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Abstract— This study presents a novel approach for esti-
mating lateral velocity, an important parameter for vehicle
stability characterization. Aiming to resolve the problems of
poor estimation accuracy caused by the insufficient modeling of
traditional model-based methods and issues with sampled and
delayed measurements, a sampled delay data neural network
method for lateral velocity estimation is designed. Our approach
incorporates a compensating injector to fill information gaps
between samples, an extended compensation dynamic to reduce
delays’ impact, and a radial basis function neural network
to mimic vehicle motions. Continuous weight updates ensure
adaptability, and stability is demonstrated using the Lyapunov
methodology. Experimental results confirm the effectiveness
of our approach, providing promising insights to enhance
lateral velocity estimation and improve control and stability
in autonomous vehicle systems.

I. INTRODUCTION
The incidence of traffic accidents has increased as car

ownership has become more widespread [1]. Active Con-
trol Systems (ACSs), including Traction Control Systems
(TCSs), Electronic Stability Program (ESP), and Active
Front Wheel Steering (AFS), are now standard in vehicles
to enhance safety and reduce accidents. Advanced driver
assistance systems (ADAS), like Adaptive Cruise Control
(ACC) and Lane Keeping Assistance (LKA), are also gaining
popularity. However, challenges such as expensive sensors,
complex measurement noise, and restricted sensor accuracy
may hinder the accurate measurement of fundamental vehicle
states, such as lateral velocity, yaw rate, and sideslip angle.
Overcoming these challenges is crucial for ACSs and ADAS
to operate effectively and improve vehicle safety.

Lateral velocity plays a crucial role in a vehicle’s dynamic
and kinematic response [2]. It significantly influences stabil-
ity evaluation and efficient control implementation by pro-
viding essential insights into the vehicle’s sideways motion.
Accurate prediction of lateral velocity is vital for optimizing
vehicle control systems, facilitating precise trajectory track-
ing, and promoting stability control. Thus, acquiring accurate
and reliable lateral velocity data is imperative for enhancing
vehicle security and overall performance.

Automobile engineering is actively focused on estimating
lateral velocity or sideslip angle using affordable sensors
and estimation methods. This study can be categorized
into neural network (NN)-based methods and model-based
methods. Model-based approaches utilize kinematic and dy-
namic models to establish relationships between the sideslip
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angle and other vehicle parameters [3,4]. While effective,
these methods face challenges due to the nonlinearity of
vehicle models and varying operational conditions. In con-
trast, neural network models offer advantages by describing
vehicle dynamics without explicit knowledge of underlying
parameters [5]. By employing appropriate model structures
and diverse training data, neural network-based methods
have shown promising results in accurately estimating the
vehicle’s dynamic state. Early neural network observers,
primarily designed for Single Input Single Output (SISO)
systems, laid the foundation [6]. While initially based on
the strict positive real (SPR) basis, later studies expanded
to more general nonlinear systems with multiple inputs and
outputs (MIMO). For instance, a two-layer Neural Network
Observer (NNO) architecture without the SPR assumption
was developed using improved back-propagation (BP) al-
gorithms [7]. Chen et al. [8] investigated uncertainty’s im-
pact on lithium-ion battery system output and introduced
an RBF neural network (RBFNN)-based adaptive observer.
Moreover, NN observers were applied to estimate vehicle
roll angles through sensor fusion with a linear Kalman filter
[9].

Despite the success of previous observers across various
domains, a notable limitation is their assumption of con-
tinuous variables. In reality, data from accessible sensors
is inherently discrete, sampled at specific intervals. When
these observers are deployed on digital signal processors, the
sampling rate of sensors becomes critical, affecting observer
convergence. Bridging the gap between discrete system
output and continuous state estimation is challenging. The
field of sampled data nonlinear neural observers (SDNNO)
remains largely unexplored, despite advances in sampled data
observer literature ([10],[11]). Hasan et al. proposed incor-
porating an output predictor into the neural network observer
framework to achieve continuous estimation of discrete data
[12]. Meanwhile, Hu et al. created a deterministic learning
high-gain observer under sampling conditions, though it was
based in discrete system modeling and incapable of achieving
continuous state estimation [18].

The problem of time delays is often overlooked com-
pared to sampling measurements, yet it poses significant
challenges. Information flow between system components
and information processing capacity naturally lead to de-
lays in processes and systems. Ignoring delays can result
in instability and poor system performance. Time-varying
delay systems have been studied previously for comparison
[13,14].

Building upon the preceding discussion, this paper pro-
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poses a new sampled data neural network observer to en-
hance the accuracy of vehicle lateral velocity estimation
amidst signal sampling delay and modeling uncertainty.

The remainder of this paper is organized as follows:
Section 2 offers an introduction to the dynamic model of
automatic ground vehicles, accompanied by a thorough prob-
lem description. Section 3 presents the design and stability
analysis of the novel neural network adaptive observer,
which has been specifically designed to address the chal-
lenges posed by sampled-delayed output. In Section 4, we
demonstrate the practical validation of our proposed method
by implementing it on an autonomous ground vehicle and
showcasing the experimental results.

II. PROBLEM STATEMENT

Fig. 1. 2-DOF bicycle model of the vehicle

A. DYNAMIC BICYCLE MODEL

A vehicle prototype with a two-degree-of-freedom con-
figuration is shown Fig.1. This specific model has been
used frequently in numerous research projects to examine
the lateral dynamic properties of vehicles. It develops by
using Newton’s second law to assess the vehicle’s lateral
and longitudinal movements [15]:

v̇x = −Fyf sin δ+Fa

m

v̇y =
Fyf cos δ+Fyr

m − rvx

ṙ =
Fyf lf cos δ−Fyrlr

Iz

(1)

In the context of the vehicle’s perspective, we use the terms
"longitudinal velocity" to refer to the velocity in the direction
of motion (vx), "lateral velocity" to represent the velocity
perpendicular to the direction of motion (vy), and "rotational
velocity" to indicate the speed of rotation (r). The lateral
forces acting on the front and rear tires are respectively
denoted as Fyf and Fyr. The force responsible for accel-
eration generated by the vehicle’s motors or deceleration
produced by the brakes is symbolized as Fa. This force
can be computed using the equation Fa = max, where ax
represents the inertial acceleration of the vehicle at its center
of gravity in the x-axis direction. The control input, which
refers to the steering angle of the front tire, is represented
as δ. Experimental evidence [16] suggests that for small slip
angles, the relationship between the lateral force and the slip

TABLE I
PARAMETER VALUES OF VEHICLE MODEL

Parameter Description Value
m Vehicle Mass 600 [kg]
Iz Vehicle yaw moment of inertia 1100 [kgm2]
lf Distance from CoG to front axle 0.86 [m]
lr Distance from CoG to rear axle 0.9 [m]
Cf Front cornering stiffness 27500 [N/rad]
Cr Rear cornering stiffness 27500 [N/rad]

angle can be approximated linearly. Taking this into account,
the front and rear tire forces are modeled using a linear tire
force model, which can be expressed as:

Fyf = 2Cfαf + fyf (αf );Fyr = 2Crαr + fyr(αr) (2)

In the given tire force model, Cf and Cr are the linear
coefficients associated with the front and rear tire forces,
while αf and αr represent the slip angles of the front and
rear wheels, respectively. When the slip angles are small, we
can approximate αf and αr using the following expressions:

αf = δ − vy
vx

− lfr

vx
;αr = −vy

vx
+

lrr

vx
(3)

Assuming that the steering wheel angles are small, we can
approximate sin(δ) as δ. By applying this approximation,
Equation (1) can be rewritten in state space form. In this
form, the states are represented by vx, vy , and r, while
the control inputs consist of the steering angle δ and the
longitudinal acceleration ax.

ẋ = A(u(t), y(t))x+ g(u(t), x(t))

y = Cx
(4)

In the given context, the state vector is denoted as x ∈
R3, representing a vector in n-dimensional real space. The
output matrix is represented as y ∈ R2, indicating a vector
in p-dimensional real space. The term A(u, y) ∈ R3×3

corresponds to the nonlinear components, which can vary
with the control input u and the output y. The term g(u, x) ∈
R3 represents an unknown nonlinear term, which can also
depend on the control input u and the state vector x.

A =


0

0

0

2lrCr−2lfCf

Izvx

− 2Cf+2Cr

mvx

0

0

0

2Cf lfδ
mvx

 , C =


0

1

0

0

1

0
 ,

g =


− 2l2fCf+2l2rCr

Izvx
r +

2Cf lf
Iz

δ

(−vx +
2lrCr−2lfCf

mvx
)r +

2Cf

m δ

2Cf δ
mvx

vy + ax
 .

(5)

B. Problem Statement and Preliminaries

The objective of this paper is to estimate the lateral
velocity, represented as vy , of a vehicle in situations where
the vehicle dynamics given by equation (4) are not known.
Furthermore, it is assumed that the measurements of the
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longitudinal speed, denoted as vx, and the yaw rate, denoted
as r, are affected by periodic sampling and a certain amount
of delay. This problem can be formulated using the following
state equation:

ẋ(t) = Ax+ g(u(t), x(t))

y(tk) = Cx(tk)

y∆(t) = y(t−∆(t))

(6)

were ∆ ∈ R is a periodic delay with an upper bound
∆M . In this research, the unknown dynamics g(u(t), x(t))
are estimated using RBFNN (Radial Basis Function Neural
Network). Before discussing the approximation concept of
RBFNN, certain assumptions are made to establish the
requirements for the network. These assumptions define the
constraints and criteria that need to be satisfied in order to
effectively utilize RBFNN for the estimation task.

Assumption 1: The unknown nonlinear term g(u(t), z(t))
is defined in compacts sets.
According to the mentioned assumption, g(u(t), z(t)) can be
approximated by RBFNN as follows:

g(u(t), x(t)) = Φ(ω)ξ + ϵ (7)

In the given context, the input of the neural network is
denoted as ω = [u, x]T , where u represents the control
input and x represents the state vector. The weight of the
neural network is represented by ξ ∈ Rm, which captures
the parameters to be learned by the network. The activation
functions used in the network are included in the matrix
Φ(ω) ∈ R3×m, where n represents the dimension of the state
vector and m represents the number of activation functions.
The approximation error is denoted as ϵ ∈ R3, indicating
the difference between the estimated dynamics and the true
dynamics.

Each element, denoted as Φi,j(ω), within the matrix Φ(ω)
represents a Gaussian function characterized as follows:

Φi,j(ω) = exp

(
−||ω − cj ||2

b2j

)
, (8)

In the Gaussian function, cj represents the center and bj
denotes the width of the function. The radial basis function
neural network Φ(ω)ξ can approximate the unknown element
g(u(t), x(t)) effectively with a negligible error ϵ if the weight
ξ is chosen appropriately. The subsequent analysis is based
on the following crucial assumption:

Assumption 2: The weight vector ξ is defined within a
compact set, bounded by ξM > 0. The approximation error
ϵ is bounded by an upper bound ϵM > 0
This assumption, which is commonly used in neural network
approximation [10], plays a fundamental role in the analysis.
It is important to note that the Lipschitz and bounded
properties of Φ can be easily verified.

III. OBSERVER DESIGN AND STABILITY ANALYSIS

In this section, we introduce a novel approach called the
Sampled-delay-Data Neural Network Observer (SDDNNO),

which is specifically designed to estimate and observe the
behavior of the unknown system described by equation (7):

˙̂x = Ax̂+Φ(u, x̂)ξ̂ − (S−1CT + βPΩT )η (9)
η̇∆ = −C(S−1CT + βPΩT )η(t−∆(t)) +K2η∆(t)

for t ∈ [ti, tk+1)

Ṡ(t) = −θsS(t)−A(u, ŷ)TS(t)− S(t)A(u, ŷ) + CTC

η∆(ti) = ŷ(ti −∆(ti))− y(ti −∆(ti))
(10)

with

η = η∆ +

∫ t

t−∆(t)

[−C(S−1CT + βPΩT )η(s) +K3η(s)]ds

(11)
In the proposed approach, we denote the state estimation
as x̂ ∈ R3, the compensated output error as η ∈ R2, and
the weight estimation as ξ̂ ∈ Rm. We define ŷ = Cx̂,
where C is a given matrix, Ω = Cβ, and P ∈ Rm×m is
a symmetric positive definite (SPD) matrix that needs to be
designed. Additionally, K2 ∈ R2×2 and K3 ∈ R2×2 are
design parameters, and η∆ ∈ R3 represents the compensation
for delayed output error. Moreover, β ∈ R3×m is an auxiliary
variable defined as follows:

β̇ = (A− S−1CTC)β +Φ(u, x̂) (12)

Assumption 3: For t ≤ 0, we define λm(S) and λM (S)
such that the solution of S(t) for the Riccati equation in (11)
satisfies the following conditions:

λm(S)I ≤ S(t) ≤ λM (S)I (13)
It is crucial to note that the matrix A(u, y) is time-varying,
which means that designing an observer with a gain L that
satisfies (A(u, ŷ)− LC) has the potential to destabilize the
system.

Remark 1: If it is assumed that (A(u, ŷ) − S−1CTC) is
stable, where S(t) is the solution of the Riccati equation in
(12), and Φ is bounded, then it can be inferred that β is also
bounded.
The observer structure comprises three parts. The first part,
as shown in equation (10), is responsible for estimating
the state of the system (7). The second part, represented
by equation (11), specifically provides compensation for
the delayed output error. On the other hand, equation (12)
provides compensation for the non-delayed output error. We
can now proceed with the central contribution of the paper:

Theorem 1: Under Assumption 1-3, system (10-12) is a
SDDNNO for system (7). Moreover, the neural network
weight update law is designed as:

ˆ̇
ξ = −PΩT η − κξ (14)

where κ > 0 is a design parameter. If the sampling interval
upper bound denoted by τM and delay upper bound ∆M

satisfy: {
0 < ||K3||σ1(∆M ) < 1

0 < ϑ1(∆M , τM ) < 1
(15)

1013



then the estimation error of both state and weight are
uniformly ultimately bounded (UUB). We define:
ρ0 = κ− α

2
− γ

4
,

∋ constant ρ such that 0 < ρ < ρ0/2 ,

ϑ1 (∆M , τM ) =
2γ5c1 (σ1 (τM ) + σ2 (∆M ))

ρ0 (1− ∥K3∥σ2 (∆M ))
,

ϑ2 (∆M , τM , ϵ) =
2γ5ϵ1σ2 (∆M )

ρ0 (1− ∥K3∥σ2 (∆M ))
+

2γ3
ρ0

,

σ1 (τM ) =

∫ τM

0

e(∥K2∥+ρ)sds, σ2 (∆M ) =
eρ∆M − 1

ρ
,

γ = γ1 + γ2, α = 2ρaLΦξM , γ1 = 2ρbLΦξMβM

γ2 = 2ρbβM ,ΦM = sup
t≥0

||Φ(t)||,

γ5 = max

(
||K2||

√
λ(S),ΩM

√
λ(P )

)
ρa =

√
λ(S)/λ(S), σ1(τM ) =

∫ τM

0

e(||K2||+ρ)sds,

c1 = max

(
(µ+ ||C||LΦξM )/

√
λ(S),

((µ+ ||C||LΦξM )βM + ||C||ΦM )
√

λM (P )

)
,

µ = ||CA−K2C||, βM = sup
t≥0

||β||,ΩM = sup
t≥0

||Ω||,

ρb =

√
λ(S)λ(P ), c2 = c0 +

2ω5

ρ0
ϵ1σ1 (τM )

γ5 =
2c5
ρ0

c1σ1 (τM ) , γ6 =
2γ3
ρ0

, c0 = eρ0t0Vs (t0) ,

ϵ1 = ∥Cϵ∥, γ3 =
√

λM (S) (ϵM + βMξM ) +
ξ2M

2λm(P )

Vs (t0) =
√
ζT (0)Sζ(0) +

√
ξ̃T (0)P−1ξ̃(0).

Proof. Establish the state and weight errors as x̃ = x̂ − x
and ξ̃ = ξ̂ − ξ, it derives:

˙̃x =Akx̃+ Φ̃(δ, x̂, x)ξ +Φ(δ, x̂)ξ̃ − ϵ+ β
˙̃
ξ

+ κβξ̃ − κβξ + S−1CT ew
˙̃
ξ =− PΩTCx̃− κξ̃ + κξ + PΩT ew

(16)

with Ak = A − S−1CTC ,ew = ω̃ − η, Φ̃(δ, x̂, x) =
Φ(δ, x̂) − Φ(δ, x). Perform the designated coordinate trans-
formation as indicated in [17], which is:

ζ(t) = x̃(t)− β(t)ξ̃(t) (17)

Differentiating ζ(t) w.r.t. time, one has:

ζ̇ = Akζ − ϵ+ Φ̃(δ, x̂, x)ξ + κβξ̃ − κβξ + S−1CT ew (18)

Consider the following Lyapunov function candidate:

V (ζ, ξ̃) = Vζ(ζ) + Vξ(ξ̃) (19)

with
Vζ(ζ) = ζTSζ (20)

Vξ(ξ̃) = ξ̃TP−1ξ̃ (21)

where S is the solution of Riccati equation in (11). The
proof will be segmented into three parts. In the first part, we
will concentrate on illustrating the Input-to-State Stability
(ISS) characteristic of ew concerning Vs. The second part
will affirm the ISS property of Vs concerning ew. Lastly, the
third part will utilize the small gain method to conclude the
proof.Due to space limitations, only a sketch of the proof
will be provided. Let’s commence by demonstrating the ISS
characteristic from ew to Vs. To initiate, we differentiate
Vζ(ζ) with respect to time:

V̇ζ(ζ) =− θsVζ(ζ) + 2ζTSAkζ + 2ζTSΦ̃(δ, x̂, x)ξ

− 2ζTSϵ+ 2κζTSβξ̃ − 2κζTSβξ + 2ζTCew
(22)

Taking into account equation (18), we derive:

∥x̃∥ ⩽ ∥ζ∥+ ∥β∥∥ξ̃∥ ⩽ ∥ζ∥+ βM∥ξ̃∥ (23)

By implementing the subsequent scaling to the components
within equation (23), we acquire:

2ζTSΦ̃(δ, x̂, x)ξ ⩽ 2
√
λ̄(S)

√
Vζ(ζ)LΦξM∥x̃∥

⩽ αVζ + ω1

√
Vζ

√
Vξ

2κζTSβξ̃ ⩽ 2
√
λ̄(S)

√
Vζ(ζ)βM∥ξ̃∥

⩽ ω2

√
Vζ

√
Vξ

(24)

with

ω = ω1 + ω2, α = 2ρaLΦξM , ω1 = 2ρbLΦξMβM ,

ω2 = 2ρbβM , ρa =
√
λ̄(S)/λ(S), ρb =

√
λ̄(S)λ̄(S).

(25)

By merging equation (23) with equation (25), we deduce:

V̇ζ(ζ) ⩽− ζTSζ − ζTCTCζ + (α− θs)Vζ + ω
√
Vζ

√
Vξ

+ 2
√
λM (S)VζϵM + 2

√
λM (S)VζβMξM

+ 2 ∥K1∥
√
λ̄(S)Vζ∥ew∥

(26)
Conversely, let’s differentiate Vξ(ζ) concerning time:

V̇ξ(ξ̃) =− 2κVξ − ξ̃TΩTΩξ̃ − 2ξ̃TΩTCζ

+ 2ξ̃TΩT ew + 2κξ̃TS−1ξ

⩽− κVξ − ξ̃TΩTΩξ̃ − 2ξ̃TΩTCζ

+ 2ΩM

√
Vξλ̄(S)∥ew∥+ ξ2M/λm(S)

(27)

Let us denote Vs =
√

Vζ +
√
Vξ, combining equations (27)

and (28), we obtain:

V̇s ⩽ −ρ0Vs + ω4∥ew∥+ ω3 (28)

with ω3 =
√
λM (S) (ϵM + βMξM ) +

ξ2M
2λm(S) , ω4 =

max
(
∥K1∥

√
λ(S),ΩM

√
λ̄(P )

)
. By integrating both sides

of equation (29) with respect to time, and then multiplying
both sides by eρt and assuming 0 < ρ < ρ0/2, we obtain:

eρtVs ⩽ c0 +
2ω3

ρ0
eρt +

2ω4

ρ0
sup

t0⩽s⩽t
(eρs∥ew∥) (29)
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We can deduce that the connection between ew and Vs

demonstrates Input-to-State Stability (ISS). To establish ISS
from Vs to ew, let’s proceed with the proof. Suppose ew =
ω̃ − η, then we derive:

∥ew∥ ⩽ ∥ew∆∥+ c1
e−ρt

(
eρ∆M − 1

)
ρ

sup
t−∆M⩽s⩽t

(eρsVs)

+ ∥K3∥
e−ρt

(
eρ∆M − 1

)
ρ

sup
t−∆M⩽s⩽t

(eρs∥ew(s)∥)

+ ϵ1
e−ρt

(
eρ∆M − 1

)
ρ ⩽ s ⩽ t

(eρs)

(30)
By multiplying both sides of equation (35) by eρt, and taking
σ2 (∆M ) = eρ∆M −1

ρ , and then selecting ∆M such that

0 < ∥K3∥σ2 (∆M ) < 1 (31)

We have:

sup
t0⩽s⩽t

(eρs∥ew∥) ⩽
(

sup
t0⩽s⩽t

(eρs ∥ew∆∥)

+ c1σ2 (∆M ) sup
t0⩽s⩽t

(eρsVs)

+ϵ1σ2 (∆M ) sup
t0⩽s⩽t

(eρs)

)
/ (1− ∥K3∥σ2 (∆M ))

(32)

Also:

eρt ∥ew∆∥ ⩽c1σ1 (τM ) sup
ti⩽s⩽t

(eρsVs(s−∆(s)))

+ ϵ1σ1 (τM )
(33)

Combing (38) and (39), one has:

sup
t0⩽s⩽t

(eρs∥ew∥) ⩽

c1σ1 (τM ) sup (eρsVs(s−∆(s))) + ϵ1σ1 (τM )

t0 ⩽ s ⩽ t

1− ∥K3∥σ2 (∆M )
+

c1σ2 (∆M ) supt0⩽s⩽t (e
ρsVs) + ϵ1σ2 (∆M ) supt0⩽s⩽t (e

ρs)

1− ∥K3∥σ2 (∆M )
(34)

We will now conclude the proof using the small gain method.
By merging (42) and (33), we have:

eρtVs(t) ⩽c0 +
2γ3
ρ0

eρt +
2γ4
ρ0

sup
t0⩽s⩽t

(eρs∥ew∥)

⩽c3 + ϑ1 (∆M , τM ) sup
0⩽s⩽t

(eρsVs)

+ ϑ2 (∆M , τM , ϵ) eρt

(35)

Let ∆M and τM satisfy

ϑ1 (∆M , τM ) < 1 (36)

Combined with (42), one gets:

sup
t0⩽s⩽t

eρsVs(s) ⩽
c3 + ϑ2 (∆M , τM , ϵ) eρt

1− ϑ1 (∆M , τM )
(37)

Following (42), one has:

Vs(t) ⩽
c3e

−ρt + ϑ2 (∆M , τM , ϵ)

1− ϑ1 (∆M , τM )
(38)

Following (45) and using Vs =
√

Vζ +
√
Vξ

∥ζ∥ ⩽
c3e

−ρt + ϑ2 (∆M , τM , ϵ)√
λ(S) (1− ϑ1 (∆M , τM ))

∥ξ∥ ⩽

√
λ̄(P ) (c3e

−ρt + ϑ2 (∆M , τM , ϵ))

1− ϑ1 (∆M , τM )

(39)

combined with (24), it can be derived that:

∥x̃∥ ⩽
c3e

−ρt + ϑ2 (∆M , τM , ϵ)√
λ(S) (1− ϑ1 (∆M , τM ))

+
θM
√
λ̄(P ) (c3e

−ρt + ϑ2 (∆M , τM , ϵ))

1− ϑ1 (∆M , τM )

(40)

Thus x̃ and ξ̃ are UUB. The proof ends.

IV. EXPERIMENTAL RESULTS

In this section, we validate our proposed observer through
experiments conducted with the Citroen AMI experimental
vehicle, shown in Fig.4, at the IRSEEM facility in Rouen,
France. We present the results alongside a comparative anal-
ysis with the Kalman filter, as detailed in [21], highlighting
our observer’s superior performance in real-world scenarios.
The experimental procedure began with the vehicle starting
at a speed of 30.6 km/h (8.5 m/s) as it navigated through
a road crossing and completed half of a roundabout circuit
twice. This scenario is depicted in Fig.2, which also illus-
trates the precise steering input required to accurately follow
the intended path. Detailed specifications and attributes of
the vehicle used in the experiment are listed in Table 1.
Furthermore, Fig.3 addresses the variable delay considered
during the experiment.
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Fig. 2. RTMaps experimental results: Desired vehicle path and steering
input.
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Fig. 4. Experimental vehicle Citröen AMI
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Fig. 3. Evolution of the random delay d(t)

A random sample time Ts was selected within the range
0.05 to 0.15. The experiment utilized a hidden layer of
15 neurons and parameters β(0) = 03×15, K2 = 20I2,
K3 = 30I2, P = 20diag(0.1I15, 7I15, I15), and κ = 0.4.
Comparative analysis with a Kalman filter designed for
delay compensation in vehicle state estimation showed that
our observer outperforms in handling delays, as shown in
Fig.5. It demonstrated greater adaptability to varying delays,
providing more accurate and responsive state estimates. This
underscores the observer’s effectiveness and reliability for
real-time vehicle state estimation, especially where precise
delay compensation is crucial, surpassing the traditional
Kalman filter.
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