emphasized that we assume we drive the
car at a constant forward speed of vx = 8m/s. In this
section, we consider the trajectory’s curvature to be con-
stant, specifically set to ρ(t) = 0.02. This implies that
the vehicle is controlled to follow a circular path. We
introduce an abrupt change in the reference trajectory
to transition to a circle with a radius of 50 meters. The
simulation results, depicted in Figs. 7 and 8, showcase
the performance of the suggested control strategies.
These figures illustrate how effectively the proposed
strategies manage to control the system. All four critical
variables associated with the lateral dynamics of the
vehicle converge to their respective reference values,
underscoring the effectiveness of the suggested control
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Fig. 8. Case 1: Illustration of the steering control and xy trajectory.
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Fig. 9. Case 2: Real longitudinal velocity profile.

approach. Moreover, both controllers demonstrate the
capability to accurately track the reference path even in
scenarios where the path’s curvature remains constant.
This robust performance highlights the efficacy of the
control strategies under consideration.

• Case 2
The data-set containing the trajectory information was col-
lected experimentally from the “ciTHy M” robot on a test
track in Cahors, France. In this case, the robot is put through
the road map curvature and longitudinal speed, with the
measured experimental results shown respectively in Figs.
9 and 10. The robot enters autonomous mode at 0.2m/s
with a 0m initial lateral error. Then, the robot accelerates to
6m/s and then accelerates again to 7m/s. Figure 11 shows
the results of the lateral offset, heading orientation, yaw rate
and lateral speed. It can be seen that the proposed controller
is able to sustain a good tracking performance since the
maximum lateral deviation and heading orientation never get
respectively more than 0.02m and 0.05rad. Figure 12 shows

0 10 20 30 40 50

-0.05

0

0.05

Fig. 10. Case 2: Road map curvature.
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Fig. 11. Case 2: Illustration of the lateral deviation yL, heading error ψL,
yaw rate r and lateral speed vy .
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Fig. 12. Case 2: Illustration of the steering control and xy trajectory.

the trajectory tracking and the applied steering control. This
later is smooth without chattering problem and has small
value.

IV. CONCLUSIONS

The paper proposed a new robust fixed-time stability
and fixed-time stabilization using Gauss error and arctan-
gent functions. The proposed fixed-time stability has been
exploited for a class of uncertain nonlinear second-order
systems. Then, this strategy was used for the lateral control
of an autonomous vehicle system. This approach has been
proven to be a suitable option for managing such systems
and ensuring the needed tracking. Additionally, testing on a
real-time simulation platform has demonstrated how well the
suggested technique performs.
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