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Abstract—The class of parameter-varying generalized Per-
sidskii systems is introduced. For models within this class,
characterized by nonlinearities satisfying the sector property,
the conditions for (integral) input-to-state stability are pro-
posed. These conditions are established using both, parameter-
dependent and parameter-independent, Lyapunov functions. To
formulate these conditions, parameterized matrix inequalities
are used, which can be reduced into linear ones under additional
assumptions concerning the model’s dependence on scheduling
variables. The efficiency of these stability conditions is illus-
trated through a numerical example.

Index Terms—Persidskii systems, LPV, Input-to-state stabil-
ity, LMIs

I. INTRODUCTION

The analysis of robust stability and the design of con-
trollers or estimators represent fundamental problems in the
field of automatic control theory [1], [2]. The input-to-state
stability framework [3], [4] has emerged as one of the most
widely used concepts for examining stability in the presence
of various forms of uncertainty. In the context of general non-
linear dynamical systems, the synthesis of standard control
or estimation algorithms can be challenging, often due to the
complexity involved in constructing a Lyapunov function for
stability assessment. A common way to overpass this issue
consists in using the canonical models: linear parameter-
varying (LPV) systems [5], [6], homogeneous dynamics [7],
Lur’e models [8], [9]. A variation of the latter is given
by Persidskii systems. This class of nonlinear models was
first introduced for stability analysis in [10], where a linear
combination of the integrals of the nonlinearities was used
as a Lyapunov function. That result was extended in [11] by
augmenting the Lyapunov function through a combination
of the absolute values of the states. Furthermore, Persidskii
systems were studied in the context of diagonal stability
[12], [13], sliding mode control [14], [15], [16] and Lur’e
systems [8], with applications to opinion dynamics [17],
neural networks [18], [19], [20] and digital filters [21].
Following the foundational results [10], [11], one of the
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main advantages of Persidskii dynamics is the availability
of a canonical form of Lyapunov function. Recently, several
additional results have been proposed to enhance the existing
theory, addressing various analysis problems [22], [23], [24],
[25], [26], [27]. These developments have a common feature:
they lead to the verification of linear matrix inequalities
(LMIs), which is an interesting and useful feature of this
class of nonlinear systems.

In many cases, it is not always possible to transform
the model of a process into a known canonical form. In
this way, the LPV framework is widely used, enabling the
equivalent representation of a nonlinear system in a linear
form with time-varying parameters [5], [6]. Subsequently,
this opens the door to the application of the large spectrum
of well-established methods and tools of linear system theory
(including quadratic or non-quadratic Lyapunov functions
[28]). Unfortunately, transformation of stabilizing nonlinear-
ities to LPV form may introduce some conservatism due to
a possible loss of stability property yielded by the nonlinear
dynamics. In this work, an extension of the LPV framework
to Persidskii systems is proposed, where the scheduling
parameters can represent the additional time- or state-varying
terms, parametric or signal uncertainty, etc., while the useful
(passive or negative feedback) nonlinearities are kept in the
model. Such a new development can help in analysis of a
wide class of nonlinear systems being close to the Persidskii
dynamics by using the related Lyapunov function, whose
application usually results in LMI constructive stability con-
ditions. It can also be linked with the absolute stability
analysis of Lur’e systems considering a set of nonlinearities
from a sector [29], [9], but here we will fix the nonlinearity
introducing the scheduling parameters in the matrices.

Notation

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers.

• | · | denotes the absolute value in R, ∥ · ∥ is used for the
Euclidean norm on Rn.

• For a (Lebesgue) measurable function d : R+ →
Rm and [t0, t1) ⊂ R+ define the norm ∥d∥[t0,t1) =
ess supt∈[t0,t1)

∥d(t)∥, then ∥d∥∞ = ∥d∥[0,+∞) and the
set of d with the property ∥d∥∞ < +∞ we further
denote as Lm

∞ (the set of essentially bounded measurable
functions).
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• A finite series of integers 1, 2, ..., n is denoted by 1, n,
and {1, n} = {1, 2, ..., n}.

• Denote the identity matrix of dimension n×n by In, the
vector of dimension n or the matrix of dimension n×m
with all elements equal 1 by 1n and 1n×m, respectively.

• diag{g} ∈ Dn
+ represents a diagonal matrix of dimen-

sion n×n with a vector g ∈ Rn
+ on the main diagonal,

where Dn
+ ⊂ Rn×n is the set of nonnegative diagonal

matrices.
• For a matrix A ∈ Rn×n, denote its ith row and column

by A(i) and A[i], respectively, for i = 1, n. The relation
P ≺ 0 (P ⪯ 0) means that a symmetric matrix P ∈
Rn×n is negative (semi-)definite.

II. PRELIMINARIES

In this paper, it is conventionally assumed that if the upper
limit of a summation or a sequence is smaller than the lower
one, then the corresponding terms (conditions) have to be
omitted.

A continuous function α : R+ → R+ belongs to the class
K if α(0) = 0 and the function is strictly increasing. The
function α : R+ → R+ belongs to the class K∞ if α ∈ K
and it is increasing to infinity. A continuous function β :
R+ × R+ → R+ belongs to the class KL if β(·, t) ∈ K for
each fixed t ∈ R+ and β(s, ·) is decreasing to zero for each
fixed s > 0.

Lemma (Finsler’s lemma). [30] Let x ∈ Rn\{0} and P,R ∈
Rn×n are symmetric, then x⊤Px ≺ 0 whenever x⊤Rx = 0
if and only if there exists ρ ∈ R such that P − ρR ≺ 0.

A. Input-to-state stability

Consider a nonlinear system:

ẋ(t) = f(x(t), d(t)), t ≥ 0, (1)

where x(t) ∈ Rn is the state, d(t) ∈ Rm is the external
input, d ∈ Lm

∞, and f : Rn+m → Rn is a locally Lipschitz
continuous function, f(0, 0) = 0. For an initial condition
x0 ∈ Rn and input d ∈ Lm

∞, define the corresponding
solutions by x(t, x0, d) for any t ≥ 0 for which the solution
exists.

In this work we will be interested in the following stability
properties [3], [4]:

Definition 1. The system (1) is called input-to-state practi-
cally stable (ISpS), if there are functions β ∈ KL, γ ∈ K
and a constant c ≥ 0 such that

∥x(t, x0, d)∥ ≤ β(∥x0∥, t) + γ(||d||[0,t)) + c ∀t ≥ 0

for any x0 ∈ Rn and d ∈ Lm
∞. The function γ is called

nonlinear asymptotic gain. The system is called input-to-
state stable (ISS) if c = 0.

Definition 2. The system (1) is called integral ISS (iISS), if
there are functions α ∈ K∞, γ ∈ K and β ∈ KL such that
for any x0 ∈ Rn and d ∈ Lm

∞ the estimate holds:

α(∥x(t, x0, d)∥) ≤ β(∥x0∥, t) +
t∫

0

γ(∥d(s)∥) ds ∀t ≥ 0.

These properties have the following characterizations in
terms of existence of Lyapunov functions:

Definition 3. A smooth function V : Rn → R+ is called
ISpS-Lyapunov function for the system (1) if there are r ≥ 0,
α1, α2, α3 ∈ K∞ and η ∈ K such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥),
DV (x)f(x, d) ≤ r + η(∥d∥)− α3(∥x∥)

for all x ∈ Rn and all d ∈ Rm. Such a function V is called
ISS-Lyapunov function if r = 0, and it is iISS-Lyapunov
function if additionally α3 : R+ → R+ is just a positive
definite function.

Note that an ISS-Lyapunov function can also satisfy the
following equivalent condition for some χ ∈ K:

∥x∥ > χ(∥d∥) ⇒ DV (x)f(x, d) ≤ −α3(∥x∥).

The relations between these Lyapunov characterizations
and the robust stability properties are given below:

Theorem 1. The system (1) is ISS (ISpS, iISS) if and only if
it admits an ISS (ISpS, iISS)-Lyapunov function.

A consequence of Theorem 1 and Definition 3 is that an
ISS system (1) is also iISS.

B. Parameter-varying Persidskii systems

Consider the following class of systems [31], [22]:

ẋ(t) = A0(θ(t))x(t) +

M∑
j=1

Aj(θ(t))f
j(Hjx(t)) + d(t),

(2)

where x(t) = [x1(t) . . . xn(t)]
⊤ ∈ Rn is the state vec-

tor, x(0) ∈ Rn; d(t) ∈ Rn is the external disturbance,
d ∈ Ln

∞; θ(t) ∈ Rq is the vector of time-varying param-
eters, θ ∈ Lq

∞; f j : Rkj → Rkj with diagonal structure
f j(s) = [f j

1 (s1) . . . f
j
kj
(skj

)]⊤, j = 1,M are continuous
functions ensuring existence of solutions of the system (2) at
least locally in the forward time; continuous matrix functions
Ag : Rq → Rn×kg for g = 0,M and matrices Hj ∈ Rkj×n

for j = 1,M are given. Further, for brevity and consistently
with (2) we use the convention k0 = n and H0 = In with
f0(x) = x.

The model (2) belongs to the class of Persidskii system
[11], [12] under the following sector condition imposed on
the nonlinearities: for any j = 1,M and i = 1, kj ,

sf j
i (s) > 0 ∀s ∈ R \ {0}.
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Consequently, all nonlinearities belong to a sector and may
take zero values at zero only. If θ(t) = const, H1 = In and
Ar = 0 for all r = 2,M , then we recover the system studied
by Persidskii in [11]. In the case of M = 1, (2) belongs
also to the class of Lur’e systems widely investigated in the
absolute stability theory [9].

After a proper re-indexing and decomposition of f j , there
exists ν ∈ {0,M} such that for all z = 1, ν and i = 1, kz:

lim
s→±∞

fz
i (s) = ±∞;

and there exists µ ∈ {ν,M} such that for all j = 1, µ and
i = 1, kj :

lim
s→±∞

∫ s

0

f j
i (σ)dσ = +∞.

Thus, some of the nonlinearities are radially unbounded, and
ν = 0 corresponds to the case when all nonlinearities are
bounded (at least for negative or positive argument).

III. PROBLEM STATEMENT

Consider a parameter-varying Persidskii (PVP) system (2).
The following assumptions are first introduced to formu-
late/state the problem addressed in this paper.

Assumption 1. Let θ(t) ∈ Θ, where Θ ⊂ Rq is a known
compact set.

Assumption 2. Let θ̇ ∈ Lq
∞ and ∥θ̇∥∞ ≤ θ̇max for a known

constant θ̇max > 0.

Assumptions 1 and 2 formulate standard hypotheses for
stability analysis of LPV systems: the first just restricts
the set of admissible values for the vector of scheduling
parameters, while the latter allows us to introduce in Lya-
punov functions the dependence on θ(t) [5]. In general, the
dependence on θ(t) should make the stability conditions less
restrictive. However, this comes at the cost of requiring a
more intricate numerical procedure for verification. In order
to make the conditions more constructive, we will consider
the case with linear dependence of the matrix functions in
the vector of scheduling parameters:

Assumption 3. Let Ag(θ) =
∑q

k=1 θkAgk for g = 0,M ,
where Agk ∈ Rn×kg are known matrices and θk ∈ [0, 1] for
k = 1, q,

∑q
k=1 θk = 1.

The objective of this work is to propose conditions of
IS(p)S and iISS for the system (2), using a parameter-
independent Lyapunov function under Assumption 1, or
parameter-dependent one introducing assumptions 1–3 (i.e.,
in both cases the information about the set Θ and the velocity
bound θ̇max should be used, but not the properties of a
particular trajectory θ(t)). The conventional LPV framework
transforms all nonlinearities, which may be difficult and re-
strictive, while the Persidskii or Lur’e system frameworks do
not consider uncertainty presented in the matrices describing
the dynamics. In this work we are going to fill these gaps.

IV. PARAMETER-INDEPENDENT LYAPUNOV FUNCTIONS

Recalling [22], [23], [25], consider the following structure
of a candidate Lyapunov function for (2):

V (x) = x⊤Px+ 2

M∑
j=1

kj∑
i=1

Λj
i

∫ H
(i)
j x

0

f j
i (s)ds, (3)

where P ∈ Rn×n is a symmetric matrix and Λj =
diag[Λj

1 . . .Λ
j
kj
] ∈ Dkj

+ are parameters to be tuned in order
that (3) verifies the properties stated in Definition 3.

Our main result is stated in the following theorem:

Theorem 2. Let Assumption 1 be satisfied. Assume there
exist matrices P⊤ = P ∈ Rn×n, Λj ∈ Dkj

+ for j = 1,M ,
Φ⊤ = Φ ∈ Rn×n, Ψ ∈ Rn×n and matrix functions Ωg :

Rq → Rn×kg , Υg,g : Rq → Dkg

+ (Υ̃g,g(θ) = H⊤
g Υg,g(θ)Hg)

for g = 0,M , Υ0,j : Rq → Dkj

+ (Υ̃0,j(θ) = H⊤
j Υ0,j(θ))

for j = 1,M , Υz,s : Rq → Dn
+ (Υ̃z,s(θ) = HzΥz,s(θ)H

⊤
s )

for z = 1,M − 1 and s = z + 1,M such that the following
matrix inequalities are verified for all θ ∈ Θ:

P ⪰ 0, Φ ≻ 0, Q(θ) ⪯ 0,

P + ρ1

µ∑
j=1

H
⊤

j ΛjHj ≻ 0,

ν∑
r=0

Υ̃r,r(θ) + ρ2

ν−1∑
z=1

ν∑
s=z+1

H⊤
z Υ̃z,s(θ)Hs

+ρ3

ν∑
j=1

H⊤
j Υ0,j(θ)Hj ≻ 0

for some ρ1, ρ2, ρ3 ∈ R, where

Q(θ) =



−Ψ⊤ −Ψ P +Ψ⊤A0 − Ω0 H⊤
1 Λ1 +Ψ⊤A1 − Ω1 · · · H⊤

MΛM +Ψ⊤AM − ΩM Ψ⊤

P +A⊤
0 Ψ− Ω⊤

0 Ω⊤
0 A0 +A⊤

0 Ω0 +Υ0,0 Ω⊤
0 A1 +A⊤

0 Ω1 + Υ̃0,1 · · · Ω⊤
0 AM +A⊤

0 ΩM + Υ̃0,M Ω⊤
0

Λ1H1 +A⊤
1 Ψ− Ω⊤

1 A⊤
1 Ω0 +Ω⊤

1 A0 + Υ̃⊤
0,1 Ω⊤

1 A1 +A⊤
1 Ω1 +Υ1,1 · · · Ω⊤

1 AM +A⊤
1 ΩM + Υ̃1,M Ω⊤

1

...
...

...
. . .

...
...

ΛMHM +A⊤
MΨ− Ω⊤

M A⊤
MΩ0 +Ω⊤

MA0 + Υ̃⊤
0,M A⊤

MΩ1 +Ω⊤
MA1 + Υ̃1,M · · · Ω⊤

MAM +A⊤
MΩM +ΥM,M Ω⊤

M
Ψ Ω0 Ω1 · · · ΩM −Φ


,
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then the system (2) is ISS. If the last inequality is replaced
with

M∑
r=0

Υ̃r,r(θ) + ρ2

M−1∑
z=1

M∑
s=z+1

H⊤
z Υ̃z,s(θ)Hs

+ρ3

M∑
j=1

H⊤
j Υ0,j(θ)Hj ≻ 0

satisfying for all θ ∈ Θ, then the system (2) is iISS.

All proofs are omitted due to space limitations.
Remark 1. A necessary condition for feasibility of the
matrix inequality Q(θ) ⪯ 0 required in the formulation of
Theorem 2 is that all matrices on the main diagonal of Q are
nonnegative definite, i.e., Ω⊤

g (θ)Ag(θ) + A⊤
g (θ)Ωg(θ) ⪯ 0

for g = 0,M , which can be easily checked separately. It
may also provide a hint on the choice of the structure of the
functions Ωg(θ) for known shape of Ag(θ).

A drawback of the conditions formulated in Theorem 2 is
that their verification for all θ ∈ Θ may be computationally
costly. Imposing affinity of the system matrix functions
Ag(θ) in θ and restricting the matrix functions Ωg(θ) to be
constant for all g = 0,M , these stability conditions can be
reduced to LMIs:

Corollary 1. Let assumptions 1 and 3 be satisfied. Assume
there exist matrices P⊤ = P ∈ Rn×n, Λj ∈ Dkj

+ for j =
1,M , Φ⊤ = Φ ∈ Rn×n, Ψ ∈ Rn×n, Ωg ∈ Rn×kg , Υg,g ∈
Dkg

+ (Υ̃g,g = H⊤
g Υg,gHg) for g = 0,M , Υ0,j ∈ Dkj

+ (Υ̃0,j =

H⊤
j Υ0,j) for j = 1,M , Υz,s ∈ Dn

+ (Υ̃z,s = HzΥz,sH
⊤
s )

for z = 1,M − 1 and s = z + 1,M such that the following
LMIs are verified:

P ⪰ 0, Φ ≻ 0; Qk ⪯ 0, ∀k = 1, q;

P + ρ1

µ∑
j=1

H
⊤

j Λ
jHj ≻ 0,

ν∑
r=0

Υ̃r,r + ρ2

ν−1∑
z=1

ν∑
s=z+1

H⊤
z Υ̃z,sHs + ρ3

ν∑
j=1

H⊤
j Υ0,jHj ≻ 0

for some ρ1, ρ2, ρ3 ∈ R, where Qk are given in (4), then the
system (2) is ISS. If the last LMI is replaced with

M∑
r=0

Υ̃r,r + ρ2

M−1∑
z=1

M∑
s=z+1

H⊤
z Υ̃z,sHs

+ρ3

M∑
j=1

H⊤
j Υ0,jHj ≻ 0,

then the system (2) is iISS.

V. PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS

Consider for (2) the following modification of (3):

V (x, θ) = x⊤P (θ)x+ 2

M∑
j=1

kj∑
i=1

Λj
i (θ)

∫ H
(i)
j x

0

f j
i (s)ds,

(5)

where P : Rq → Rn×n is a symmetric matrix function
and denote by Λj(θ) = diag[Λj

1(θ) . . .Λ
j
kj
(θ)] ∈ Dkj

+ a
nonnegative diagonal matrix function. We assume that V
is differentiable with respect to θ. In such a case, since
the coefficients Λj

i are assumed to be dependent on θ, the
derivative of (5) contains the integrals of the nonlinearities,
which requires the introduction of additional hypotheses on
their relations with nonlinearities of the system:

Assumption 4. Let assume that, for any j = 1,M and i =
1, kj , there exist W i,j

g,g ∈ Dkg

+ (W̃ i,j
g,g = H⊤

g W i,j
g,gHg) for

g = 0,M , W i,j
0,z ∈ Dkj

+ (W̃ i,j
0,z = H⊤

z W i,j
0,z) for z = 1,M ,

W i,j
k,s ∈ Dn

+ (W̃ i,j
k,s = HkW

i,j
k,sH

⊤
s ) for k = 1,M − 1 and

s = k + 1,M such that

∫ H
(i)
j x

0

f j
i (s)ds ≤

M∑
g=0

fg(Hgx)
⊤W i,j

g,gf
g(Hgx)

+2

M−1∑
k=0

M∑
s=k+1

fk(Hkx)
⊤W̃ i,j

k,sf
s(Hsx)

for all x ∈ Rn.

Assumption 4 is naturally satisfied for polynomial
functions, for example: if f j

i (s) = sa with

a > 0, then
∫H

(i)
j x

0 f j
i (s)ds = 1

1+a

(
H

(i)
j x

)1+a

≤(
H

(i)
j f0(H0x)

)(
W i,j

0,j

)
i,i

f j
i (H

(i)
j x) for any(

W i,j
0,j

)
i,i

≥ 1
1+a all other elements in the matrices

W i,j
k,s can be selected to be zero.

Theorem 3. Let assumptions 1, 2 and 4 be satisfied. Assume
there exist matrices Φ⊤ = Φ ∈ Rn×n, Ψ ∈ Rn×n, symmetric
continuously differentiable matrix functions P : Rq → Rn×n,
Λj : Rq → Dkj

+ for j = 1,M , and matrix functions Ωg :

Rq → Rn×kg , Υg,g : Rq → Dkg

+ (Υ̃g,g(θ) = H⊤
g Υg,g(θ)Hg)

for g = 0,M , Υ0,j : Rq → Dkj

+ (Υ̃0,j(θ) = H⊤
j Υ0,j(θ)) for

j = 1,M , Υz,s : Rq → Dn
+ (Υ̃z,s(θ) = HzΥz,s(θ)H

⊤
s )

for z = 1,M − 1 and s = z + 1,M such that the fol-
lowing matrix inequalities are verified for all θ ∈ Θ and
θ̇ ∈ [−θ̇max, θ̇max]

q:

P (θ) ⪰ 0, Φ ≻ 0, Q(θ, θ̇) ⪯ 0,

P (θ) + ρ1

µ∑
j=1

H
⊤

j Λj(θ)Hj ≻ 0,

ν∑
r=0

Υ̃r,r(θ) + ρ2

ν−1∑
z=1

ν∑
s=z+1

H⊤
z Υ̃z,s(θ)Hs

+ρ3

ν∑
j=1

H⊤
j Υ0,j(θ)Hj ≻ 0

for some ρ1, ρ2, ρ3 ∈ R, where the matrices are defined in
(6), then the system (2) is ISS. If the last inequality is replaced
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Qk =



−Ψ⊤ − Ψ P + Ψ⊤A0k − Ω0 H⊤
1 Λ1 + Ψ⊤A1k − Ω1 · · · H⊤

MΛM + Ψ⊤AMk − ΩM Ψ⊤

P + A⊤
0kΨ − Ω⊤

0 Ω⊤
0 A0k + A⊤

0kΩ0 + Υ0,0 Ω⊤
0 A1k + A⊤

0kΩ1 + Υ̃0,1 · · · Ω⊤
0 AMk + A⊤

0kΩM + Υ̃0,M Ω⊤
0

Λ1H1 + A⊤
1kΨ − Ω⊤

1 A⊤
1kΩ0 + Ω⊤

1 A0k + Υ̃⊤
0,1 Ω⊤

1 A1k + A⊤
1kΩ1 + Υ1,1 · · · Ω⊤

1 AMk + A⊤
1kΩM + Υ̃1,M Ω⊤

1

...
...

...
. . .

...
...

ΛMHM + A⊤
MkΨ − Ω⊤

M A⊤
MkΩ0 + Ω⊤

MA0k + Υ̃⊤
0,M A⊤

MkΩ1 + Ω⊤
MA1k + Υ̃1,M · · · Ω⊤

MAMk + A⊤
MkΩM + ΥM,M Ω⊤

M

Ψ Ω0 Ω1 · · · ΩM −Φ


(4)

Q =



−Ψ⊤ −Ψ P +Ψ⊤A0 − Ω0 H⊤
1 Λ1 +Ψ⊤A1 − Ω1 · · · H⊤

MΛM +Ψ⊤AM − ΩM Ψ⊤

P +A⊤
0 Ψ− Ω⊤

0 Ω⊤
0 A0 +A⊤

0 Ω0 + Γ0,0 Ω⊤
0 A1 +A⊤

0 Ω1 + Γ0,1 · · · Ω⊤
0 AM +A⊤

0 ΩM + Γ0,M Ω⊤
0

Λ1H1 +A⊤
1 Ψ− Ω⊤

1 A⊤
1 Ω0 +Ω⊤

1 A0 + Γ⊤
0,1 Ω⊤

1 A1 +A⊤
1 Ω1 + Γ1,1 · · · Ω⊤

1 AM +A⊤
1 ΩM + Γ1,M Ω⊤

1

...
...

...
. . .

...
...

ΛMHM +A⊤
MΨ− Ω⊤

M A⊤
MΩ0 +Ω⊤

MA0 + Γ⊤
0,M A⊤

MΩ1 +Ω⊤
MA1 + Γ1,M · · · Ω⊤

MAM +A⊤
MΩM + ΓM,M Ω⊤

M
Ψ Ω0 Ω1 · · · ΩM −Φ


,

Γ0,0(θ, θ̇) =

q∑
z=1

θ̇z
∂P (θ)

∂θz
+ 2

M∑
j=1

kj∑
i=1

W i,j
g,g

q∑
z=1

max

{
0, θ̇z

∂Λj
i (θ)

∂θz

}
+Υ0,0(θ), (6)

Γj,j(θ, θ̇) = 2

M∑
j=1

kj∑
i=1

W i,j
j,j

q∑
z=1

max

{
0, θ̇z

∂Λj
i (θ)

∂θz

}
+Υj,j(θ), j = 1,M,

Γk,s(θ, θ̇) = 2

M∑
j=1

kj∑
i=1

W̃ i,j
k,s

q∑
z=1

max

{
0, θ̇z

∂Λj
i (θ)

∂θz

}
+ Υ̃k,s

with
M∑
r=0

Υ̃r,r(θ) + ρ2

M−1∑
z=1

M∑
s=z+1

H⊤
z Υ̃z,s(θ)Hs

+ρ3

M∑
j=1

H⊤
j Υ0,j(θ)Hj ≻ 0

satisfying for all θ ∈ Θ, then the system (2) is iISS.

Verification of matrix inequalities formulated in Theorem
3 is more complicated since they depend on two independent
vector variables θ and θ̇.

VI. EXAMPLE

Consider a mechanical system with cubic velocity friction
term modeled as:

ẋ1(t) = x2(t),

ẋ2(t) = −a1(t)x1(t)− a2(t)x2(t)− a3(t)x
3
2(t) + d(t),

where x1(t), x2(t) ∈ R are the system position and velocity,
respectively, d(t) ∈ R is a bounded disturbance; ai(t) for
i = 1, 2, 3 are positive time-varying parameters, whose
instantaneous values are unknown, but the sets of admissible
deviations have been identified: aimin ≤ ai(t) ≤ aimax for
all t ≥ 0 with some 0 < aimin ≤ aimax < +∞ being
the minimal and maximal possible values, respectively, for
these parameters. Our goal is to verify robust stability of this
system using the proposed conditions. It is easy to check that
this model can be rewritten in the form (2) for M = 1 and

f1(s) = s3, H1 = [0 1], k1 = 1 satisfying sector condition,
with

Ag(θ) =

q∑
k=1

θkAgk, g = 0, 1, q = 8,

A01 = A05 =

[
0 1

−a1min −a2min

]
,

A02 = A06 =

[
0 1

−a1min −a2max

]
,

A03 = A07 =

[
0 1

−a1max −a2min

]
,

A04 = A08 =

[
0 1

−a1max −a2max

]
,

A11 = · · · = A14 =

[
0

−a3min

]
,

A15 = · · · = A18 =

[
0

−a3max

]
,

where
∑q

k=1 θk = 1 and θk ∈ [0, 1]. The compact set Θ ⊆
[0, 1]q can be straightforwardly computed, then Assumption
1 is verified. Moreover, it is clear that Assumption 3 is also
satisfied, therefore, the LMIs of Corollary 1 can be used to
check ISS property of this time-varying nonlinear system.

Let

a1min = 2, a2min = 5, a3min = 0.1,

a1max = 3, a2max = 10, a3max = 0.2,
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Figure 1. The results of simulation for mechanical system: x(t) versus time
t [sec]

then the LMIs of Corollary 1 are verified (up to numerical
reliability, with eigenvalues of Qk lying in the numeric
precision bundle). Select

d(t) =

[
1 + sin(6t)
1 + cos(3t)

]
, a1(t) = 2 + sin2(3t),

a2(t) = 5 + 5 cos2(3t), a3(t) = 0.1 + 0.1 sin2(3t),

then in Fig. 1, the results of simulation are shown for
ten different initial conditions chosen randomly in the set
[−10, 10]2. All trajectories converge to a vicinity of the origin
proportional to the amplitude of the perturbation d, which is
an illustration of ISS behavior.

VII. CONCLUSION

In this paper, the class of Parameter-Varying Persid-
skii (PVP) systems is introduced. This class serves as a
framework to model complex dynamics involving multiple
nonlinearities and various uncertainties. Within this frame-
work, we present conditions for Input-to-State Stability
(ISS) and integral Input-to-State Stability (iISS) in the form
of matrix inequalities. These conditions are derived using
either parameter-independent or parameter-dependent Lya-
punov functions. Future directions for research include the
design of stabilizing controls and observers for PVP systems.
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