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Abstract— Despite the celebrated success of linear quadratic
Gaussian control (LQG) for stochastic systems, LQG ap-
proaches are inefficient in handling systems with non-Gaussian
noises. This paper is concerned with linear quadratic control
of discrete-time systems with bounded noises and unobservable
system states. We describe such noises and system states by
ellipsoidal sets, enabling the establishment of boundaries for
those uncertainties in the control. Further, we learn and update
the ellipsoidal sets for the system states by an ellipsoidal
set-membership filter. With the learned ellipsoidal sets, we
derive a robust state-feedback optimal control law by solving
a rendered semidefinite programming problem. Simulation
results demonstrate the enhanced control performance by the
proposed method.

I. INTRODUCTION

Linear quadratic control (LQC) for systems corrupted by
stochastic noises has been studied extensively from both
theoretical and practical perspectives [1], [2]. The majority
of LQC controller design assumes explicit distribution of
noises in the system and prior knowledge about system un-
certainties [3], [4]. A well-known example is linear quadratic
Gaussian control (LQG) [1], where the process noises and
measurement noises are hypothesized as Gaussian noises
and thereafter, Kalman filter can serve as a perfect system
state estimation for the control. However, practical systems
are more than often subject to a shortage of information
to develop probabilistic models, e.g., for the probability
distribution of process or measurement noise [5].

Different from the stochastic control that depends on
explicit noise distributions, robust control provides an alter-
native solution with bounded noises [2], [6], [7]. Specifically,
robust control describes uncertainties, e.g., unknown noises,
by a feasible set which represents the boundary of possible
values for all the unknown parameters. Using the concept of
feasible set, robust control looks into a conservative control
law to guarantee the control performance in the worst-case
scenarios. A representative example is the min-max control
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for LQC problem using robust optimization framework [2].
Nevertheless, robust optimization based methods assume that
the feasible sets are fixed over the entire control horizon. As
a result, the fixed sets cannot reflect the real system dynamics
during the control and can lead to inefficient uncertainty
representation. Further, the fixed sets are usually initiated
to be large enough to cover all worst cases that might occur,
which brings over-robustness (over-conservativeness) to the
control and sacrifice the control accuracy.

A possible way to reduce the conservativeness is to
narrow the feasible set boundary. This can be achieved
using the information from observations to learn the feasible
set and reduce the set size. Set-membership filter provides
an applicable approach to solve the parameter estimation
problems under bounded uncertainties [8], [9]. Recently,
several works have integrated set-membership based esti-
mation into robust optimization to reduce conservativeness.
E.g., Lorenzen et al. [6] and Arcari et al. [10] proposed
robust model predictive control for uncertain systems, where
they use set-membership filter to update the feasible sets
for unknown parameters of the state space models. Parsi
et al. [7] developed a dual control strategy for output
tracking of systems with unknown yet bounded parameters
and disturbances, and utilized set-membership estimation
to renew uncertainty sets during the control. However, a
significant disadvantage of the set-membership approach is
the usage of polytope sets in uncertainty estimation, which
can cause algorithm complexity to increase dramatically with
the system dimension.

To address the complexity issue, a potential solution is to
use ellipsoidal sets instead of polytopes in set-membership
estimation, which leads to mitigated algorithm and computa-
tion complexity [11]. Relevant studies can be found in [11],
[12] where Qian et al. developed robust optimal tracking
control laws for systems whose parameters and noises are
described by ellipsoidal sets, and applied the ellipsoidal
bounding algorithm in system parameter identification. Paris
et al. [13] and Iannelli et al. [14] solved the LQC problem
with ellipsoid bounded uncertainties. However, the existing
ellipsoid-based approaches assume that the system states are
completely observable. We remark that in most practical
scenarios, the system state is not directly observable and
the observations used in system state estimation are usually
corrupted by noises.

Motivated by the above discussion, this work investigates
the LQC problem of linear systems with process noises
and observation noises described by ellipsoidal sets. We
contribute to this topic in that (i) we adopt ellipsoidal sets
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to represent and handle unobservable system states and
unknown process and observation noises in LQC, which is
prohibitive for Kalman filter-based estimation used in LQG
that merely deals with Gaussian noises; (ii) we integrate
ellipsoidal set-membership filter to learn and reduce the
uncertainty boundaries of the unobservable system states;
and (iii) we derive a robust control law based on ellipsoidal
set estimation and robust optimization, and we consider both
the noise and the state estimation error in the control law
derivation. We demonstrate how our method improves the
LQC performance in comparison with robust control with
fixed feasible sets [2].

This paper is organized as follows. We formulate the linear
quadratic control problem with noises bounded by ellipsoidal
sets in Section II. Section III shows the ellipsoidal set
learning for system state estimation, and Section IV presents
the optimal robust control law derivation. In Section V,
numerical simulations are conducted to demonstrate the
effectiveness of our approach. We conclude our work in
Section VI.

II. PROBLEM STATEMENT

This work considers the control of the following discrete-
time linear dynamic system

x(k + 1) = A(k)x(k) +B(k)u(k) +w(k),

k = 0, 1, · · · , N − 1,
(1)

where x(k) ∈ Rn is the state vector and is not observable,
u(k) ∈ Rr denotes the control vector, matrices A(k) ∈
Rn×n and B(k) ∈ Rn×r are known, w(k) ∈ Rn is the
process noise. We describe the system observation y(k) as

y(k) = C(k)x(k) + v(k), k = 1, 2, · · · , N, (2)

where C(k) ∈ Rm×n is a known matrix, v(k) ∈ Rr is the
observation noise.

We assume the process and observation noises are bounded
in the following ellipsoidal sets W(k) and V(k), respectively

W(k) ≜
{
w(k) ∈ Rn

∣∣wT (k)P−1
w (k)w(k) ≤ 1

}
, (3)

V(k) ≜
{
v(k) ∈ Rm

∣∣vT (k)P−1
v (k)v(k) ≤ 1

}
, (4)

where Pw and Pv are the matrices defining the shape, size,
and orientation of the ellipsoids. Beyond that no information
about the noises is available. We also assume the initial
state vector x(0) is unknown yet bounded by the following
ellipsoid

X (0) ≜
{
x(0) ∈ Rn

∣∣∣[x(0)− x̄0]
T
P−1

0 [x(0)− x̄0] ≤ 1
}
,

(5)
where x̄0 is the center of the ellipsoidal set, and P−1

0 is the
ellipsoid shape matrix.

The objective in this control is to gain a control sequence
{u(0), u(1), · · · , u(N − 1)}, which minimizes the perfor-
mance index below

J = xT (N)Q(N)x(N) +

N−1∑
k=0

{
xT (k)Q(k)x(k)

+ uT (k)R(k)u(k)
}
,

(6)

where Q(k) ∈ Rn×n and R(k) ∈ Rr×r are positive semi-
definite and positive definite symmetric matrices, respec-
tively.

Our hypothesis is that the process noises, observation
noises, and the system state are of unknown distributions,
and each of them is bounded in an ellipsoidal set. In that
way, the control will be different from LQG where the
noises and states possess Gaussian distributional property
and the resulted solution is orientated by Gaussian associated
approaches. Specifically, instead of solving the minimization
of expectation of cost function J as is in LQG, we consider
the minimization of the worst-case of J under the ellipsoidal-
set-bounded noises and system states. We formulate the
control objective as the solving of the following constrained
optimization problem

(P) : min
{u(0),··· ,u(N−1)}

max
{w(k),v(k)}

J

s.t. x(k + 1) = A(k)x(k) +B(k)u(k) +w(k),

y(k) = C(k)x(k) + v(k),

wT (k)P−1
w (k)w(k) ≤ 1,

vT (k)P−1
v (k)v(k) ≤ 1,

k = 0, 1, · · · , N − 1.

(7)

In problem (P), the cost J is a function of system state x(k),
which is unobservable and bounded in an ellipsoidal set. In
addressing the unavailability of x(k), this study estimates
x(k) based on the observations and control signals. Such
an estimation is achieved through ellipsoidal set learning as
elaborated in Section III. Since the estimation error of system
state can negatively affect the control, we take into account
the estimation error in deriving the robust control law based
on the ellipsoidal sets, as detailed in Section IV.

III. ELLIPSOIDAL SET LEARNING

This section details the learning of ellipsoidal sets for the
unobservable system states x(k). As shown in (5), the initial
state is confined in an ellipsoidal set, which is sufficiently
large to cover all possible worst cases. Here we utilize the
system observations to learn and reduce the size of the
ellipsoidal sets iteratively, thus mitigating uncertainties in the
control. Following the main technique in [8], we describe the
ellipsoidal set learning in Theorem 1.

Theorem 1. [8] Consider a linear system described by (1)
and (2), where the noises w(k) and v(k) are sequences of
uncertain variables confined in ellipsoidal sets (3) and (4),
respectively. Let the initial system state be confined in the
ellipsoidal set (5). Then the ellipsoidal set for the state x(k)
given observation y(k) is

X (k|k) ≜ {x(k) ∈ Rn| [x(k)− x̂(k|k)]T P−1(k|k)
[x(k)− x̂(k|k)] ≤ 1}.

(8)

Define the scalar parameters pk ∈ (0,∞) and qk ∈ [0,∞),
and then we update x̂(k|k) and P (k|k) recursively by two
periods:
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(i) time update

x̂(k|k − 1) = A(k − 1)x̂(k − 1|k − 1) +B(k − 1)u(k − 1),
(9)

P (k|k − 1) = (p−1
k + 1)A(k − 1)P (k − 1|k − 1)

AT (k − 1) + (pk + 1)Pw(k),
(10)

and (ii) observation update

K(k) = P (k|k − 1)CT (k)
[
C(k)P (k|k − 1)CT (k)

+q−1
k Pv(k)

]−1
,

(11)

x̂(k|k) = x̂(k|k − 1) +K(k) [y(k)−C(k)x̂(k|k − 1)] ,
(12)

P (k|k) = {[I −K(k)C(k)]P (k|k − 1) [I −K(k)C(k)]
T

+q−1
k K(k)Pv(k)K

T (k)}βk,
(13)

ϵ(k) = y(k)−C(k)x̂(k|k − 1), (14)

βk = 1 + qk − ϵT (k)
[
q−1
k Pv(k)C(k)P (k|k − 1)

CT (k)
]−1

ϵ(k).
(15)

( 1| 1)k k- -( 1| 1( 1| 1( 1| 1( 1| 1( 1

( | 1)k k -( |( |

'( | 1)k k -| 1| 1| 1| 1
( 1)k -( 1)( 1)( 1)( 1)

Time update

Observation update

( | 1)k k -( |( |

( )k( )( )

( | )k k

Fig. 1. Geometrical description: learning progress of ellipsoidal set for the
system state at the k instant. Ellipsoids in this figure denote boundaries
of feasible sets, which we call ellipsoidal sets. The crosses are centres
of the ellipsoids, or ellipsoidal sets. The dark red ellipsoid during the
observation update represents the set X (k|k), where the position of the
ellipsoid is determined by the ellipsoid center x̂(k|k), and the ellipsoid
shape is determined by the matrix P (k|k) cf. Equation 8.

Remark 1. Fig. 1 geometrically explains the ellipsoidal
set learning process in Theorem 1, taking an example of
ellipsoidal set for 2-dimensional system states. During the
time update period, the ellipsoidal set X (k − 1|k − 1)
is linearly transformed to X ′(k|k − 1), where the centre
is x̂(k|k − 1) obtained by (9), and the shape matrix is
calculated as A(k − 1)P (k − 1|k − 1)AT (k − 1). The

ellipsoidal set X (k|k− 1) is gained as the optimal ellipsoid
containing the vector sum of two ellipsoids X ′(k|k − 1)
and W(k − 1), where the shape matrix P (k|k − 1) is
obtained by (10). During the observation update period, we
use the information of system observation y(k) to update
the system state represented by the ellipsoid X (k|k − 1).
Particularly, we calculate the ellipsoidal set X (k|k) as the
the optimal ellipsoid that contains the intersection of two
sets O(k) and X (k|k − 1), where O(k) = {x(k) : (y(k)−
C(k)x(k))TP−1

v (k)(y(k)−C(k)x(k))} is an ellipsoidal set
which confines the state values consistent with the current
observation y(k). The centre x̂(k|k) and the shape matrix
P (k|k) of the updated ellipsoidal set can be obtained by (12)
and (13), respectively.

Remark 2. In Theorem 1, the scalar parameters pk and qk
can be obtained by different criteria, and here we choose the
minimum trace criterion [8]. Under this criterion, pk satisfies

pk =

(
tr(A(k − 1)P (k − 1|k − 1)AT (k − 1))

tr(Pw(k))

)1/2

,

(16)
and the parameter qk satisfies

∑n
j=1 diagj(V

−1P (k|k − 1)V )
λq(j)

(1+qkλq(j))2∑n
j=1 diagj(V

−1P (k|k − 1)V ) 1
(1+qkλq(j))

=
β′
k

βk
, (17)

where V DV −1 = P (k|k − 1)CT (k)P−1
v (k)C(k), and D

is a diagonal matrix containing eigenvalues λq(j) of matrix
P (k|k− 1)CT (k)P−1

v (k)C(k) on its diagonal, and V is a
matrix with the corresponding eigenvectors as its columns.
diagj denotes the j-th diagonal element of the matrix, and n
is the number of the eigenvalues. β′

k is the partial derivative
of βk with respect to qk, given by

β′
k = 1− ϵT (k)

[
q−1
k Pv(k)C(k)P (k|k − 1)CT (k)

]−1

q−2
k Pv(k)

[
q−1
k Pv(k)C(k)P (k|k − 1)CT (k)

]−1
ϵ(k),

(18)
Note that (17) does not have a solution if(

1− ϵT (k)P−1
v (k)ϵ(k)

)
tr (P (k|k − 1))−

tr
(
P (k|k − 1)CT (k)P−1

v (k)C(k)P (k|k − 1)
)
> 0,

(19)
and then qk = 0 is optimal.

IV. ROBUST OPTIMAL CONTROL BASED ON
ELLIPSOIDAL SET LEARNING

This section derives the control law upon the estimated
system state that are iteratively learned by ellipsoidal set
learning. As such, our approach differs from existing so-
lutions to LQC control using fixed estimated value for
system state [2]. Further, we add a constraint in the control
problem (7), i.e., the state estimation error induced by the
ellipsoidal set learning. Taking the estimation error into
consideration as a constraint and penalizing this constraint in
the control law derivation enables us to improve the control
performance of our approach. Our control law derivation
based on learned system state is described in the following.
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With the ellipsoidal set learning algorithm in Theorem 1,
we obtain the updated system state sets at the instant k as{
x(k) ∈ Rn| [x(k)− x̂(k|k)]T P−1(k|k) [x(k)− x̂(k|k)] ≤ 1

}
.

(20)
We use the center of the updated ellipsoidal set x̂(k|k) to

represent the value of the system state, and then, the state
learning error is defined as

η(k) = x(k)− x̂(k|k). (21)

Substitute (21) into (20), and we can obtain the boundary
of the state estimation error described by the ellipsoidal set
below {

η(k) ∈ Rn
∣∣ηT (k)P−1(k|k)η(k) ≤ 1

}
. (22)

Integrate the constraint (22) into the problem (P) in (7), and
then we reformulate this problem to the following truncated
robust control problem from instant t to N :

(Pt) : min
{u(k)}|N−1

k=t

max
{w(k),v(k)}|N−1

k=t

J(t)

s.t. x(k + 1) = A(k)x(k) +B(k)u(k) +w(k),

y(k) = C(k)x(k) + v(k),

ηT (k)P−1(k|k)η(k) ≤ 1,

wT (k)P−1
w (k)w(k) ≤ 1,

vT (k)P−1
v (k)v(k) ≤ 1,

k = t, t+ 1, · · · , N − 1,
(23)

where the cost function J(t) is defined as

J(t) =

N∑
k=t

xT (k)Q(k)x(k) +

N−1∑
k=t

uT (k)R(k)u(k). (24)

Note that the first component u(t) in the solved control
sequences {u(k)}|N−1

k=t is the control law at the instant t.
We detail the derivation of the control law by solving the
problem (Pt) in (23) in the following.

Lemma 1. The system state vector at the instant k can be
expressed as

x(k) = Ãk−1
t x(t) + B̃k−1

t Ut + C̃k−1
t Wt (25)

for any k = t, t + 1, · · · , N − 1, where Ãk−1
t ∈ Rn×n,

B̃k−1
t ∈ Rn×(N−t)·r, C̃k−1

t ∈ Rn×(N−t)·n, Ut ∈ R(N−t)·r,
Wt ∈ R(N−t)·n are respectively defined as

Ãk−1
t =

{ ∏k−1
i=t A(i) for k ⩾ t+ 1

1 for else
, (26)

B̃k−1
t =

[
Ãk−1

t+1B(t) · · · B(k − 1) 0n×(N−k)·r
]
,

(27)
C̃k−1

t =
[
Ãk−1

t+1 Ãk−1
t+2 · · · I 0n×(N−k)·n

]
, (28)

Ut =
[
uT (t) uT (t+ 1) · · · uT (N − 1)

]T
, (29)

Wt =
[
wT (t) wT (t+ 1) · · · wT (N − 1)

]T
. (30)

Proof. The proof is immediate with the system dynamic (1).

Lemma 2. The cost function J(t) in (24) can be expressed
as

J(t) =xT (t)Atx(t) +UT
t BtUt + 2bTt Ut

+W T
t CtWt + 2cTt Wt + 2UT

t DtWt,
(31)

where At ∈ Rn×n, Bt ∈ R(N−t)·r×(N−t)·r, Ct ∈
R(N−t)·n×(N−t)·n, Dt ∈ R(N−t)·r×(N−t)·n, bt ∈ R(N−t)·r,
ct ∈ R(N−t)·n are respectively defined as

At =

N∑
k=t

(Ãk−1
t )TQ(k)Ãk−1

t , (32)

Bt =

N∑
k=t+1

(B̃k−1
t )TQ(k)B̃k−1

t

+ diag(R(t),R(t+ 1), · · · ,R(N − 1)),

(33)

Ct =

N∑
k=t+1

(C̃k−1
t )TQ(k)C̃k−1

t , (34)

Dt =

N∑
k=t+1

(B̃k−1
t )TQ(k)C̃k−1

t , (35)

bt =

(
N∑

k=t+1

(B̃k−1
t )TQ(k)Ãk−1

t

)
x(t), (36)

ct =

(
N∑

k=t+1

(C̃k−1
t )TQ(k)Ãk−1

t

)
x(t). (37)

Proof. By substituting Equation (25) into the first part of
cost function J(t), we obtain

J(t) =

N∑
k=t

xT (k)Q(k)x(k) +

N−1∑
k=t

uT (k)R(k)u(k)

= xT (t)

(
N∑
k=t

(Ãk−1
t )TQ(k)Ãk−1

t

)
x(t)

+

(
N∑

k=t+1

2xT (t)(Ãk−1
t )TQ(k)B̃k−1

t

)
Ut

+

(
N∑

k=t+1

2xT (t)(Ãk−1
t )TQ(k)C̃k−1

t

)
Wt

+UT
t

(
N∑

k=t+1

(B̃k−1
t )TQ(k)B̃k−1

t

)
Ut

+UT
t

(
N∑

k=t+1

2(B̃k−1
t )TQ(k)C̃k−1

t

)
Wt

+W T
t

(
N∑

k=t+1

(C̃k−1
t )TQ(k)C̃k−1

t

)
Wt

+UT
t diag(R(t),R(t+ 1), · · · ,R(N − 1))Ut.

(38)

The lemma then follows based on the definition in (32), (33),
(34), (35), (36), and (37).
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Lemma 3. With estimation error of the state given by (21),
the cost function J(t) in (31) can be rewritten in the form

J(t) =x̂T (t|t)Atx̂(t|t) +UT
t BtUt + 2b̂Tt Ut + ξTt Ĉtξt

+ 2ĉTt ξt + 2UT
t D̂tξt,

(39)
where b̂t ∈ R(N−t)·r, Ĉt ∈ R(N−t+1)·n×(N−t+1)·n, ĉt ∈
R(N−t)·n+1, D̂t ∈ R(N−t)·r×((N−t)·r+n), ξt ∈ R(N−t)·n+1

are respectively defined as

b̂t =

(
N∑

k=t+1

(B̃k−1
t )TQ(k)Ãk−1

t

)
x̂(t|t), (40)

Ĉt =

[
At ST

c

Sc Ct

]
,Sc =

N∑
k=t+1

(C̃k−1
t )TQ(k)Ãk−1

t ,

(41)

ĉt =

[
0(∑N

k=t+1(C̃
k−1
t )TQ(k)Ãk−1

t

)
x̂(t|t)

]
, (42)

D̂t =
[ ∑N

k=t+1(B̃
k−1
t )TQ(k)Ãk−1

t Dt

]
, (43)

ξTt =
[
ηT (t) W T

t

]
. (44)

Proof. The lemma follows by recalling the cost function in
(31), and substituting x(t) = x̂(t|t) + η(t) yields to

J(t) = (x̂(t|t) + η(t))T (t)At(x̂(t|t) + η(t)) +UT
t BtUt

+ 2

((
N∑

k=t+1

(B̃k−1
t )TQ(k)Ãk−1

t

)
(x̂(t|t) + η(t))

)T

Ut

+ 2

((
N∑

k=t+1

(C̃k−1
t )TQ(k)Ãk−1

t

)
(x̂(t|t) + η(t))

)T

Wt

+W T
t CtWt + 2UT

t DtWt.
(45)

By collecting all the terms in (45), we obtain (39).

Theorem 2. The problem (Pt) in (23) is equivalent to the
following formulation:

(Pt) : min
zt

ρt

s.t.

 I zt Ft

zT
t ρt − τ1 − τ2(N − t) −hT

t

F T
t −ht Gt

 ≥ 0,

(46)
where ρt, zt, τ1, τ2 are decision variables. The vector ht and
the matrix Ft, Mη(t), MW

t , Gt are respectively defined as

ht = ĉt − D̂T
t B−1

t b̂t, (47)

Ft = B
−1/2
t D̂t. (48)

Mη(t) =

[
P−1(t) 0

0 0

]
, (49)

MW
t =

[
0 0
0 PW

t

]
, (50)

Gt = −Ĉt + τ1M
η(t) + τ2M

W
t + F T

t Ft , (51)

where PW
t = diag(P−1

w (t), · · · ,P−1
w (N − 1)). The corre-

sponding control vector Ut is calculated by

Ut = B
−1/2
t zt − B−1

t b̂t, (52)

and the control law at the instant t is Ut’s first element:

u(t) = Ut(0). (53)

Proof. According to the definition of Bt in (33), Bt is
positive definite since Q(k) ⪰ 0 and R(k) ≻ 0. Therefore,
B−1

t exists and is also symmetric positive definite. Then
we can obtain (B

−1/2
t )T = B

−1/2
t . Substituting the control

vector in (52) into the cost function (39) yields

J(t) = x̂T (t|t)Atx̂(t|t) + zT
t zt − b̂Tt B−1

t b̂t + ξTt Ĉtξt

+ 2
(
ĉTt − b̂Tt (B

−1
t )T D̂t

)
ξt + 2zT

t (B
−1/2
t )T D̂tξt .

(54)
With the definitions in (47) and (48), J(t) can be rewritten
as

J(t) = zT
t zt + 2hT

t ξt + 2zT
t Ftξt + ξTt Ĉtξt + const.

(55)
Therefore, the problem (Pt) in (23) can be reformed as

(Pt) : min
zt

max
{w(k),η(t)}

zT
t zt + 2hT ξ + 2zT

t Fξ + ξT Ĉ ξ

s.t. wT (k)P−1
w (k)w(k) ≤ 1, k = t, t+ 1, · · · , N − 1,

ηT (t)P−1(t)η(t) ≤ 1.
(56)

We introduce an auxiliary variable ρt and rewrite (56) as

(Pt) : min
zt

ρt

s.t. ρt − zT
t zt − 2hT

t ξt − 2zT
t Ftξt − ξTt Ĉtξt ≥ 0,

W T
t PW

t Wt ≤ N − t,

PW
t = diag(P−1

w (t), · · · ,P−1
w (N − 1)),

ηT (t)P−1(t)η(t) ≤ 1.
(57)

The first constraint in problem (57) can be reformulated as[
1
ξt

]T [
ρt − zT

t zt −hT
t − zT

t Ft

−ht − F T
t zt −Ĉt

] [
1
ξt

]
≥ 0.

(58)
The second constraint is rewritten as[

η(t)
Wt

]T [
0 0
0 PW

t

] [
η(t)
Wt

]
≤ N − t . (59)

With the definition of matrix MW
t in (50), this constraint

can be reformed as[
1
ξt

]T [
N − t 0
0 −MW

t

] [
1
ξt

]
≥ 0 . (60)

The third constraint can be rewritten as[
η(t)
Wt

]T [
P−1(t) 0

0 0

] [
η(t)
Wt

]
≤ 1 . (61)

With the definition of matrix Mη(t) in (49), this constraint
can be reformed as[

1
ξt

]T [
1 0
0 −Mη(t)

] [
1
ξt

]
≥ 0. (62)
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According to the S-procedure [15], for all ξt that satisfies
the constraints in (60) and (62), the constraint in (58) also
holds if there exist τ1 ≥ 0 and τ2 ≥ 0 such that[

ρt − zT
t zt −hT

t − zT
t Ft

−ht − F T
t zt −Ĉt

]
− τ1

[
1 0
0 −Mη(t)

]
− τ2

[
N − t 0
0 −MW

t

]
≥ 0.

(63)
We collect all terms in (63) and reform them as[

ρt − τ1 − τ2(N − t) −hT
t

−ht Gt

]
−
[
zt Ft

]T [
zt Ft

]
≥ 0.

(64)

According to the Schur complement theorem [15], (64) can
be rewritten as (46), and then the proof is completed.

Note that after the reformulation, now (Pt) in Theorem
2 is a typical semidefinite programming (SDP) problem that
can be solved efficiently by several available algorithms.

V. SIMULATIONS AND RESULTS

This section demonstrates the performance of our ap-
proach by numerical simulations. We also compare our
methods with the LQC control law designed by Bertsimas
and Brown [2].

The simulation considers the control problem (Pt) in (23)
with the following particulars

A(k) = (1 + 0.05 sin(k))

[
0.6 0.7
0.25 0.5

]
, (65)

B(k) =

[
1
0.3

]
,C(k) =

[
0.2 1

]
, (66)

Pw(k) =

[
(0.1 arctan(k))2 0

0 (0.1 arctan(k))2

]
, (67)

Pv(k) = (0.1 arctan(k))2, (68)

Q(k) =

[
1 0
0 1

]
, R(k) = 1, N = 30. (69)

Assume the initial state is confined in an ellipsoidal set,
where the ellipsoid center x̂(0) and the shape matrix P (0)
are set as

x̂(0) =

[
x̂1(0)
x̂2(0)

]
=

[
5
−5

]
,P (0) =

[
10 8
8 10

]
. (70)

Based on the above simulation configurations, we use the
toolbox YALMIP to solve the SDP problem as explained in
Theorem 2. We implement the proposed method in MAT-
LAB.

Fig. 2 shows the learning progress of system state x1

and x2 represented by an ellipsoidal set in one simulation.
We observe that the ellipsoids representing the boundary of
the learned state shrink over time, indicating the mitigated
uncertainty of state estimation by the ellipsoidal-set learning.
The center of the estimated ellipsoidal set asymptotically
converges to the true value of system state after 3 steps. Fig.
3 compares performances of the control under the proposed
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Fig. 2. The learning progress of ellipsoidal set for the system state.
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Fig. 3. Control performances under robust control with ellipsoidal and
fixed feasible set. The red and blue areas show range of the system state
during 100 simulations under the control with ellipsoidal set and fixed
set, respectively. The circle-marked line presents the result of an one-time
simulation.

robust control and that with fixed feasible set. We run 100
simulations under both of the methods, and check whether
the system states are concentrated around zero, which is the
anticipated control result. Fig. 3 manifests more concentrated
system states around zero under the proposed approach,
implying an enhanced control performance in the system
with the existence of unknown and bounded noises.

TABLE I
COMPARISON BETWEEN ROBUST CONTROL PERFORMANCE WITH FIXED

SET AND ESTIMATED SET.

T JE JC1
JC2

Ratio

5 1.98 18.95 12.36 53.32%
10 0.99 9.47 6.18 53.24%
15 0.65 6.32 4.12 53.40%
20 0.50 4.74 3.09 53.40%
30 0.34 3.16 2.06 53.40%

Table I presents the average result of 100 simulations. In
this table, T denotes the control horizon, JE is the state es-

2123



timation performance index defined as
∑N

k=1

∑n
i=1(xi(k)−

x̂i(k))
2 for the proposed method. JC1

and JC2
are the

control performance indices for robust control with fixed set
and ellipsoidal set, respectively, and they are both calculated
by
∑N

k=1

∑n
i=1(xi(k))

2. Ratio represents the performance
improvement defined as (JC1

−JC2
)/JC2

. Table I shows that
the state estimation improves over time, and the proposed
method brings ca. 53% improvement compared with robust
control with fixed feasible set.

VI. CONCLUSION

We presented a robust control method for linear systems
with unknown noises and unobservable system states, which
are represented by ellipsoidal sets. We integrated this ellip-
soidal representation in the control, and adopted ellipsoidal
set-membership filter to iteratively learn and reduce the
ellipsoidal set boundaries. This leads to a narrowed and
concentrated range of worst cases feeding to the robust
control. Upon the learned ellipsoidal sets, we derived a robust
optimal control law by solving a semidefinite programming
(SDP) problem, which guarantees high-performing control
in the worst cases while avoiding over-conservativeness. We
envisage future research to reduce computation complexity,
since SDP in our control law derivation can be computation-
ally expensive as the control problem expands e.g., with a
large number of system states.
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