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Abstract—This paper focuses on the utilization of geometric
tools in two-phase multiplayer reach-avoid games. In these
games, a thief aims to enter a target region and subsequently
reach a safe region while evading capture by guarders. We first
obtain the solution to the game of kind in the game scenario
where the safe region is a single point by using ellipses. Then we
show that ellipses are also useful to solve the game of kind when
two guarders cooperatively play against the thief. Furthermore,
we study the dominance region for two-phase games with the
help of ellipses. The construction method of the boundary of
dominance regions is provided and illustrated with a numerical
example.

Index Terms—Reach-avoid games, ellipse, cooperative de-
fense, dominance regions.

I. INTRODUCTION

Reach-avoid games have garnered significant interest
among researchers in various engineering domains, such as
air traffic control [1], path planing [2] and robot surveil-
lance [3]. In a reach-avoid game, one team of agents aims
to enter a sequence of target regions in the state space while
avoiding being captured by their opponents.

There have been numerous advancements in the field of
single-phase reach-avoid games, in which agents only need
to reach one target region. These game scenarios encompass
various problems such as target defense games [4]–[7], active
defense problems [8]–[10], perimeter defense problems [11]–
[13], and so on. In these studies, geometric tools are usually
useful to solve the game of kind and obtain equilibrium
strategies. The employed geometric shapes include Voronoi
diagrams [14], Apollonian circles [5], [6], [15], and Carte-
sian ovals [7], [16]. Leveraging geometric tools significantly
simplifies the analysis of single-phase reach-avoid games
involving players with simple motion.

Researchers have also conducted a series of studies on
two-phase reach-avoid games, also known as capture-the-
flag games in literature [17]–[21]. In these games, a player
must sequentially reach a target region (referred to as the
flag region in literature) and a safe region (referred to as the
return region). [17] and [18] investigate a two-player capture-
the-flag game played within a rectangular region containing
a circular target region and a strip safe region. Numerical
Hamilton-Jacobi reachable set calculations are employed to
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construct winning regions and winning strategies. In [19], a
similar game problem is considered using the conventional
method of differential games [22]. The first and second phase
are analyzed separately in cases of zero and positive capture
radius scenarios, but no solution is provided for the overall
game problem. [20] solves the game of kind and game of
degree for a specific case involving a point target region and
a point safe region. Distances between several key points
play a major role in the solving process. [21] studies a game
problem where the target is a point and the safe region is a
half plane. The optimal strategy for the two-phase game is
linked to the solution of a constrained nonlinear optimization
problem. All these studies focus on two player games.

This paper aims to discuss the potential application of
geometric tools in two-phase reach-avoid games, addressing
a gap in the existing literature. We will demonstrate the
utility of ellipses in analyzing two-phase multiplayer reach-
avoid games. Specifically, the game of kind in certain game
scenarios can be directly solved using ellipses. Additionally,
we introduce the concept of analogy to dominance regions in
single-phase games into two-phase games. This concept can
be used to analyze general two-phase reach-avoid games. We
will illustrate that the boundary of dominance regions can be
constructed using ellipses.

The paper is organized as follows. Section II provides
the problem formulation. A special reach-avoid game with
a point safe region is analyzed in Section III. Next, in
Section IV, we discuss a game scenario that requires co-
operative defense. The dominance region is introduced and
characterized in Section VI. Finally, we provide concluding
remarks and discuss future work in Section VI.

II. PROBLEM FORMULATION

We consider a two phase reach-avoid game that takes place
in R2. The game involves two key regions in the plane:
a target region G ⊂ R2, and a safe region S ⊂ R2. Two
team of players engage in the game. A thief aims to steal a
treasure from the target region and then reach the safe region.
The guarders try to prevent the thief via interception. Fig. 1
provides an illustration of the game problem.

All the players are assumed to have first-order dynamics.
Let xT and xDi be the positions of the thief and the ith
guarder, respectively. The equations of motion are given by

ẋT = vTuT ,

ẋDi
= vDi

uDi
, i = 1, . . . , ND,

(1)
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where ND is the number of guarders; vT and vDi
are the

speeds of the thief and guarder i; uT and uDi
are their

control inputs respectively, satisfying that ∥uT ∥2 ≤ 1 and
∥uDi∥2 ≤ 1. The initial positions of the thief and the ith
guarder are denoted as x0

T and x0
Di

, respectively. The state
of the system consists of positions of all players and is
denoted as X ∈ R2(ND+1). The initial state is denoted as
X0 = [x0⊤

T ,x0⊤
D1

, . . . ,x0⊤
DND

]⊤. The capture radius of guarder
Di is denoted as rDi

. If ∥xT − xDi
∥2 ≤ rDi

, the thief is
captured by Di.

S

G

Thief

Guarders

Fig. 1. Illustration of the two-phase reach-avoid game.

It is assumed that the state is fully observable to all players.
Each player can make decisions based on all the available
state information up to the current moment. However, they
do not have access to the current control of their opponents.

This paper focus on the game of kind. The game terminates
when the thief is captured by the guarders or when it reaches
S passing through G. The thief wins the game if it brings
the treasure to the safe region without being captured, or in
other words, if there exists tf ∈ R such that: xT (tf ) ∈ S;
∃tc ∈ [0, tf ], xT (tc) ∈ G; ∀t ∈ [0, tf ], min1≤i≤ND

∥xT (t)−
xDi(t)∥2 − rDi > 0. Otherwise, the guarders win the game.

We aim to investigate the utilization of geometric methods
in the analysis of two-phase game problems. We would like
to show that with the help of ellipses, solutions to the game
of kind can be easily obtained in certain problems with spe-
cific settings. Additionally, we would like to generalize the
concept of dominant regions to two-phase game problems,
and obtain the representation of the thief’s dominant region
using geometric tools.

III. GAME WITH POINT SAFE REGION

In this section, we consider the specific case where the
safe region is composed of a single point, which is denoted
as xS .

In the case of point safe region, the guarders can directly
move towards the position xS . Let’s consider zero capture
radii first. The shortest time for the guarders to reach xS can
be calculated by

tm = min
1≤i≤ND

∥xS − x0
Di

∥2
vDi

. (2)

In order to win the game, the thief must steal the treasure
and bring it to xS before time tm. For a point x ∈ G, the
shortest time for the thief to arrive at xS passing through x
is

t(xT ,x,xS) =
∥xS − x∥2 + ∥xT − x∥2

vT
.

The thief can bring the treasure to xS before tm if and only
if there is a point x in G such that t(x0

T ,x,xS) < tm. This
condition can be expressed equivalently as

inf
x∈G

∥xS − x∥2 + ∥x0
T − x∥2 < vT tm. (3)

G

xS
x0
T

xg

x0
Di

vDi
tm

x̃
T

E

Fig. 2. In this example, the red ellipse region E(x0
T ,xS , vT tm) intersects

with the target region G. The thief can successfully steal the treasure at xg

and then reach the safe region by travelling along the trajectory x̃T which
is shown with red lines.

The inequality (3) has a geometric explanation. Denote the
interior of the ellipse with focal points x1 and x2 and a major
axis length of d as E(x1,x2, d). This region can be expressed
explicitly as

E(x1,x2, d) = {x ∈ R2 | ∥x−x1∥2+∥x−x2∥2 < d}. (4)

If ∥x1 − x2∥2 ≥ d, E(x1,x2, d) is a empty set. It can be
deduced that the condition (3) is equal to

E(x0
T ,xS , vT tm) ∩ G ̸= ∅, (5)

or in other words, the target region intersects with an open
ellipse region. An illustration of the geometric condition (5)
is shown in Fig. 2. We have the following conclusion.

Theorem 1. Assume that S = {xS}, G is a connected non-
singleton set, and rDi

= 0 for all i. Let tm be defined by (2),
and E(x0

T ,xS , vT tm) be defined by (4). The thief can win the
reach-avoid game if and only if the target region intersects
with E(x0

T ,xS , vT tm), namely, (5) is satisfied.

Proof. Necessity: If E(x0
T ,xS , vT tm) ∩ G is empty, then

regardless of the strategy the thief adopts, at least one guarder
can reach xS before the thief bring the treasure to the safe
region. Thus, the thief cannot win.

Sufficiency: Choose a point xg ∈ E(x0
T ,xS , vT tm) ∩ G.

Let x̃T : [0, tm) → R2 be a trajectory of the thief such
that x̃T (t1) = xg and x̃T (t2) = xS , where t1 =

∥xg−x0
T ∥2

vT

and t2 = t1 +
∥xg−xS∥2

vT
. Obviously, x̃T consists of two

straight line segments. An illustration of such a trajectory is
given in Fig. 2. We claim that the thief can win the game by
travelling along a trajectory sufficiently close to x̃T . First,
consider the guarders with speeds equal to or larger than
vT . The thief can reach any point on trajectory x̃T before
these guarders. Otherwise, there is a guarder that can reach
xS before the thief by first approaching a point on x̃T and
then following this trajectory. Thus, these guarders cannot
prevent the thief from bring the treasure to S along x̃T . Next,
consider the guarders slower than the thief. Denote the index
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y

Fig. 3. Illustration of bypassing paths. The clockwise and counterclockwise
paths are shown with a dashdotted line and a dashed line, respectively. In
this example, the clockwise bypassing path is the shorter one.

set of these guarders as Ns. The maximum speed of these
guarders is v̄s = maxi∈Ns

vDi
. Such a guarder may reach a

point on x̃T before the thief. However, the thief can avoid
being captured by slightly changing the trajectory to bypass
a slower guarder, e.g. Ds, once its distance from xDs

is less
than an adjustable parameters δ. Denote the start time of
the bypassing maneuvering as tp. The bypassing path can be
expressed in polar coordinates, with xDs(tp) as the origin,
as r(θ) = δekp(θ−θ0), where θ0 is the direction angle of
vector x̃T (tp)−xDs

(tp); kp = v̄s√
v2
T−v̄2

s

if the thief bypasses

clockwise and kp = − v̄s√
v2
T−v̄2

s

otherwise. An illustration of

such a bypassing path is shown in Fig. 3. The bypassing path
returns to x̃T while θ changes by less than 2π. In most cases,
the thief should select the clockwise or counterclockwise
direction that results in a shorter bypassing path. However,
there is a special scenario where the thief needs to avoid
a guarder near xg . In this case, the thief should choose a
direction that allows the bypassing path to intersect with G.
It can be checked that r(θ) satisfies the differential equation
1
v̄s

∣∣dr
dθ

∣∣ = 1
vT

√
r2 +

(
dr
dθ

)2
. The time needed by the thief to

reach a position on the path with angle θ is

1

vT

∣∣∣∣∣∣
∫ θ

θ0

√
r2 +

(
dr

dθ

)2

dθ

∣∣∣∣∣∣ = 1

v̄s

∣∣∣∣∣
∫ θ

θ0

dr

dθ
dθ

∣∣∣∣∣
=

r(θ)− r(θ0)

v̄s
≤ r(θ)

vDs

.

It follows that the thief can reach any position on the
bypassing path before guarder Ds. Thus, the thief can bypass
a slower guarder by travelling along a bypassing path. By
adjusting the parameter δ, the bypassing time can be made
arbitrarily small. It may also be possible that the thief en-
counters another slower guarder while following a bypassing
path. In such a case, the parameter δ of the new bypassing
path should be small enough than that of the current one.
If the parameters of all bypassing paths are chosen to be
sufficiently small, the thief will only need to bypass each
slower guarder at most once on each straight line of x̃T . As
a result, the thief can reach xS before tm and win the game
by travelling along a trajectory arbitrarily close to x̃T .

Theorem 1 is valid for zero capture radii but regardless
of the guarders’ speeds. If we consider only the guarders

with speeds not smaller than vT , a similar conclusion
holds for non-zero capture radii. Hereafter, the shortest time
min1≤i≤ND

∥x−xDi
∥2−rDi

vDi
will be denoted as t̃(x,X) for

brevity.

Theorem 2. Assume that S = {xS}, and vDi
≥ vT for all

i. The thief can win the reach-avoid game if and only if

E
(
x0
T ,xS , vT t̃

(
xS ,X

0
))

∩ G ̸= ∅. (6)

Proof. The proof of necessity is the same as that of The-
orem 1. For sufficiency, assume that (6) is satisfied and
consider the trajectory x̃T defined in the proof of Theorem 1.
The thief will not be captured if it travels along x̃T . Oth-
erwise, there is a guarder Di that has a strategy such that
∥xDi

(tc) − x̃T (tc)∥2 ≤ rDi
for tc < t̃

(
xS ,X

0
)
. Then,

Di can arrive within the range of rDi around xS before
t̃
(
xS ,X

0
)

by first arriving within the range of rDi around
x̃T (tc) and then following a trajectory parallel to x̃T . Thus,
it is satisfied that vDi

t̃
(
xS ,X

0
)
> ∥xS−x0

Di
∥2−rDi

, which
contradicts the definition of t̃

(
xS ,X

0
)
. Therefore, the thief

can win the game by travelling along x̃T .

Theorems 1 and 2 show that the solution to the game of
kind of the reach-avoid game with point safe region can be
determined by checking a geometric condition: whether the
target region intersects with an open ellipse region. Thus,
ellipses play a similar role as Apollonius circles in single-
phase reach-avoid games.

IV. GAME WITH TWO GUARDERS

In this section, we discuss a two-phase reach-avoid game
with a non-singleton safe region. It will be shown that ellipses
are still useful in certain scenarios.

Let ND = 2. Assume that S is a connected closed convex
set. The boundary of S is denoted as ∂S. The guarders’
speeds are such that vDi ≥ vT . Let the initial state is such
that the curve{

x ∈ R2
∣∣∣ ∥x− x0

D1
∥2 − rD1

vD1

=
∥x− x0

D2
∥2 − rD2

vD2

}
,

which can be proved to be convex [7], intersects ∂S at two
points x1 and x2. The line segment with endpoints x1 and
x2 divides S into two convex regions S1 and S2, as shown
in Fig. 4. It is assumed that S1 is the region close to x0

D1
.

Thus, the guarder Di can reach the boundary ∂S ∩Si in less
time than the other guarder.

To analyze the reach-avoid game, define a time function
hi : S × R2 × R2 → R for each guarder such that

hi(x,xT ,xDi
)

= inf
z∈G

∥x− z∥2 + ∥xT − z∥2
vT

− ∥x− xDi
∥2 − rDi

vDi

.

(7)
If hi(x,x

0
T ,x

0
Di

) < 0,∀x ∈ S, then the thief can bring
the treasure to x without being captured by guarder Di,
as demonstrated by Theorem 2. In this section, we con-
sider the case where two guarders must cooperative with
each other to win the game. Specifically, we assume that
minx∈S hi(x,x

0
T ,x

0
Di

) < 0 for i = 1, 2, namely, no guarder
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x1

x2

S1

S2

G
x0
T

x0
D2

x0
D1

E

Fig. 4. The safe region is divided into S1 and S2. Under the assumption
of Theorem 4, the ellipse region E

(
x0
T ,x1, vT t̃

(
x1,X0

))
can be used to

solve the game of kind. In this example, the target region does not intersect
with E

(
x0
T ,x1, vT t̃

(
x1,X0

))
. Thus, the thief cannot win.

can successfully defend against the thief alone. Throughout
this section, we make the following assumption.

Assumption 1. There exists a unique
point x∗ such that hi(x

∗,xT ,xDi
) =

minx∈Si
hi(x,xT ,xDi

), ∀xT , ∀xDi
, i = 1, 2.

With respect to the game of kind, the following conclusion
holds.

Theorem 3. If minx∈S hi(x,x
0
T ,x

0
Di

) < 0 for i = 1, 2, and
Assumption 1 holds, then the thief can win the game if and
only if minx∈S maxi hi(x,x

0
T ,x

0
Di

) < 0. The condition is
equal to that minx∈Si

hi(x,x
0
T ,x

0
Di

) < 0 for i = 1 or 2.

Proof. We first prove the equivalence of two conditions. In
S1, it holds that

∥x−x0
D1

∥2−rD1

vD1
<

∥x−x0
D2

∥2−rD2

vD2
. Thus,

h1(x,x
0
T ,x

0
D1

) > h2(x,x
0
T ,x

0
D2

) if x ∈ S1, which means
that maxi hi(x,x

0
T ,x

0
Di

) = h1(x,x
0
T ,x

0
D1

) in S1. Similarly,
maxi hi(x,x

0
T ,x

0
Di

) = h2(x,x
0
T ,x

0
D2

) in S2. It follows that

min
x∈S

max
i

hi(x,x
0
T ,x

0
Di

) = min
i

min
x∈Si

hi(x,x
0
T ,x

0
Di

).

The equivalence of two conditions is then obvious. Below,
we will prove sufficiency and necessity separately.

Sufficiency: If minx∈S maxi hi(x,x
0
T ,x

0
Di

) < 0, there
exists xS ∈ S such that hi(xS ,x

0
T ,x

0
Di

) < 0 for i = 1 and
2. It follows from Theorem 2 that the thief can successfully
bring the treasure to x without being captured. Thus, the thief
wins the game.

Necessity: If minx∈Si hi(x,x
0
T ,x

0
Di

) ≥ 0, it can be
proved that guarder Di can prevent the thief from bring-
ing the treasure into Si. Let x∗

i (xT ,xDi
) be such that

hi (x
∗
i (xT ,xDi

),xT ,xDi
) = minx∈Si

hi(x,xT ,xDi
). As

assumed in Assumption 1, x∗
i (xT ,xDi

) is the unique min-
imum point. Thus, according to Danskin’s Theorem [23], it
holds that

∂

∂xT
min
x∈Si

hi(x,xT ,xDi) =
∂

∂xT
hi (x

∗
i ,xT ,xDi)

and

∂

∂xDi

min
x∈Si

hi(x,xT ,xDi
) =

∂

∂xDi

hi (x
∗
i ,xT ,xDi

) .

If guarder Di moves towards x∗
i (xT ,xDi

), it is satisfied that

d

dt
min
x∈Si

hi(x,xT ,xDi
)

= vDi
u⊤
Di

∂hi (x
∗
i ,xT ,xDi

)

∂xDi

+ vTu
⊤
T

∂hi (x
∗
i ,xT ,xDi

)

∂xT

= 1 +
d

dt
inf
z∈G

∥x∗ − z∥2 + ∥xT − z∥2
vT

≥ 0,

no matter what strategy the thief adopts. Therefore, when the
thief arrives in G, it is true that

min
x∈Si

∥xT − x∥2
vT

−∥x− xDi∥2 − rDi

vDi

= min
x∈Si

hi(x,xT ,xDi
),

the right side of which is non-negative. Thus, according to
the result of single-phase reach-avoid game [24], Di can
successfully prevent the thief from reaching Si. Therefore,
the thief cannot bring the treasure to S1 or S2, which means
that the thief loses the game.

It can be seen that guarder Di has an advantage to protect
the region Si. For the thief, the dividing points between S1

and S2 could potentially be a weak point in the defense
of the guarders. Thus, it may be a optimal choice for the
thief to bring the treasure to one of the dividing points,
x1 or x2. If it is indeed the case, the ellipse regions
E
(
x0
T ,x1, vT t̃

(
x1,X

0
))

and E
(
x0
T ,x2, vT t̃

(
x2,X

0
))

can
be used to solve the game of kind. Below, we will show
that the aforementioned hypothesis holds true in a certain
scenario.

Let fi : Si × G → R be defined by fi(x, z) =
∥x−z∥2

vT
−

∥x−x0
Di

∥2−rDi

vDi
. If fi(x, z) < 0, then the thief starts from

z can arrive at x ∈ Si before guarder Di. We have the
following conclusion.

Theorem 4. Assume that Assumption 1 holds. If for all i ∈
{1, 2}, z ∈ G, it holds that fi(x1, z) = minx∈Si

fi(x, z),
then the thief can win the game if and only if

E
(
x0
T ,x1, vT t̃

(
x1,X

0
))

∩ G ̸= ∅. (8)

Proof. At x1, t̃
(
x1,X

0
)

=
∥x−x0

D1
∥2−rD1

vD1
=

∥x−x0
D2

∥2−rD2

vD2
. According to the assumptions, it holds

that

min
x∈Si

hi(x,x
0
T ,x

0
Di

) = min
x∈Si

inf
z∈G

∥x0
T − z∥2
vT

+ fi(x, z)

= inf
z∈G

∥x0
T − z∥2
vT

+ fi(x1, z)

= inf
z∈G

∥x0
T − z∥2 + ∥z− x1∥2

vT
− t̃

(
x1,X

0
)
.

Thus, the condition minx∈Si
hi(x,x

0
T ,x

0
Di

) < 0 means that

inf
z∈G

∥x0
T − z∥2 + ∥z− x1∥2 < vT t̃

(
x1,X

0
)
,

which is equal to (8). The conclusion follows from Theo-
rem 3.

Theorem 4 shows that under certain conditions, the point
x1 is a critical defense position. The game of kind is then
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determined by the geometric relationship between the target
region and the ellipse region E(x0

T ,x1, vT t̃1).

V. THIEF’S DOMINANCE REGION

For general game settings, the ellipses cannot be directly
used to solve the game of kind. In this section, we generalize
the ellipse regions to the concept of dominance regions in
two-phase reach-avoid games, which will be useful in the
analysis of general game problems. Specifically, we consider
only the case where vDi ≥ vT ,∀i ∈ {1, . . . , ND}.

Definition 1. The dominance region D(X;S) of the thief is
defined by

D(X;S) =
{
x ∈ R2 | ∃xS ∈ S, ∥x− xT ∥2 + ∥x− xS∥2

< vT t̃(xS ,X)
}
.

The dominance region D(X;S) is a set where the thief
has an open-loop strategy to pass through a point within the
set and then reach the safe area without being captured. It is
obvious that when S contains only one point, D(X;S) is the
ellipse region E(x0

T ,xS , vT tm). When S is not a singleton,
it is no longer an ellipse region. We can immediately obtain
the following conclusion.

Theorem 5. The thief can win the game if D(X0;S)∩G ≠ ∅.

Proof. If D(X0;S)∩G ̸= ∅, then there exist a point xg ∈ G
and a point xS ∈ S such that

∥xg − x0
T ∥2 + ∥xg − xS∥2 < vT t̃

(
xS ,X

0
)
.

According to the proof of Theorem 2, the thief can win the
game by travelling along the trajectory x̃T defined in the
proof Theorem 1.

The investigation into the necessity of the intersection
condition in Theorem 5 will be pursued as a future endeavor.

To study the properties of the dominance boundary, it is
useful to express the dominance region using ellipse regions.
We have the following result.

Lemma 1. The dominance region of the thief satisfies

D(X;S) \ S = ∪x∈∂SE
(
xT ,x, vT t̃(x,X)

)
\ S. (9)

Proof. Denote the right-hand side of (9) as EU . It is obvious
that E

(
xT ,x, vT t̃x

)
⊂ D(X;S) if x ∈ ∂S. Thus, EU ⊂

D(X;S) \ S .
If z ∈ D(X;S) \ S , there exists a point x ∈ S, such

that ∥z − xT ∥2 + ∥z − x∥2 < vT t̃(x,X). According to the
proof of Theorem 2, the thief can reach x without being
captured by travelling along a trajectory passing through z.
Let y ∈ ∂S be the intersection point between ∂S and the
line segment connecting z and x. The thief can also reach
y passing through z without being captured. Thus, it holds
that z ∈ E(xT ,y, vT t̃(y,X)). It follows that D(X;S) \ S ⊂
EU .

We can use the above conclusion to characterize the bound-
ary of the dominance region, which will be referred to as
the dominance boundary. Before proceeding, it is helpful to
clarify some terminology that will be used. Let xs : IS → R2

be a parametric representation of ∂S , where IS is an interval
of the real line R. Assume that xs is piecewise continuously
differentiable. Define a function t̃s : IS → R such that
t̃s(s) = t̃(xs(s),X

0) for s ∈ IS . It can be easily seen that t̃s
is also piecewise continuously differentiable. The right (left)
derivative of xs at s ∈ Is, if existing, is denoted as v+

s (s)
(respectively, v−

s (s)). Similarly, the right (left) derivative
of t̃s is denoted as t̃+s (respectively, t̃−s ). We focus on the
part of dominance boundary outside the safe region, namely,
∂D(X0;S) \ S , which will be denoted as BD(X0).

Lemma 2. For each x ∈ BD(X0), there exists s ∈ IS such
that x ∈ ∂E

(
x0
T ,xs(s), vT t̃s(s)

)
. It holds that

(xs(s)− x)⊤

∥x− xs(s)∥2
v+
s (s) ≥ vT t̃

+
s (s) (10)

when the right derivatives of xs and t̃s exist, and

(xs(s)− x)⊤

∥x− xs(s)∥2
v−
s (s) ≤ vT t̃

−
s (s) (11)

when the left derivatives exist.

Proof. Consider a point x ∈ BD(X0). It is obvious that x ∈
∂E

(
x0
T ,xs(s), vT t̃s(s)

)
for a certain s ∈ Is. Otherwise, x

is an interior point of E
(
x0
T ,xs(s), vT t̃s(s)

)
⊂ D(X0;S).

It follows that

∥x0
T − x∥2 + ∥x− xs(s)∥2 = vT t̃s(s). (12)

For any ϵ > 0 such that (s − ϵ, s + ϵ) ⊂ Is, it holds that
x /∈ E

(
x0
T ,xs(s

′), vT t̃s(s
′)
)
, ∀s′ ∈ (s− ϵ, s+ ϵ). Thus, the

function h(s′) = ∥x0
T − x∥2 + ∥x − xs(s

′)∥2 − vT t̃s(s
′)

attains a local minimum at s. The inequalities (10) and (11)
follow from the first-order minimum condition.

When xs and t̃s are both differentiable at s, the following
equation holds:

(xs(s)− x)⊤

∥x− xs(s)∥2
dxs(s)

ds
= vT

dt̃s(s)

ds
. (13)

The dominance boundary BD(X0) can be constructed by
simultaneously solving equations (12) and (13). Let α(s) be
the direction angle of dxs(s)

ds . There are two solutions to these
equations which can be explicitly expressed by

x±(s) = xs(s)− l±(s)eθ±(s), (14)

where eθ±(s) =

[
cos θ±(s)
sin θ±(s)

]
with θ±(s) satisfying that

θ±(s) = α(s)± arccos

(
vT

dt̃s(s)

ds

/∥∥∥∥dxs(s)

ds

∥∥∥∥
2

)
,

and

l±(s) =
v2T t̃

2
s(s)− ∥x0

T − xs(s)∥22
2
(
(x0

T − xs(s))⊤eθ±(s) + vT t̃s(s)
) .

There may be at most two different solutions to equa-
tions (12) and (13). A point x ∈ BD(X0) needs also to
satisfy the second-order condition d2h(s)

ds2 > 0, where h(s′)
is defined in the proof of Lemma 2. When s is an endpoint
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Fig. 5. Example of dominance boundary. BD(X0) is shown with solid
lines.

of Is or a point where xs or t̃s is not differentiable, the part
of ∂E

(
x0
T ,xs(s), vT t̃s(s)

)
where (10) and (11) are satisfied

may also be included in BD(X0). An example is given as
follows to illustration the results in this section.

Example 1. Let ∂S be a straight line with a parametric
equation xs(s) = [s, 0]⊤ and S be the half plane above ∂S.
The initial position of the thief is x0

T = [0,−2]⊤. There is
two guarders whose initial positions are x0

D1
= [−2,−2]⊤

and x0
D2

= [1.5,−2.2]T . The capture radii are rD1 =
rD2 = 0.1. All players have a speed of 1. The boundary
BD(X0) is shown in Fig. 5. BD(X0) consists of two parts:
the curve x+(s) shown with red lines which is discontinuous
at sc = 0.13, and an ellipse arc of ∂E(x0

T ,xs(sc), vT t̃s(sc))
shown with a black curve. The curve x−(s), which is
shown with blue dashed lines, lies in S so that it is not
included in BD(X0). The dominance region outside S is
the region surrounded by BD(X0) and ∂S. A set of ellipses
E(x0

T ,xs(s), vT t̃s(s)) are also shown by dotted lines in the
figure to confirm that the obtained curve BD(X0) is indeed
the boundary of the dominance region. It can be seen from
the figure that these ellipses are tangent to the curve x+(s).

VI. CONCLUSION

In this paper, we have explored the utilization of ellipses
in two-phase multiplayer reach-avoid games. Specifically,
we have employed ellipses to solve two particular game
scenarios. Furthermore, we have introduced the concept of
dominance region to enhance the understanding of two-phase
reach-avoid games. The connection between dominance re-
gions and ellipses has been thoroughly examined. Addition-
ally, we have presented a methodology for constructing the
boundary of dominance regions. In the future, we hope to
study the further application of dominance regions in general
two-phase reach-avoid games.
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