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Abstract— The theory of Kazantzis-Kravaris/Luenberger
(KKL) observer design introduces a methodology that uses a
nonlinear transformation map and its left inverse to estimate the
state of a nonlinear system through the introduction of a linear
observer state space. Data-driven approaches using artificial
neural networks have demonstrated the ability to accurately
approximate these transformation maps. This paper presents
a novel approach to observer design for nonlinear dynamical
systems through meta-learning, a concept in machine learning
that aims to optimize learning models for fast adaptation to a
distribution of tasks through an improved focus on the intrinsic
properties of the underlying learning problem. We introduce a
framework that leverages information from measurements of
the system output to design a learning-based KKL observer
capable of online adaptation to a variety of system conditions
and attributes. To validate the effectiveness of our approach, we
present comprehensive experimental results for the estimation
of nonlinear system states with varying initial conditions and
internal parameters, demonstrating high accuracy, generaliza-
tion capability, and robustness against noise.

I. INTRODUCTION
In many control applications, it might not always be

feasible to directly measure all states of a dynamical system.
In such scenarios, a reliable estimation of these unmeasurable
state variables becomes paramount and is usually accom-
plished through state observers. While the design principles
of Luenberger observers [1] are commonly applied to linear
systems, addressing this challenge for nonlinear systems is
inherently more complex [2]. Numerous efforts have been di-
rected to develop nonlinear observers using extended Kalman
filters [3]–[5]. However, most of these methods depend on
linearization techniques, and therefore, they offer only local
convergence.

The theory of Kazantzis-Kravaris/Luenberger (KKL) ob-
servers [6] extends the Luenberger observer design principles
to nonlinear systems. KKL observers are founded on the ex-
istence of an injective mapping and its left inverse, enabling
the transformation of a nonlinear system into a set of first-
order linear differential equations subject to the injection of
the nonlinear system output. The existing literature provides
comprehensive analyses of KKL observers, including the
exploration of requirements for the existence of an injec-
tive transformation, discussions on the dimensionality of

1 L. Trommer is with the Control Systems Group at the Technical Univer-
sity of Berlin, Germany. {lukas.trommer@campus.tu-berlin.de}
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the linear state space [7], [8], and the extension of these
principles to non-autonomous systems [9], [10]. Although
it has been demonstrated that the use of an approximation
for the state space transformation is sufficient, deriving
a concrete formulation of the corresponding mapping and
its left inverse for generic problem statements remains a
formidable challenge [11]. One viable approach is to leverage
data-driven methods, involving the collection of data samples
through system simulation or measurement. With increased
computational power and a growing interest in machine
learning, neural networks have emerged as versatile solutions
for addressing highly complex and nonlinear problems in
a variety of domains [12], [13], since they are recognized
as universal approximators when appropriately dimensioned
[14]. Various strategies have been proposed to formulate
the approximation of KKL observer transformation maps
as regression problems solvable through feedforward neural
networks. In [10], the nonlinear system and the linear part of
the observer have been simulated forward in time, starting
from pre-specified initial system conditions. Pairwise sets of
state data, where one state functions as the input and the other
as the label for the nonlinear regression problem, have been
generated in order to determine the respective transformation
maps. In [15], a deep auto-encoder has been introduced for
systems in discrete time, which learns the transformation
maps by enforcing observer dynamics in a latent linear space
and introducing a measure of reconstruction loss following
the composite application of forward and inverse transforma-
tions during training. An unsupervised learning technique has
been utilized in [16], whose aim is to improve convergence
accuracy by using a neural network-based ensemble learning
approach. By introducing a physics-informed loss component
during training, some improvements in robustness, accuracy,
and generalization capabilities have been observed in [17].

It is important to emphasize that learning-based ap-
proaches for KKL observer design require labeled, non-
linear system state data for training. While the estimation
capabilities of these data-driven approaches benefit from
substantial datasets, it is not always practical to utilize
arbitrary quantities of data for training. Moreover, in certain
scenarios requiring accurate state estimation over varying
system parameters, training data may only be available for
a limited subset of parameter values. The imposed learning
challenge in that case furthermore includes the aim for strong
model generalization, allowing accurate estimation even in
parameter ranges for which no data is accessible during
training.

Aiming to enhance these capabilities, we resort to Model-
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Agnostic Meta-Learning (MAML), which facilitates training
a model on a multitude of tasks drawn from a task distri-
bution [18]–[20] in order to quickly adapt and generalize to
new tasks from that distribution with only a few gradient
steps, rendering it highly data-efficient for adaptation. We
introduce a novel approach to learning-based KKL observer
design, harnessing the fundamental principles of MAML to
enhance the precision of nonlinear system state estimation
through online adaptation to distinct system attributes. The
adaptation process exclusively depends on system output
measurements to extract inherent system knowledge and
dynamically adjust estimation capabilities. This proposed
method deviates from the static learning paradigms prevalent
in previous methodologies, marking a transition towards
enhanced adaptability.

The remainder of the paper is organized as follows. In
section II, the theory of KKL observers and the fundamental
principles of MAML are provided. In Section III, we present
our novel meta-learning-based approach to KKL observer
design in detail. We then evaluate the performance of our
proposed approach in Section IV, providing empirical re-
sults and analysis. Finally, Section V offers our concluding
remarks.

Notation

The set of real numbers is denoted by R, Rm represents the
m-dimensional Euclidean space, R≥0 the set of nonnegative
real numbers. N respectively denotes the set of natural num-
bers. The Euclidean norm of the vector x ∈ Rm is denoted
by ||x||. The matrix exponential of matrix A is defined as
eA =

∑∞
k=0

1
k!A

k. Given a finite set S, its cardinality is
denoted by |S|. The notions 1N , IN , and diag(1, 2, ..., N)
respectively denote the N -dimensional vector with all entries
equal to one, the N × N dimensional identity matrix, and
the diagonal matrix with entries 1, 2, ..., N . [a, b]m ⊂ Rm

denotes the m-ary Cartesian power of the finite interval
[a, b] ⊂ R.

II. BACKGROUND

A. KKL Observers

We consider a dynamical, autonomous, nonlinear system{
ẋ(t) = f (x(t))

y(t) = h (x(t))
(1)

where x ∈ X ⊂ Rdx denotes the nonlinear system state
in state space X , and y ∈ Y ⊂ Rdy the system output.
f : X 7→ Rdx and h : X 7→ Y are smooth functions that
articulate the nonlinear system dynamics and measurable out-
puts, respectively. As elucidated in [6]–[8], the formulation
of a KKL observer entails the identification of an injective1

transformation map, denoted by F : X 7→ Z , that serves the
purpose of converting the dynamics of the nonlinear system
(1) into a linear dynamical system described by

ż(t) = Az(t) +By(t), (2)

1∀x1, x2 ∈ X : F (x1) = F (x2) =⇒ x1 = x2.

where z(t) ∈ Z is the linear system state in state space Z ⊂
Rdz . Hence, the relationship between the linear state z(t)
and the nonlinear state x(t) is expressed as z(t) = F (x(t)).
It is imperative that the transformation map F satisfies the
following partial differential equation:

∂

∂x
(F (x(t))) f (x(t)) = AF (x(t)) +Bh (x(t)) . (3)

Since the transformation map F is injective, the KKL
observer for the nonlinear system (1) is instantiated through
the application of the inverse transformation map F−1 : Z 7→
X to the linear observer state z(t) and is defined as{

ż(t) = Az(t) +By(t)

x(t) = F−1 (z(t)) .
(4)

This formulation incorporates the appropriate initialization
of the linear observer state with z(0) = F (x(0)). In the
context of learning-based KKL observers, we approximate
F and F−1 as depicted by [7] and denote those as F̂ and
F̂−1. In order to ensure the existence of such transformation
maps, we make the following assumptions:

Assumption 1: Let the state trajectory of (1) with the
initial state x(0) = x0 be expressed by x(t;x0). There exists
a compact set X ⊂ Rdx such that ∀x0 ∈ X , t ∈ R≥0 :
x(t;x0) ∈ X .

Assumption 2: There exists an open bounded set S ⊃ X
wherein (1) is backward S-distinguishable2.

Previous studies such as [2], [7], [17], [21] emphasize that
a uniformly injective3 map F satisfying (3) exists if (A,B)
is controllable, A is Hurwitz, and Assumptions 1 and 2 hold.
For formal proof and a more comprehensive context, we
direct readers to the cited works.

B. Model-Agnostic Meta-Learning (MAML)

The concept of MAML [18] revolves around training a
model on a distribution of tasks, enabling it to rapidly adapt
to new tasks drawn from the same distribution. The central
notion is to acquire transferable intrinsic features across the
given task distribution.

Consider a task T defined as a tuple T = (u, o), where u ∈
U denotes the input belonging to the input space U and o ∈ O
corresponds to the desired output within the output space
O. In the context of meta-learning, we consider a model
ĝθ ∈ G parameterized by θ. Here, G ⊂ {U 7→ O} denotes the
function space containing ĝθ, which maps inputs to outputs.
Additionally, a loss function L : O×U×G 7→ R is employed.
Tasks are sampled from a given task distribution T , denoted
as T ∼ T . Throughout this distribution, the tasks vary,
exposing the model to different inputs and corresponding
desired outputs. During the meta-training process, the model

2Given an open set S ⊃ X , (1) is said to be backward S-distinguishable
on X if for every pair of distinct initial conditions x0,1, x0,2 ∈ X , there
exists τ < 0 such that x(t;x0,1), x(t;x0,2) ∈ S are well-defined for
t ∈ [τ, 0], and h(x(τ ;x0,1)) ̸= h(x(τ ;x0,2)) [17].

3A function ρ : R≥0 7→ R≥0 is said to be of class K if it is continuous,
zero at zero, and strictly increasing. The map F is said to be uniformly
injective if there exists a class K function ρ such that ∀x1, x2 ∈ X :
∥x1 − x2∥ ≤ ρ(∥F (x1)− F (x2)∥) [17].
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parameters evolve to enable adaptation to specific tasks T
using only a limited number of samples and gradient updates.

MAML accomplishes this behavior through a training
algorithm characterized by a nested loop. At the beginning
of each outer loop iteration, a meta-batch of tasks {Ti|Ti ∈
T , i = 1, 2, ..., Nbatch,meta} is sampled. Subsequently, an in-
ner loop is entered, where the task-specific model parameters
θi are computed by using adaptation data points (ui,a, oi,a)
from each task Ti with the update rule

θi = θ − α∇θL(oi,a, ui,a, ĝθ) (5)

and adaptation learning rate α.
Upon completion of the inner loop updates, a meta-

update for the model parameters θ is executed. This update
entails the accumulation of losses computed based on a set
of predictions for query data points (ui,q, oi,q) which are
generated using the updated, task-specific parameter sets θi
obtained from the inner loop. Mathematically, this update
can be expressed as

θ ← θ − β∇θ

∑
Ti∼T

L(oi,q, ui,q, ĝθi) (6)

with meta learning rate β. The computation of gradients in
(6) encompasses second-order gradients through the inner
loop gradients. This results in an optimization process where
the parameters in the outer loop are adjusted in a manner
aimed at minimizing the loss function through consideration
of the inner loop parameter updates, which reflect the task-
specific adaptation process.

C. Problem Statement

In this paper, our objective is to find a more general ap-
proximation of transformation maps F and F−1 given in (3)
and (4) through F̂θ and F̂−1

η , realized as feedforward neural
network models with learnable parameters θ and η. Given
variations in system attributes, such as the initial nonlinear
system state x(0) or the intrinsic parameterization of the
nonlinear system function f(·), we define a distribution of
learning tasks, T , with tasks arising from notable differences
in the trajectories x(t) and z(t) of systems (1) and (2) over
time t. In this case, employing a meta-learning approach on
the task distribution T is expected to allow for both, better
generalization across T , and to adapt to a single task T ∼ T
as it is being observed.

III. METHODOLOGY

A. Task-Specific Data Generation

For each task T ∼ T , we construct a dataset DT ⊂
X × Z which contains pairs of data samples, denoted as
(x(t;T ), z(t;T )). Here, x(t;T ) represents the state trajectory
of the nonlinear system related to task T , while z(t;T )
corresponds to the state of the linear system, respectively.
This synthetic approach of data generation, in line with
methodologies presented in [10], [17], employs the RK4
method [22], [23] (or another suitable solver) to simultane-
ously forward simulate both systems (1) and (2) for a given

task T . The resulting dataset can be expressed as

DT = {(x(t;T ), z(t;T )) |t = k∆t, k = 0, 1, ..., N} (7)

where ∆t is the time step size used in the solver and N ∈ N.
Given the analytic solution to the system of linear differ-

ential equations in (2) [24]

z(t) = eAtz(0) +

∫ t

0

eA(t−τ)By(τ)dτ, (8)

the effect of any initial state z(0) ̸= F (x(0)) would even-
tually diminish due to the Hurwitz property of A. However,
an arbitrary initialization for training data generation might
introduce regression errors, particularly for simulated data
samples near t = 0, depending on the choice of the matrix
A. To mitigate such errors resulting from inaccurate training
data, we adopt a backward sampling method for (1) and (2).
This strategy, as described in prior works such as [17], [25],
allows us to obtain the precise initial state z(0) = F (x(0))
at which the linear system has reached the steady state:

1) Given some small ϵ > 0, the system matrix A,
its eigendecomposition A = V ΛV −1, and minimum
eigenvalue λA,min, compute the time τ < 0 such that
||eA(−τ)z(τ)|| < ϵ using

τ ≤ 1

λA,min
ln

(
ϵ

cond(V )∥z(τ)∥

)
. (9)

2) Simulate x(t) in backward time for t ∈ [τ, 0] given
x(0) and compute y(t) = h(x(t)).

3) Simulate z(t) in forward time for t ∈ [τ, 0] given
z(τ) and y(t) from the previous step to obtain z(0) =
F (x(0)).

B. Forward Computation During Training

During the training process, we employ two distinct modes
of forward computation. These modes can be categorized as
either sequential or parallel in their application of the map
approximations F̂θ and F̂−1

η .
The sequential method reconstructs the nonlinear system

state approximation, x̂(t), using the linear system state
approximation, ẑ(t), as the basis for computation. This is
achieved through

ẑ(t) = F̂θ (x(t)) , x̂(t) = F̂−1
η

(
F̂θ (x(t))

)
. (10)

In contrast, the parallel method avoids the composition of
both map approximations and directly utilizes labels for the
state of the linear observer system z(t) to compute x̂(t). The
forward computation in this mode can be expressed as

ẑ(t) = F̂θ (x(t)) , x̂(t) = F̂−1
η (z(t)) . (11)

The sequential approach, depicted in Figure 1 (1), applies
F̂−1
η to the linear state estimate ẑ(t), aiming to provide

a direct inverse to the approximation F̂θ. Conversely, the
parallel approach, illustrated in Figure 1 (2), applies F̂−1

η

independently from F̂θ to directly invert F .
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(1)

(2)

x(t)

x̂(t)

z(t)

ẑ(t)

F̂−1
η

F̂θ

ZX

F−1

F

F̂−1
η

Fig. 1: Modes of forward computation during training, se-
quential (1) and parallel (2).

C. Mixed-Task Learning Methods

We consider a set of training tasks Ttrain sampled from
the distribution T with task-specific datasets DT for T ∈
Ttrain and a joint dataset D = ∪T∈Ttrain

DT , which comprises
mixed data points corresponding to different tasks in Ttrain.
We address the supervised regression problem to learn F̂θ

and F̂−1
η using (11) on mixed data points from D [10]. This

approach, termed parallel mixed-task learning, involves the
loss functions

Lz

(
z(t), x(t), F̂θ

)
=

∥∥∥z(t)− F̂θ (x(t))
∥∥∥2

Lx

(
x(t), z(t), F̂−1

η

)
=

∥∥∥x(t)− F̂−1
η (z(t))

∥∥∥2 , (12)

which are independently addressed with the optimization
problems

min
θ

Lz

(
z(t), x(t), F̂θ

)
(13)

and
min
η

Lx

(
x(t), z(t), F̂−1

η

)
. (14)

Similarly, following the methodology proposed in [17]
based on the references therein, we denote the same super-
vised regression problem when using the sequential forward
computation of (10). We refer to this approach as sequential
mixed-task learning. Induced by the composition of both
maps, the loss function Lx in this case becomes

Lx

(
x(t), x(t), F̂−1

η ◦ F̂θ

)
=

∥∥∥x(t)− F̂−1
η

(
F̂θ (x(t))

)∥∥∥2 ,
(15)

which leads to the optimization problem for θ depending on
both Lx and Lz with

min
θ

(
Lx

(
x(t), x(t), F̂−1

η ◦ F̂θ

)
+ Lz

(
z(t), x(t), F̂θ

))
.

(16)
The optimization problem for η is then given by

min
η

Lx

(
x(t), x(t), F̂−1

η ◦ F̂θ

)
. (17)

D. Meta-Learning for System Output Adaptation

We introduce the concept of meta-learning for system
output adaptation as a complementary approach to parallel
mixed-task learning if h(·) in (1) is known or can be approx-
imated through another data-driven regression approach. We
employ the mixed learning method for the approximation F̂θ

Algorithm 1 Meta-Learning for System Output Adaptation

Require: T (Distribution of learning tasks)
Require: β (Meta learning rate)

1: Initialize model F̂−1
η with parameters η

2: Initialize adaptation learning rate α
3: while not done do
4: for i← 1, Nbatch,meta do
5: ηi ← η (Initialize task-specific parameters)
6: Ti ∼ T (Sample learning task)
7: Generate DTi

8: for j ← 1, Nadapt do
9: (xi,a, zi,a) ∼ DTi (Sample adaptation data)

10: ηi ← ηi − α∇ηi
Ly(h(xi,a), zi,a, h ◦ F̂−1

ηi
)

11: end for
12: (xi,q, zi,q) ∼ DTi

(Sample query data)
13: end for
14: η ← η − β∇η

∑
i Lx(xi,q, zi,q, F̂

−1
ηi

)

15: α← α− β∇α

∑
i Lx(xi,q, zi,q, F̂

−1
ηi

)
16: end while
17: return F̂−1

η

and propose Algorithm 1 to learn the inverse map approxi-
mation F̂−1

η . Inspired by the principles of MAML [18], our
meta-learning algorithm follows a nested training loop struc-
ture, where inner loop iterations involve multiple adaptation
updates, while outer loop iterations include meta-updates.
During each outer iteration, a meta batch of Nbatch,meta

learning tasks Ti is sampled from T . It is important to
emphasize that new tasks Ti are sampled from T during each
training iteration. However, to maintain consistency with the
previously introduced mixed-task learning algorithms, we
continue to refer to this set of tasks over the entire execution
of the training algorithm collectively as Ttrain. Consequently,
we ensure that all learning algorithms are applied to the
same training data D to preserve comparability. For each
task Ti, the inner loop performs Nadapt optimization steps
on a local set of model parameters ηi for adaptation data
points (xi,a, zi,a) ∼ DTi

, utilizing h(·) on estimations x̂(t),
the system output loss function defined as

Ly

(
y(t), z(t), h ◦ F̂−1

η

)
=

∥∥∥y(t)− h
(
F̂−1
η (z(t))

)∥∥∥2
(18)

and adaptation learning rate α. Subsequently, the task-
specific model parameters ηi are evaluated using query data
points (xi,q, zi,q) ∼ DTi

, and the approximation loss for
predicting the nonlinear system state is accumulated across
all tasks Ti within the meta batch. In the next step, the
accumulated loss is used to perform an optimization step
in the outer loop, updating the model parameters η based
on the meta-learning rate β. In addition to meta-learning the
parameters η, the adaptation learning rate α is also intro-
duced as a trainable parameter during the meta-optimization
process. This inclusion enhances accuracy for the specified
learning problem and the chosen number of adaptation steps,

1297



(2)

(1)

Ly

(
y(t), z(t), h ◦ F̂−1

η

)

F̂−1
η

ŷ(t) y(t)

x(t)x̂(t)

h(·)

z(t)

Lx

(
x(t), z(t), F̂−1

η

)

Fig. 2: Computational structure of meta-learning for system
output adaptation algorithm. (1) The approximation loss Lx

for the entire system state vector is computed for meta-
updates only. (2) The approximation loss Ly for the mea-
surable system output contributes to the adaptation updates.

eliminating the need for manual hyperparameter tuning. In
essence, the described algorithm seeks to determine a set of
model parameters η that enable the model to be updated dur-
ing the adaptation procedure of the inner loop. The second-
order gradients involved in the meta update process adjust η
such that task-specific adaptation steps minimize the overall
approximation loss Lx. Importantly, as the adaptation up-
dates are computed based on the measurable system output,
this approach supports online adaptation if a system output
estimate ŷ(t) can be derived from the estimated system state
x̂(t) following the previously mentioned constraint that h(·)
or an approximation is known. The computational structure
of meta-learning for system output adaptation is further
illustrated in Figure 2.

E. Online Adaptation

To adapt the meta-learned inverse map approximation F̂−1
η

online to the specific attributes of the observed nonlinear
system, we implement the inner loop adaptation updates
from Algorithm 1 using data samples drawn from both y(t)
and the estimation x̂(t) governed by the unadapted meta-
learning-based KKL observer. It is imperative to emphasize
the necessity of an initialization period, denoted as tinit,
which arises from this sampling operation, as depicted in
Figure 3.

The minimum duration of tinit is determined by the num-
ber of data points processed during task-specific adaptation
and is expressed as:

tinit ≥ Nbatch ·Nadapt ·∆t, (19)

where Nbatch represents the data batch size. The sampling
period can be modified by either delaying, extending (which
includes randomly sampling the required data points from

(1) (2)

tinit

x̂(t)

y(t)

(3)

Fig. 3: Online adaptation with illustrated sampling delay (1),
sampling and adaptation period for inverse transformation
model parameters (2), and onset of high-precision state
observation (3).

within), or using a combination of both strategies. Conse-
quently, the impact of the chosen sampling period on the
estimation accuracy additionally relies on the linear system
dynamics of the KKL observer and the initial state of (2)
determined through F̂θ.

IV. EXPERIMENTS

Building upon experimental setups given in the literature
[10], [15]–[17], [25], we assess the accuracy and perfor-
mance of our proposed meta-learning algorithm for KKL
observer by design employing a variation of the Duffing
oscillator as nonlinear system, which is defined as follows:ẋ(t) =

[
ẋ1(t)

ẋ2(t)

]
= λ

[
x3
2(t)

−x1(t)

]
+ wx(t)

y(t) = x1(t) + wy(t).

(20)

The variable λ denotes an internal parameter that influences
the oscillation frequency and the terms wx ∈ Rdx and wy ∈
Rdy account for system and measurement noise, respectively.

The transformation maps F̂θ and F̂−1
η are approximated

through feedforward neural networks with 5 hidden layers
of 50 neurons each, ReLU activation functions and nor-
malization layers. This configuration closely follows the
framework presented by [17]. We design the linear system (2)
of the KKL observer by adopting A = −diag(1, 2, ..., dz),
B = 1dz

and dz = 2dx + 1 = 5. It is worth noting
that, as pointed out by [17], various adjustments such as
an H∞ design of matrices A and B, the generation of an
arbitrary amount of training data through simulation, or the
use of more complex neural network architectures, could
potentially enhance accuracy, generalization capability, and
robustness against noise. However, we aim to demonstrate
the performance of the previously introduced methodologies
under conditions where these improvements may be imprac-
tical or unattainable. In the following, we evaluate 4 different
learning methods4: sequential mixed-task learning, physics-
informed sequential mixed-task learning as introduced by
[17] as supervised PINN, parallel mixed-task learning, and

4The code implementation for the experiments described in this paper is
available at github.com/lukastrm/metakkl.
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our proposed method, meta-learning for system output adap-
tation. We use Adam optimization [26] for the former 3
methods as well as the meta-updates of the meta-learning
approach and stochastic gradient-descent optimization for the
adaptation updates. The proposed meta-learning approach not
only functions as an independent learning algorithm but also
exhibits improved performance when the inverse map is pre-
trained in a parallel mixed-task learning setting. This strategy
is incorporated into all our experiments.

To quantify the accuracy of our estimations for x(t) and
z(t), we use normalized estimation errors as follows:

e∗x(t) =
∥x(t)− x̂(t)∥
∥x(t)∥

, e∗z(t) =
∥z(t)− ẑ(t)∥
∥z(t)∥

. (21)

We furthermore define the normalized estimation error aver-
aged over a set of tasks T as

ē∗T (t, e
∗, T ) = 1

|T |
∑
T∈T

e∗(t;T ), (22)

and the normalized estimation error for a task T ∈ T
averaged over time as

ē∗t (T, e
∗) =

1

N + 1

N∑
k=0

e∗(k∆t;T ), (23)

where e∗(t) refers to either e∗x(t) or e∗z(t), depending on
which state space is under evaluation.

We determine these error metrics for a KKL observer with
a linear system that has reached the steady state. For online
adaptation, we choose the minimum sampling period which
also includes drawing the adaptation samples for the meta-
trained KKL observer from the non-steady phase of z(t), but
also consider other sampling periods in section IV-B.

A. System Parameter Variation

In this experiment, we assess the accuracy of the KKL
observer across a distribution of tasks Tλ that incorporate
varying values of the parameter λ. The initial nonlinear
system state is fixed at x(0) = [0.5, 0.5]T . During training,
we employ a small set of 5 distinct parameter values within
the range λ ∈ [1, 5] to generate state trajectories. For
validation, we extend our analysis to a set of tasks Tλ,val,
comprising 200 different parameter values for λ ∈ [1, 5]
within the training range.

The results, depicted in Figure 4, reveal two significant
findings. Firstly, it is evident that the approximation F̂θ

displays notable inaccuracies when trained on a dataset
involving mixed tasks with varying λ. This, in turn, results
in substantial estimation errors for the KKL observer with
sequential mixed-task learning, primarily due to the inverse
map approximation F̂−1

η being trained on an imprecise
representation of the linear system space. In contrast, parallel
mixed-task learning and in particular also our meta-learning
approach, utilizing parallel forward computation during train-
ing, overcome this limitation. The inverse map F̂−1

η is
consistently trained on accurately simulated data samples
for z(t), thus achieving independence from the accuracy of
F̂θ. Secondly, we emphasize how, despite having a limited
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Fig. 4: Simulation estimation error for task distribution Tλ
over varying λ for different learning methods: (•) meta-
learning with online adaptation, (•) parallel mixed-task learn-
ing, (•) sequential mixed-task learning, (•) physics-informed,
sequential mixed-task learning. The dashed, black vertical
lines in the lower plot indicate the 5 distinct parameter values
for λ on which the KKL observer was trained.

amount of training data encompassing state trajectories for
only 5 distinct values of λ, our proposed approach demon-
strates an improvement in overall validation accuracy through
enhanced generalization. Despite the inherent challenge of
achieving high accuracy across the entire parameter range
due to limited training data, meta-learning and online adap-
tation leverage the intrinsic system properties acquired from
the system output. This allows for more precise estimation of
the system state, even for previously unexplored parameter
ranges.

B. Initial Nonlinear System State Variation

In this set of experiments, we assess the accuracy of the
KKL observer for a distribution of tasks Tx(0) with varying
initial nonlinear system states x(0) and fixed parameter value
λ = 1. For training, we draw a set of 50 different initial
states x(0) ∈ Xx(0),train ∼ [−1, 1]2 using latin hypercube
sampling [27] to generate state trajectories. For validation,
we consider two different sets of tasks:

• Tx(0),val,in for 50 different initial states within the
training range, i.e. x(0) ∈ [−1, 1]2 \ Xx(0),train

• Tx(0),val,out for 80 different initial states outside of the
training range with x(0) ∈ [−2, 2]2 \ [−1, 1]2

To evaluate accuracy under the influence of noise, we intro-
duce Gaussian noise components with wx(t) ∼ N (0, 0.1)
and wy(t) ∼ N (0, 0.1).

Figures 5a and 5b display the estimated nonlinear system
state trajectory x̂(t) for one specific x(0) using the meta-
learning-based KKL observer with online adaptation, clearly
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(c) Error profile over x(0) ∈ [−1, 1]2.
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(d) Error for validation tasks within training range (Tx(0),val,in).
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Fig. 5: Simulation results for task distribution Tx(0) over varying x(0) for different learning methods: (•) meta-learning
with online adaptation, (•) parallel mixed-task learning, (•) sequential mixed-task learning, (•) physics-informed, sequential
mixed-task learning.

highlighting its ability to deliver accurate state estimations,
even in the presence of noise.

In Figure 5d, we present the error (22) for the validation
task set associated with initial system states within the
training range. Notably, our proposed methodology consis-
tently achieves the highest accuracy estimations on average
when compared to other learning methods. Furthermore,
our approach demonstrates strong generalization capabilities,
evidenced by the notably low estimation error for initial
system states outside of the training range, as portrayed in
Figure 5e.

Figure 5c shows the profile of the error (23) across the
entire training range. In can be observed that the normalized
error is larger for initial system states around x(0) = [0, 0]T ,
which can be contributed to numerical imprecisions that
arise from a wide normalization range in combination with
an absolute loss function during training. This effect has
previously also been observed in [10].

We further explore the impact of the chosen adaptation
sampling period on the precision of the KKL observer.
Figure 6 presents the simulation results for the meta-learning-
based KKL observer with online adaptation, employing four
different variations of the sampling strategy. The results
highlight that, in the case of the periodic Duffing oscillator,

opting for the minimum sampling window without delay
leads to the least accurate estimation outcomes. As the
linear system error, originating from the initialization using
F̂θ, diminishes over time, expanding the sampling window
contributes to improved accuracy. This improvement is due
to estimations for x̂(t) being derived from progressively less
erroneous samples in Z . Notably, the most accurate estima-
tion performance is observed for delayed sampling windows,
ensuring that any error stemming from an inaccurate initial
state in Z has dissipated before the initial adaptation samples
are drawn.

V. CONCLUSION

In this paper, we have introduced a novel meta-learning-
based algorithm to approximate the inverse transformation
map, making it adaptable to different system attributes, and
conducted a comprehensive comparison of various learning-
based KKL observer approaches. We have demonstrated
through experiments that our proposed method, integrated
with the parallel mixed-task learning algorithm, exhibits
heightened estimation accuracy for scenarios both within and
outside the training range. This underscores the enhanced
generalization capability of meta-learning. Our methodology
has also displayed adaptability over varying system param-
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Fig. 6: Simulation results for task distribution Tx(0) over
varying x(0) for meta-learned KKL observer with different
sampling periods for online adaptation: (•) minimum sam-
pling period without delay, (•) sampling period of size t = 50
and random sampling of data points within, (•) minimum
sampling period delayed by −τ , (•) sampling period of size
t = 50 delayed by −τ .

eters, even when only limited task-specific data is available.
The integration of meta-learning principles, leveraging the
ability to comprehend intrinsic features of the addressed task
distribution, has exhibited effectiveness, notably in situations
where learning the transformation map F proves challenging
within a given setup. This especially outpaces approaches in-
corporating sequential forward computation during training.

Our future research will focus on integrating various
enhancements, such as those outlined by the authors of [28],
which could potentially enhance accuracy and foster a more
stable learning behavior. Additionally, the necessity of an
adaptation sampling period requires careful evaluation. Meta-
learning-based KKL observers for systems with dynamically
changing attributes may benefit from periodic re-adaptation,
but the frequency of attribute changes is constrained by the
initialization time of the observer.
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