
Trajectory Planning of Slider-Pushers in
Cluttered Environments with Automatic Switching

Thomas Neve*, Sander De Witte, Tom Lefebvre and Guillaume Crevecoeur

Abstract—Non-prehensile manipulation presents a paradigm
for manipulating objects that aims to extend the versatility of
robotic tasks beyond conventional grasping. Integrating motion
primitives like pushing, tipping, rolling, throwing, and sliding
into robots brings forth a set of challenges related to sensing,
control, and planning. In particular, planning becomes notably
intricate when dealing with densely arranged obstacles. This
work focuses on the act of pushing an object through a
series of obstacles within a cluttered environment. In such
a setting, it may become necessary to change the direction
of the pushing action in order to navigate through narrow
passages. Incorporating these directional switches introduces
a symbolic level of decision making casting the problem in
the task and motion planning framework. In this work we
introduce a novel optimization-based algorithm tailored to a
pusher-slider system, capable of handling highly constrained
regions. This algorithm automatically determines a switching
sequence and the corresponding trajectories. The infinite motion
optimization problem is transcribed to a nonlinear program
using B-splines. Our algorithm solves the problem jointly
optimizing switching and trajectory parameters to establish a
feasible path through the environment. Directional switches are
introduced based on the properties of the intermediate solution.
The work is demonstrated through simulation experiments in
various cluttered environments.

I. INTRODUCTION

When it comes to interacting with objects in our daily
lives, our actions go beyond mere grasping and releasing. We
engage in a diverse range of tasks, including pushing, pulling,
sliding, and lifting. This allows us to effectively manipulate
objects of many shapes, sizes and weights. However, most
practical applications of robotics do not reach that level
of non-prehensile manipulation and are limited to some
form of pick-and-place operations. This is driven by the
fact that once an object is grasped, reliable control is more
easily achieved without the need for continuous sensing and
complex interactions. By widening the array of manipulation
techniques, new avenues for tackling tasks opens up in a
variety of fields [1]–[3].

In this work, we focus on non-prehensile manipulation,
pushing in particular. While this aspect presents a number
of challenges when it comes to planning and control, it
empowers a robotic manipulator to handle objects that may
be too large or densely arranged to be feasibly grasped [4],
[5]. Furthermore, we argue that pushing an object allows for
a streamlined end-effector design without compromising the
object’s maneuverability significantly. Here we are interested
in the control of a sliding object in the presence of densely
arranged obstacles.

The authors are with the Dynamic Design Lab (D2LAB) of the De-
partment of Electromechanical, Systems and Metal Engineering, Ghent
University, B-9052 Ghent, Belgium.

The authors are member of core-lab MIRO, Flanders Make, Belgium.
*Corresponding author: thomas.neve@ugent.be.

Fig. 1: Trajectory of a pusher-slider system in a constrained
environment which requires a switch in pushing direction.

The pusher-slider system exemplifies a fundamental non-
prehensile manipulation task. The objective is to control the
motion of the slider via a single point of contact, the pusher.
In a densely cluttered environment keeping contact with the
pusher quickly becomes infeasible and a switch in pushing
direction is often required, Fig. 1. Such a directional switch
severely complicates the controller design.

We can formulate the problem as a short-horizon task and
motion planning (TAMP) problem [6], where the task level
dictates the switching sequence, and the motion planning
determines the trajectory in between two switches. TAMP
addresses a combined problem involving a finite sequence of
discrete mode types, continuous mode parameters, and the
continuous motion paths. In standard TAMP approaches these
parameters are determined in an integrated way, effectively
managing the interdependencies between motion-level and
task-level elements of the problem. Such a problem could
be solved by introducing a set of discrete variables, each
representing a discrete mode of operation. This results in a
large mixed-integer programming (MIP) problem [7] which
itself is computationally expensive to solve.

Under the assumption of frictionless slider-pusher contact,
it can be demonstrated that the pusher-slider system is
differentially flat [8]. Since the pusher-slider exhibits the
differential flatness property, the set of optimization variables
for the trajectory optimization can be reduced to a subset
of states, from which the required control actions can be
computed retroactively using the flat expressions of the sys-
tem. This property can be particularly useful for both solving

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2335



trajectory planning [9]–[12], and tracking problems [13]–
[15]. The work [10]–[12] demonstrated the application of
inversion based trajectory optimization to plan trajectories in
an output space. Other work employs inverse dynamics with
a generic time-elastic-band formulation for car-like robots to
plan continuous trajectories in the state space [16].

In the context of a pusher-slider system, non-prehensile
manipulation planning has been tackled through gradient
based trajectory optimization [17], [18] and sample based
planners [19], [20]. In [17] a hybrid approach is proposed that
incorporates the idea of switching between different pushing
faces, considering a series of potential switching sequences.
The downside is the significant cost for determining a feasi-
ble, and optimal, switching sequence amongst the potential
set. In [18] different contact modes with the slider were con-
sidered through trajectory optimization with complementary
constraints, though discrete switching between the slider’s
faces was not considered. Both in [20] and [19] a different
approach is taken, exploring the state space through a sample
based planner. Navigation, including switching from pushing
face, can then be handled through Dijkstra, or with the
concept of feasible sets respectively. While these methods can
be suitable for discovering trajectories through cluttered envi-
ronments, their computational complexity can be prohibitive.
To that end, we propose a novel gradient-based optimization
algorithm, tailored to the pusher-slider system, which can
incorporate a switch in pushing mode. We employ a B-spline
parameterization of the flat trajectory to leverage the differen-
tial flatness properties of the pusher-slider system. In previous
work this has proven beneficial with respect to a shooting
approach [21]. By transcribing the subsequent trajectories
using B-splines, we can effectively incorporate the discrete
switches in a numerical optimization problem. Multiple B-
splines are chained together using equality constraints on a
subset of the end states of the B-spline. The orientation of
the slider is constrained in such a way so that switching from
pushing direction becomes feasible, allowing for a switch to
occur inbetween B-spline connections. We can then tackle
the TAMP problem by iteratively determining a switching
sequence and solving the complete trajectory optimization
problem, with the switches included. Additionally, a way of
finding the switching sequences, tailored to the pusher-slider
system, is proposed. By detecting high local curvature of the
trajectory we determine where a switch in pushing direction
is beneficial for the overall feasibility of the pusher-slider
trajectory. Results show that the proposed methodology can
autonomously determine a feasible switching sequence and
path through a set of densely arranged obstacles.

II. QUASI-STATIC SLIDER-PUSHER MODEL

A. Kinematics

The pusher-slider system consists of a sliding object (the
slider) and a single contact point (the pusher). It is assumed
in the remainder of this work that contact is established at all
times. If this is the case we can model the system using the
planar configuration of the (square) object determined by the
coordinates, x and y, and orientation, ϕ. The location of the
pusher is determined by storing the pushing face, s, and the
distance of the contact point with respect to the center of that
face, c. These are combined in a state vector, x ∈ R4 where
x = (x, y, c, ϕ). The pushing face variable, s, is discrete

and is therefore not included in the state vector. We further
assume that an arbitrary planar velocity can be imposed to the
pusher. The inputs vt and vn denote, respectively, the speed
tangent and normal to the surface against which is pushed
and are therefore defined in a local frame of reference. The
velocities are combined in the input vector, u ∈ R2.

Provided that the inertial forces are negligible compared
with the friction force between the sliding object and the
supporting surface the interaction becomes quasi-static. In
this work we additionally assume that the interaction between
the pusher and the slider is frictionless.

If both assumptions are valid, we can derive the following
differential kinematic model [8].

ẋ = − β2

β2+c2 vn sin(ϕ)

ẏ = β2

β2+c2 vn cos(ϕ)

ċ = vt −
(
b
2 + r

)
c

β2+c2 vn

ϕ̇ = c
β2+c2 vn

(1)

Here β2 is a geometric factor that depends on the dimensions
of the slider. In the case of a rectangular geometry, β2 =
1
12(a

2 + b2) where the parameters a and b are geometric
with a and b denoting the length of the slider’s side. Further,
the radius of the pusher is denoted as r.

The equation above describes the dynamics of the system
for a given fixed face variable, s. When arbitrary changes
in the pushing face are allowed, the dynamics are extended
to a hybrid formulation. Assuming a switch from s to s′ at
time t, we have that x(t−) = x(t+) with the exception of
c(t+) which can be chosen arbitrarily. The same applies for
the input, u(t+). From time t+ onwards the dynamics are
described by (1) rotated over 90 or −90 degrees.

B. Differential flatness

Differential flatness, or simply flatness, extends the notion
of an inverse dynamics function to a restricted class of
underactuated nonlinear systems. Differential flatness implies
the existence of a set of differentially independent variables,
ξ, the so-called flat output. Any feasible state-input trajectory,
i.e. any combination (x,u) that satisfies (1) can be expressed
as a function of ξ and its higher order time derivatives.

Under the assumption of frictionless slider-pusher contact,
it can be demonstrated that the equations of motion (1)
are differentially flat [8]. Specifically, for the pusher-slider
system, the Cartesian coordinates serve as the flat output,
ξ = (x, y). Then the control input and auxiliary states can
be expressed as

c = β2 ẋÿ−ẍẏ√
ẋ2+ẏ2

3

ϕ = − arctan ẋ
ẏ

vt = β2 ẋ
...
y − ...

x ẏ√
ẋ2+ẏ2

3 + 3β2 (ẍẏ−ẋÿ)(ẋẍ+ẏÿ)√
ẋ2+ẏ2

5 +
(
b
2 + r

)
ẋÿ−ẍẏ
ẋ2+ẏ2

vn =
(
1 + β2 (ẍẏ−ẋÿ)2

(ẋ2+ẏ2)3

)√
ẋ2 + ẏ2

(2)

Differential flatness is an appealing property for trajectory
optimization, as will be illustrated next.

2336



III. TRAJECTORY OPTIMIZATION
WITH AUTOMATIC SWITCHING LOGIC

In this section we first give a formal introduction to the
task and motion planning (TAMP) framework which allows
for a generalised formulation of our problem. We continue
this section with a description of B-splines, highlighting
their relevance in combination with a flat system to rep-
resent smooth trajectories in between switches. Following
this, we present our switching algorithm which automatically
determines if and where a switch in pushing direction of
the pusher-slider could potentially benefit the manoeuvring.
Finally, we conclude with a description of the transcribed
smooth trajectory optimization problem.

A. TAMP problem formulation
Our main goal is to determine an optimal feasible path

from initial state x0 to goal state xT and corresponding
input, in an obstacle rich environment. In such a cluttered
environment, a switch between different pushing faces might
be required e.g. to escape a narrow passage. It is implied that
besides smooth path variables we also need to determine a
sequence of pushing faces and associated switches between
subsequent faces. Following the switching dynamics as de-
scribed in section II, this will introduce discontinuities in the
otherwise smooth path.

Formally, this problem can be formulated as a task and
motion planning (TAMP) problem [6]. We optimize for
the piecewise smooth functions, x, and, u, related to the
continuous motion of the system. The framework extends on
traditional trajectory optimization by appending the problem
with a discrete logic governing the task level. Here both sm
and am represent discrete variables. In the context of TAMP,
the sequence of actions, a1:M , is referred to as the skeleton.
The decision, am, determines the switch from one mode of
operation, sm−1, to the next mode of operation, sm. The
feasible transitions between modes of operation is governed
by a first order logic, succ. Further we have functions, hpath
and gpath, and, hswitch and gswitch, that denote the equality
and inequality constraints that are active during a mode of
operation and during a switch, respectively.

The TAMP problem is then defined as

min
x,u,s0:M ,a1:M ,t1:M ,M

∫ T

0

l(x(t),u(t))dt

s.t.



x(0) = x0

x(T ) = xT

0 = hpath(x(t),u(t), sm(t)), ∀t ∈ [0, T ]

0 ≥ gpath(x(t),u(t), sm(t)), ∀t ∈ [0, T ]

0 = hswitch(x(tm),u(t), am, sm−1), ∀m ∈M
0 ≥ gswitch(x(tm),u(t), am, sm−1), ∀m ∈M

sm ∈ succ(sm−1, am), ∀m ∈M
(3)

With M the total number of switches andM = {1, . . . ,M}.
The sequence, t1:M determines the switching time stamps and
the function, m(t), is a time dependent representation of the
mode index.

The resulting problem poses a large mixed-integer pro-
gram. Given a specific skeleton, or switching sequence
a1:M , the optimization problem becomes differentiable since

(h,g)path and (h,g)switch are smooth. The problem can thus
be decomposed into two optimization problems. In an inner-
loop, a trajectory optimization problem is solved with M+1
smooth trajectory pieces. In an outer-loop an integer pro-
gramming (IP) problem is solved [22]. The IP problem can
be solved using an of the shelf branch-and-bound algorithm.
In this manner an exact local optimum can be found.

However, though generic solution methods have been
proposed in the literature, the computational burden still
proves prohibitive in time critical applications. In the present
work we propose an alternative solution approach tailored
to slider-pusher systems. Our approach starts from a simple
trajectory optimization problem and progressively improves
the complexity based on an automatic switching logic.

In the present work the modes, sm, correspond with the
pushing face. The switches correspond with allowed sub-
sequent faces. The differential kinematics (1) and obstacles
in the environment can be encoded by the path constraints,
(h,g)path. The discontinuous switching dynamic can be en-
coded in the switch constraint, (h,g)switch. We refer to section
III-D for further details.

B. B-spline parameterization of smooth motions

The flat expressions (2) of the system allow for the full
state and controls to be encoded by a sufficiently smooth flat
path. This approach enables the transcription of the trajectory
optimization problem into a numerical optimization problem,
eliminating the necessity for enforcing dynamic continuity
constraints such as are usually included in hpath.

To parameterize the flat output, we consider B-splines. B-
splines, first introduced in [23], consist of a union of local
curve segments which are each active on a specific interval.
Its segmented nature allows for very efficient tailoring to
desired local changes [24]. This property also makes it
particularly useful for trajectory optimization as it allows for
local adjustments to the path without impacting the global
behavior, resulting in sparse Jacobian and Hessian structures
within the nonlinear programming framework (see section
III-D).

The B-spline, b(τ), is defined as follows

b(τ) =

n∑
i=0

pibi,d(τ), τ ∈ [0, 1] (4)

The spline is defined over the closed interval [0, 1]. The set
p = {p0, . . . , pn} constitutes the set of control points which
acts as a set of weights on the basis functions bi,d where d is
the order of the B-spline and n+1 is the number of control
points.

The basis functions can be determined according to the
following recursion formula [25].

bi,0(τ) =

{
1, τi ≤ τ ≤ τi+1

0, otherwise

bi,d(τ) =
τ − τi

τi+d − τi
bi,d−1(τ) +

τi+d+1 − τ

τi+d+1 − τi+1
bi+1,d−1(τ)

(5)
It can be seen here that the closed interval [0, 1] is

determined by a set of m+1 knots with m = d+n+1 sub
intervals.

τ = {τ0, τ1, . . . , τm} (6)

2337



At the knot points, the polynomials are joined and con-
nected in a continuous manner. From the recursion (5) it is
clear that each basis function bi,d, with weight pi, is only
active on a subset of the interval [0, 1]. More specifically, it
is nonzero on the interval [τi, τi+d+1). This also results in
the B-spline not being defined at the start and the ending
of the interval [0, 1]. However, choosing the knot vector with
duplicate knots at the ends resolves this issue and also clamps
the start and endpoint of the spline to the two end control
points, b(0) = p0 and b(1) = pn. This is often referred to as
a clamped uniform B-spline.

τ = {0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 1︸ ︷︷ ︸
internal knots

, 1, . . . , 1︸ ︷︷ ︸
d

} (7)

In this work we will parameterize the flat output, ξ, using
a B-spline and control points, p.

ξ(τ ;p0:n) =

n∑
i=0

pibi,d(τ), τ ∈ [0, 1] (8)

Remark that since the flat coordinate of the pusher-slider
system ξ = (x, y) is two-dimensional, two B-splines are
needed to represent the flat trajectory. Put differently, each
control point, pi ∈ R2. Then following the expressions
provided in (2), it is possible to deduce the state and action
from the trajectory of the flat output. One verifies that these
expressions depend on the third order derivative of the flat
output at most. Further note that a B-spline function of order
d consists of polynomials of order d − 1. To ensure that
the motion is smooth, the B-spline used to represent the flat
trajectory should be at least of order d = 4. This is usually
chosen as the minimum value to avoid numerical issues [26].
The fact that a relatively small amount of control points,
p0:n ∈ Rn×2, is needed to fully parameterize a smooth
trajectory will become useful later on in the optimization.

C. Automatic Switching Logic
As discussed in section III-A, once a skeleton, a1:M , is

provided, problem (3) can be transformed into a smooth
trajectory optimization problem. Alternative to the use of a
branch-and-bound technique, in the present paper we propose
a novel algorithm to progressively determine the switching
sequence. The overall algorithm is presented in Algorithm 1.

Given a problem set-up, say E, existing of a set of
obstacles, a given initial state, and a desired goal state, the
algorithm proceeds as follows. The entire slider’s path is
constructed by concatenating M + 1 B-splines. For each B-
spline we use a fixed hyperparameterization, i.e. the number
of knots and the degree is predetermined. These M + 1
B-splines correspond with M + 1 sets of control points
denoted further as P0:M ∈ RM+1×n×2 (see section III-D
for an exact definition). At the concatenation between these
B-splines a possible switch may occur. The total number of
concatenated B-splines and thus number of potential switches
is determined iteratively.

The algorithm is initialized by solving the trajectory op-
timization using a single B-spline, i.e. M = 0. We use two
criteria to determine whether M should be increased. Either
the solver fails or the maximum geometric path curvature
is exceeded. Then depending on the criteria that triggered
the next iteration of the algorithm, a different initialization
procedure is used to start the next optimization routine.

These two cases indicate different failure modes, requiring
distinct actions. Firstly, if the path is infeasible, this may
simply indicate that the default knot number was insufficient
to solve the problem. Increasing M then simply increases the
expressiveness of the solution. The number M is increased
by 1 and the problem is reinitialized with M + 1 B-splines.
The new set of control points is then P0:M+1. Secondly,
whenever the path exceeds a certain curvature we initialize
the control points surrounding the high curvature section in
such way to elicit a switch by the NLP solver. Based on the
previous solution, we have two options. Either reinitialize
with the current number of splines or increase the number
of splines by one, i.e. to M + 1. We perform a check to
determine if there are any connected splines that do not utilize
the potential switch in between. In such cases, the problem
is reinitialized with the same number of splines.

It is possible to compute the geometric curvature of the
solution to determine exceeding path curvature. However,
notice that the flat expression for c in (2) is proportional to
the local curvature of a parametric path. In this work we will
infer instances of high curvature by examining the values of
c within a solution, setting cmax = 0.4 as the threshold.

The initialization method of the control points Pinit
0:M , either

with linear interpolation or an inverse calculation, will be
explained in detail in section III-E.

D. Continous nonlinear program

Given an action skeleton, a1:M , the TAMP problem in (3)
reduces to a smooth trajectory optimization problem which
we further transcribe into a nonlinear program (NLP) using
the B-spline parameterization. The optimizer then effectively
optimizes a finite set of interconnected splines where a switch
in pushing direction can occur in between. The NLP is
parameterized by the hyper set of control points, P0:M .
Remark that this set exists of sets of control points, p0:n.
To distinguish between the control point for each B-spline
we will write Pm = pm,0:n with m referring to the spline.

P0:M = {P0,P2, . . . ,PM} (9)

Algorithm 1 Automatic Switching Logic

input problem set-up E
output M , P∗

0:M
M ← 0
Pinit

0:M = (linear interpolation III-E1)
while not converged do

P∗
0:M ← SolveNLP(Pinit

0:M ) {III-D}
if infeasible then

M ← M+1
Pinit

0:M = (linear interpolation III-E1)
else if curvature > curvaturemax then

if all switches active then
M ← M+1

end if
Pinit

0:M = (inverse calculation III-E2)
else

Solution has converged
end if

end while

2338



To get rid of the continuous nature of problem (3), we
introduce a collocation set of K + 1 equidistant points, say
t = {t0, . . . , tK} so that t0 = 0, tK = 1 and tk < tk−1. In
total this results in (K + 1) · (M + 1) collocation points for
the whole optimization problem. By using the flat expressions
(2), we can evaluate the corresponding state, x(tk;Pm), and
input, u(tk;Pm) at every spline, m, and every collocation
point, tk. These collocation points are used to approximate
the objective function and to evaluate the continuous path
inequality constraints, gpath. Then the resulting NLP can be
formulated as follows

min
P0:M

M∑
m=0

K∑
k=0

l(x(tk;Pm),u(tk;Pm))

s.t.



x0 = x(t0;P0)

xT = x(tK ;PM )

xmin ≤ x(tk;Pm) ≤ xmax, ∀m ∈M, k ∈ K
umin ≤ u(tk;Pm) ≤ umax, ∀m ∈M, k ∈ K

0 ≤ o(x(tk;Pm)), ∀m ∈M, k ∈ K
Ax(tK ;Pm) = Ax(t0;Pm+1), ∀m ∈M \ {M}

0 = δ(Pm,Pm+1), ∀m ∈M \ {M}
(10)

where M = {0, . . . ,M} and K = {0, . . . ,K}. The formu-
lation further contains the constraint on the initial and final
state, x0 and xT , the path inequality constraints with explicit
obstacle constraints and finally two constraints related to the
switch equality constraints, hswitch.

The geometric switch constraints and obstacle constraints
are detailed next.

1) Geometric switch constraint: First, we fix the end
positions of each spline ξm(1), to the first position of the
next spline ξm+1(0). This is established by equating a subset
from state, x, using matrix A selecting the first two elements.

Second we need to ensure that the orientation of the slider
at the end of the trajectory matches, or that it is at an angle of
90◦. Instead of computing the orientation of the slider, ϕ, at
the start and end of each spline, we have that the orientation
is defined by the orientation of the velocity vector.

Then we rely on an interesting property of clamped bi-
variate B-splines [9]. It can be shown that the derivative at
the end nodes is then tangent to the vector between the final
control points. The incoming velocity is proportional to

p⃗m,n = pm,n − pm,n−1 (11)

with pm,n ∈ R2 reffering to the nth element of the mth
spline. Whereas the outgoing velocity vector is proportional
to

p⃗m+1,0 = pm+1,1 − pm+1,0 (12)

With this insight, the necessary constraint can be written
as the product of the scalar product and cross product of both
vectors.

δ(pm,pm+1) = (p⃗m,n·p⃗m+1,0)·(p⃗m,n×p⃗m+1,0) = 0 (13)

The resulting function is continuously smooth, returning
zero if either the scalar or cross product equals zero. This
occurs whenever the vectors are orthogonal or aligned in
parallel respectively. Further remark that this constraint does
not enforce a certain switch.

2) Obstacle avoidance: The pusher-slider needs to be able
to reach a goal position without colliding with any of the
obstacles in the environment. In this work we model each
obstacle as a circle or ellipsoid so that the distance between
the pusher-slider and an arbitrary obstacle, ol ∈ E , with l ∈
{1, . . . , no} can now be quantified using a continuous metric,
d(x, o) : R2 × E → R, quantifying the Euclidean distance
between the circumference of the slider and the obstacle.

In the case of an ellipsoidal obstacle the distance metric
is defined as follows

d(x, o) =
(∆x)2

w2
+

(∆y)2

h2
− 1 (14)

where the distances (∆x,∆y) are calculated as

(∆x,∆y) = R(θ) · (x− xe, y − ye) (15)

with R(θ) the planar rotation matrix. Here xe and ye repre-
sent the obstacles origin, θ its planar orientation and w and
h denoting half the ellipse’s width and height. Note that the
ellipse’s width and height account for both the geometry of
the obstacle and the slider.

The vector, o, is then defined as

o(x) = (d(x, o1) . . . d(x, ono
))

⊤ (16)

E. NLP initialization

As described in algorithm 1, the nonlinear program (10)
solver is started with an initial guess for the control points
Pinit

0:M . Two initialization methods are described, linear inter-
polation and an inverse calculation procedure.

1) Linear interpolation: Here the control points P0:M are
interpolated linearly between the initial state x0 and goal
state, xT . This is a rather simple way to start the solver,
with the benefit that no prior information is needed. Note
that when this method is used with M > 0, this implies that
the problem is reinitialized entirely, with the exception that
the number of B-splines used to represent the smooth motion
is now increased.

2) Inverse calculation: The second method of initializa-
tion is more involved and relies on the solution from a
previous iteration. If in a previous solution a high geometric
curvature is detected, then a switch in pushing direction can
be needed. In this case, the control points are initialized in
such a way that a switch in the vicinity of the high curvature
section is likely. While the optimizer may autonomously
identify and implement a switch without specific initializa-
tion, this approach often leads to extended solving times and
can lack reliability. For that reason, a guided initial guess is
beneficial for the overall performance of the algorithm.

A switch is expected to occur at the location of highest
curvature along the spline. To allow for such a maneuver,
two splines should connect at the switch point so that the
orientation of the slider before and after the switch can
be orthogonal. We create a proper initial guess in two
steps. First, two splines are created to replace the previous
solution. We then compute the new control points so that
the two connecting splines approximate the original spline.
Subsequently, the end and start control point of the spline
before and after the switch are projected so that the control
point polygon is orthogonal at the switch point. This process
is illustrated in Fig. 2.

2339



(a) previous solution (b) initial guess

(c) projected guess

Fig. 2: Re-initializing the optimization with an additional spline to
initialize the next optimization routine. The previous solution 2a is
reused to estimate the spline parameters of the newly added splines
2b. Based on the curvature location and direction, the control points
entering and leaving the switch point are projected so that the
resulting angle of attack between both vectors is at 90◦ 2c.

With the previous solution ξprev
m , the new connected splines,

denoted ξnew
m and ξnew

m+1, are initialized to approximate the
ξprev
m trajectory. From the B-spline definition (4) it is clear that

the B-spline is linear with respect to the control points. This
means that we can express a vector of B-spline evaluations
as a linear system in function of the control points.(

ξ(τ0)
⊤ . . . ξ(τn)

⊤)⊤ = N⊗ I2 ·P (17)

Here N constitutes the matrix of basis functions evaluated on
the sampled points, {τ0, . . . , τn} with entries Nij = bj,d(τi).
When we choose n distinct sample points, the equation can
be solved for P. Remark that the sample points need not
coincide with the knot vector. A simple approach is then to
evaluate ξprev

m on an equidistant grid and fitting the spline
control points of the new splines to match the previous
output. With the switch point detected at τ switch, we need
to evaluate the spline ξprev

m (τ) on an equidistant grid on
[0, τ switch] to compute the control points of ξnew

m and on
[τ switch, 1] for ξnew

m+1.
For most cases this works well. However, in some cases,

especially those trajectories which are relatively long and
contain a large amount of curvature, this method can result
in inaccurate derivatives of the spline at the endpoints. For
this reason we slightly modify the previously discussed
technique. We propose to drop one of the points in the grid

and also include a constraint on the spline tangent at the
switch point. The derivative of a clamped B-spline at the
end points is tangent to the difference in the control points.
An analogous set of control points for the B-spline, ξm+1,
can be determined by dropping one of the rows in (17) and
adding the derivative into the set of equations(
ξm+1(τ0)

⊤ . . . ξm+1(τn−1)
⊤)⊤ = N⊗ I2 ·Pm+1

ξ′m+1(τ0) = pm+1,1 − pm+1,0
(18)

Here the sequence {τ0, . . . , τn−1} contains n − 1 points in
the range [τswitch, 1]. Together with the second equation we
again have n equations which are all linear in the control
points. Hence the control points are uniquely determined. An
analogous case can be made for the spline ξm on [0, τswitch].

The previously computed control points are still tangent
at the switch point. To incite a switch by the optimizer, the
second pm+1,1 and the second to last control point pm,n−1,
of ξm+1 and ξm respectively, are projected to be at 90◦. This
is also indicated in Fig. 2b with the resulting projection in
Fig. 2c. The projected control point is computed by projecting
p⃗ defined as (11) and (12), for ξm and ξm+1 respectively:

p⃗proj =
p⃗⊤v

p⃗⊤p⃗
p⃗ (19)

The vector, v, is the desired direction of each spline at the
switch point. The vector is computed by rotating the tangent
of the spline at the switch point, ξ′(τ switch), 45◦ and 135◦

for ξm+1 and ξm respectively.

F. Geometric optimization

In this work we focus on the geometry of the problem
while keeping the time parameterization of the trajectory
fixed. Due to the specific flat properties of the pusher-slider
system, the optimization problem can be decomposed into a
geometric and time optimization problem [8]. Hence, once
a geometric solution is determined, a velocity profile can be
imposed subsequently. In the experiments in this work the
time horizon is chosen as T=1.

IV. SIMULATION EXPERIMENTS

To test the effectiveness of our methodolgy, several envi-
ronments with a number of obstacles are created. We start by
outlining the experimental details and continue by discussing
the results while highlighting the different behaviours we
encountered.

A. Experimental details

Within each case, the objective remains consistent: to
transition from the initial state x0 = (0, 0, 0, 0)⊤ to the
desired goal state xT = (x, y, ϕ, c), all while ensuring that no
collisions occur with the obstacles. The objective is encoded
through the problem formulation (10) with cost objective

l(x,u) = x⊤Qx+ u⊤Ru (20)

We add an additional regularization term in function of the
control points which proved beneficial for the convergence of
the optimizer. The inclusion of this term serves the purpose

2340



of ensuring a uniform distance is maintained between the
control points.

lreg = wreg

M∑
m=0

n∑
i=0

∥pm,i+1 − pm,i∥2 (21)

The following numerical values were chosen: Q =
diag(10−4, 10−4, 0, 0), R = diag(1, 0.01),K = 20, wreg =
10 and n = 5. The optimization problem is constructed with
CasADi [27] and solved using IPOPT [28]. All computations
are run on a 64-bit AMD Ryzen 5 2600x workstation with
32GB RAM.

B. Results
We generate several scenarios with a set of densely ar-

ranged obstacles on which the algorithm 1 is deployed. For
each set-up the same initialization parameters are used. The
algorithm is started with a single spline, i.e. M = 0, where
the control points are linearly interpolated between start x0

and goal state xT = (x, y, ϕ, c). The resulting trajectories are
shown in Fig. 3 and Fig. 4. Depending on the environment,
the algorithm converges to a certain number of splines M+1.
If few obstacles are present, the solver will find a solution
with just one spline and no switching behaviour. In the
environment shown in Fig. 3a one spline does not suffice.
Initially the algorithm succeeds in finding a feasible solution
with M = 0. However due to the densely arranged obsta-
cles, the resulting solution exceeds the allowable curvature.
Subsequently, the number of splines is increased by one, and
the solver is reinitialized with orthogonal control points near
the high curvature section. Finally, the solver converges to
a solution with two splines which implements a switch to
traverse the narrow passage.

In Fig. 3b, the algorithm is again started with a single
spline. In this case however the solver is unable to find a
feasible solution. In the next iteration the number of splines
is increased to increase the expressiveness. Similar to the
previous case, a high geometric curvature is encountered and
the solver is restarted with an additional spline and proceeds
to implement a switch. In the subsequent iteration, the solver
again encounters a high geometric curvature. Since the final
two splines are connected without utilizing a switch, the
solver is reinitialized before converging to the final solution
which implements two switches.

Since a fixed hyperparameterization of each B-spline was
used, i.e. fixed number of knots and degree, some cases
require an increased number of splines to increase expres-
siveness without adding additional switches. In Fig. 4 the
algorithm converges to a solution with three splines which
contains an unused switch in between the two final splines.

Whenever the number of splines are increased, so does
the number of optimization variables and the computational
requirement of the problem. In most cases the algorithm
converges relatively fast. The computational requirement is
reported in Fig. 3 and Fig. 4.

V. CONCLUSION

In this work we tackled the challenge of controlling a
sliding object with non-prehensile manipulation through a
cluttered environment. To solve the associated TAMP prob-
lem, we proposed an algorithm to automatically determine
both a feasible pushing sequence and trajectory through a

(a)

(b)

Fig. 3: Trajectories in different scenarios with goal state xT =
(0, 10, 0, 0) for Fig. 3a and xT = (0, 15, 0, 0) for Fig. 3b.The
solution of 3a and 3b took the algorithm 470ms and 4.30s to
converge respectively.

cluttered environment. Given a specific pushing sequence, the
TAMP problem is transcribed, with a set of interconnected B-
splines, into a trajectory optimization problem. The resulting
trajectory optimization problem jointly optimizes the pusher-
slider trajectory and switching parameters such as switching
location and orientation. By detecting high curvature, the
pushing sequence is adapted and the associated trajectory
optimization problem is resolved. This process is repeated
iteratively before converging to a solution. The algorithm
was deployed in a number of simulation environments,
demonstrating it’s ability to efficiently and automatically
find feasible trajectories through cluttered environments by
incorporating switches in pushing direction mid trajectory.

2341



Fig. 4: Trajectory solution with goal state xT = (0, 15, 0, 0). The
algorithm converges to multiple splines where one possible switch
is left open and connected as a continuous trajectory. The algorithm
took 2.29s to converge.

In future work we would like to extend the method to
longer horizon problems, with the inclusion of a larger set
of distinct actions. Validating the method on an experimental
setup by incorporating it in an MPC framework would be
another track.

ACKNOWLEDGMENT

This work was supported by the Flanders Make projects
DIRAC and the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” programme.

REFERENCES

[1] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Tossingbot: Learning to throw arbitrary objects with
residual physics. IEEE Transactions on Robotics, 36(4):1307–1319,
2020.

[2] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano. Nonprehen-
sile dynamic manipulation: A survey. IEEE Robotics and Automation
Letters, 3(3):1711–1718, 2018.

[3] J Zachary Woodruff and Kevin M Lynch. Planning and control for
dynamic, nonprehensile, and hybrid manipulation tasks. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages
4066–4073. IEEE, 2017.

[4] Francois Robert Hogan and Alberto Rodriguez. Feedback control of
the pusher-slider system: A story of hybrid and underactuated contact
dynamics. CoRR, abs/1611.08268, 2016.

[5] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez.
More than a million ways to be pushed. a high-fidelity experimental
dataset of planar pushing. In 2016 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 30–37. IEEE, 2016.

[6] Marc Toussaint, Kelsey Allen, Kevin Smith, and Joshua Tenenbaum.
Differentiable physics and stable modes for tool-use and manipulation
planning. In Robotics: Science and Systems XIV. Robotics: Science
and Systems Foundation, June 2018.

[7] Robin Deits and Russ Tedrake. Footstep planning on uneven ter-
rain with mixed-integer convex optimization. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 279–286, 2014.

[8] Tom Lefebvre, Sander De Witte, Thomas Neve, and Guillaume Creve-
coeur. Differential Flatness of Slider–Pusher Systems for Constrained
Time Optimal Collision Free Path Planning. Journal of Dynamic
Systems, Measurement, and Control, 145(6), 04 2023. 061001.

[9] Florin Stoican, Ionela Prodan, and Dan Popescu. Flat trajectory
generation for way-points relaxations and obstacle avoidance. In 2015
23rd Mediterranean Conference on Control and Automation (MED),
pages 695–700. IEEE, 2015.

[10] Nicolas Petit, Mark B. Milam, and Richard M. Murray. Inversion
based constrained trajectory optimization. IFAC Proceedings Volumes,
34(6):1211–1216, July 2001.

[11] Richard M. Murray, John Hauser, Ali Jadbabaie, Mark B. Milam,
Nicolas Petit, William B. Dunbar, and Ryan Franz. Online Control
Customization via Optimization-Based Control, page 149–174. Wiley,
1 edition, April 2003.

[12] François Chaplais and Nicolas Petit. Inversion in indirect optimal
control of multivariable systems. ESAIM: Control, Optimisation and
Calculus of Variations, 14(22):294–317, April 2008.

[13] Ngoc Thinh Nguyen, Ionela Prodan, Florin Stoican, and Laurent
Lefèvre. Reliable nonlinear control for quadcopter trajectory tracking
through differential flatness. IFAC-PapersOnLine, 50(1):6971–6976,
2017. 20th IFAC World Congress.

[14] Melissa Greeff and Angela P. Schoellig. Flatness-based model pre-
dictive control for quadrotor trajectory tracking. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 6740–6745, 2018.

[15] Zejiang Wang, Jingqiang Zha, and Junmin Wang. Flatness-based model
predictive control for autonomous vehicle trajectory tracking. In 2019
IEEE Intelligent Transportation Systems Conference (ITSC), pages
4146–4151, 2019.

[16] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Kinody-
namic trajectory optimization and control for car-like robots. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5681–5686, 2017.

[17] Neel Doshi, Francois R. Hogan, and Alberto Rodriguez. Hybrid
differential dynamic programming for planar manipulation primitives.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), page 6759–6765, May 2020.

[18] João Moura, Theodoros Stouraitis, and Sethu Vijayakumar. Non-
prehensile planar manipulation via trajectory optimization with com-
plementarity constraints. In 2022 International Conference on Robotics
and Automation (ICRA), page 970–976, May 2022.

[19] Yongpeng Jiang, Yongyi Jia, and Xiang Li. Contact-aware non-
prehensile manipulation for object retrieval in cluttered environments.
September 2023.

[20] Jiaji Zhou, Yifan Hou, and Matthew T Mason. Pushing revis-
ited: Differential flatness, trajectory planning, and stabilization. The
International Journal of Robotics Research, 38(12–13):1477–1489,
October 2019.

[21] Thomas Neve, Tom Lefebvre, Sander De Witte, and Guillaume Creve-
coeur. Flatness-based mpc using b-splines transcription with appli-
cation to a pusher-slider system. In 2023 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), pages 132–
137, 2023.

[22] Marc Toussaint. Logic-geometric programming: An optimization-
based approach to combined task and motion planning.

[23] Contributions to the problem of approximation of equidistant data by
analytic functions. Quarterly of Applied Mathematics, 4:112–141,
1946.

[24] Boris Rohal’-Ilkiv, Martin Gulan, and Peter Minarčı́k. Implementation
of continuous-time mpc using b-spline functions. In 2019 22nd
International Conference on Process Control (PC19), pages 222–227,
2019.

[25] Carl de Boor. On calculating with b-splines. Journal of Approximation
Theory, 6(1):50–62, 1972.

[26] Simon Helling, Max Lutz, and Thomas Meurer. Flatness-based mpc for
underactuated surface vessels in confined areas. IFAC-PapersOnLine,
53(2):14686–14691, 2020. 21st IFAC World Congress.

[27] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. CasADi – A software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation,
11(1):1–36, 2019.

[28] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program., 106(1):25–57, mar 2006.

2342


