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Abstract— In this paper, a data-driven adaptive control
approach is developed for unknown underactuated Euler-
Lagrange systems. The proposed approach can deal with the
nonlinearity and handle unmodelled dynamics, model uncer-
tainties and unknown disturbances in underactuated systems.
At first, coupled sliding variables are defined to combine the
dynamics of actuated and unactuated states. The time-delayed
estimation (TDE) technique is applied to deal with all the un-
known factors in the dynamics of sliding variables. A constant
gain matrix is the main design parameter and influences both
the closed-loop stability and the tracking performance. The
data-driven approach developed in this paper can find the
constant gain matrix directly from the input and output data
without any knowledge of the inertia matrix. To deal with the
TDE error, an adaptive sliding mode control is integrated. The
proposed approach is illustrated with an example of an offshore
boom crane.

I. INTRODUCTION

Euler-Lagrange systems [1] exist widely in many practical
systems in the real world [2], [3]. Underactuation arises
in Euler-Lagrange systems whenever the number of inde-
pendent control inputs is less than the degree of freedom,
such as cranes [4], satellites [5], underwater vehicles [6],
unmanned aerial vehicles (UAV) [7], [8] and mobile robots
[9]. Though underactuated systems have shown the merits in
terms of simpler structure, less cost and energy consumption
and better operational flexibility, the controller design for
underactuated systems is still a challenging task [10], [11].

To guarantee the stability and controllability of nonlin-
ear underactuated Euler-Lagrange systems, different control
approaches have been introduced. For instances, plenty of re-
markable works including transformation into fully actuated
form [12], energy-based control method [13], backstepping
control methods [14], model predictive control [15] have
been proposed for the underactuated systems. However, the
precise model and the accurate system parameters are re-
quired. To deal with model uncertainties and external distur-
bances, sliding mode control [12], [16], [17] and disturbance
observer based approach [18] have been employed. However,
a nominal model of the system is still needed.

The time-delayed control (TDC) has been originally in-
troduced by [2] and [19] to handle fully actuated Euler-
Lagrange systems with model uncertainties, unmodelled dy-
namics or unknown disturbances. The main idea of TDC
is to make use of the continuity of the system dynamics
and use the measurement information at the last time instant
to approximately estimate all the unknown terms in the
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system at the current time instant. A constant gain matrix is
introduced to replace the inertia matrix, so that the original
highly nonlinear and strongly coupled dynamics of the Euler-
Lagrange systems can be linearized and decoupled.

TDC has been widely applied in fully actuated systems
but rarely in underactuated systems, because the stability and
robustness rely on the system being fully actuated. In [20]
and [21], the reduced order TDC has been introduced for
underactuated systems. In [22] and [23], an adaptive control
approach using time-delayed estimation (TDE) technique
has been introduced to remove the restrictions of structural
constraints and the requirement of a prior knowledge of
some dynamic terms such as Coriolis and friction in the
underactuated systems. Yet these approaches [20]–[23] in-
volve many tuning parameters and make the controller design
complicated. Moreover, the determination of the constant
gain matrix still depends on the information of the inertia
matrix.

In our previous publication [24], a data-driven TDC ap-
proach has been designed for fully actuated Euler-Lagrange
systems. In this paper, the data-driven TDC technique will
be extended and developed for underactuated Euler-Lagrange
systems with unknown dynamics. It will be shown that,
instead of controlling the states directly, sliding variables
are defined to couple the actuated and unactuated states.
The number of sliding variables is equal to the number of
actuators. Therefore, a fully actuated form in terms of sliding
variables can be obtained. Then, similar to the fully actuated
systems, a new constant gain matrix can be directly obtained
from measured input and output data. To deal with the TDE
error, an adaptive sliding mode control is integrated in the
data-driven design. The stability of the closed-loop system
will be proven. The proposed algorithm involves only few
controller parameters and the design effort is much lower
than the other TDC approaches for underactuated systems.

Notation: R, R≥0 and R>0 denote, respectively, the set
of real numbers, non-negative real numbers and positive real
numbers. In ∈ Rn×n denotes an identity matrix. For a matrix
Q, Q ≻ 0 means that Q is positive definite. For a real number
a, |a| denotes the absolute value of a. For a vector x, ∥x∥ =√
xTx is the Euclidean norm of x. For a matrix Q, λmin(Q)

denotes the minimal eigenvalue.

II. PRELIMINARIES

A. System description

Consider the underactuated Euler-Lagrange system
M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + ds = [τT 0T ]T (1)
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where q = [q1 q2 · · · qn]T ∈ Rn is the vector of generalized
coordinates, M(q) ∈ Rn×n is the positive definite inertia
matrix, C(q, q̇) ∈ Rn×n is a matrix of centrifugal and
Coriolis terms, G(q) ∈ Rn contains the gravitational terms,
F (q̇) ∈ Rn denotes viscous friction, ds ∈ Rn describes the
unknown disturbances and unmodelled dynamics, τ ∈ Rm

is the control input vector, where (n −m) ≤ m < n. The
system (1) satisfies the following property.

Property 1 ( [1]): The inertia matrix M(q) is uniformly
positive definite, i.e. there exist two constants µ1, µ2 ∈ R>0

such that µ1I ≤M(q) ≤ µ2I .
Let x=[xT1 xT2 ]

T=[qT q̇T ]. Then (1) can be rewritten as
ẋ1 = x2 (2a)
ẋ2 =ψ(x) + ϕ(x)u (2b)

where u=[u1 u2 · · ·um 0· · · 0]T=[τT 0T ]T , ϕ(x)=M−1(q),
ψ(x)=−M−1(q)(C(q, q̇)q̇+G(q)+F (q̇)+ds) and f(0)=0.

Without loss of generality, we make the following assump-
tions, which hold generally in practical systems.

Assumption 1: The control input is bounded, i.e. u ∈ U.
The boundedness is represented by a known constant Umax,
i.e. |uj | ≤ Umax <∞, ∀j = 1, · · · , n.

Assumption 2: The states (e.g. the positions and the ve-
locities) are bounded, i.e. x ∈ X. For the Euler-Lagrange
system, the states are constrained by |qj | ≤ qmax < ∞ and
|q̇j | ≤ q̇max <∞, ∀j = 1, · · · , n.

Assumption 3: The reference signals of the positions qr
and the velocities q̇r are bounded, i.e. x ∈ X. For the Euler-
Lagrange system, the references signals are constrained by
|qr|≤qr,max<∞, |q̇r|≤q̇r,max<∞ and |q̈r|≤q̈r,max<∞.

Under Assumption 2, Assumption 4 can be made.
Assumption 4 ( [1]): The function ψ(x) in (2b) is locally

Lipschitz in x ∈ X. That means, given any x1 ∈ X and any
x2 ∈ X in the neighbourhood of x1, there exists always a
positive bounded number α(x1) that depends on x1, so that
∥ψ(x1)− ψ(x2)∥ ≤ α(x1)∥x1 − x2∥. Denote the maximum
of α(x1) over the set X by K1 = maxx1∈X α(x1).

At first, we rewrite system model (1) as
M(q)q̈ +N(q, q̇, ds) = [τT 0T ]T (3)

where q = [qTa qTu ]
T is composed of the actuated

states qa ∈ Rm and the unactuated states qu ∈ Rn−m,

M =

[
Maa Mau

MT
au Muu

]
,Maa ∈ Rm×m, Mau ∈

Rm×(n−m),Muu ∈ R(n−m)×(n−m), N(q, q̇, ds) =
C(q, q̇)q̇ + G(q) + F (q̇) + ds = [NT

a NT
u ]T , Na ∈

Rm, Nu ∈ Rn−m.
The dynamics of the actuated and unactuated variables can

be equivalently rewritten as
q̈u = −M−1

uuM
T
auq̈a −M−1

uuNu (4)

q̈a =M−1
s τ + ha (5)

where ha = M−1
s (MauM

−1
uuNu − Na) and Ms = Maa −

MauM
−1
uuM

T
au.

B. Control objective

Let qr = [qTa,r q
T
u,r]

T , ea = qa−qa,r, eu = qu−qu,r be the
tracking error of actuated and unactuated states, respectively.

Define coupled sliding variables as
S(t) = ΓaSa(t) + ΓuSu(t) (6)

where Sa=ėa+Υaea and Su=ėu+Υueu are the sliding vari-
ables of actuated and unactuated states in (1), respectively.
Υa ∈ Rm×m, Υu ∈ R(n−m)×(n−m), Γa ∈ Rm×m and Γu ∈
Rm×(n−m) are constant matries that satisfy Υa>0, Υu>0,
Γa>0 and Γu>0 are coupling parameters.

Using (4) and (5), the time derivative of (6) yields
Ṡ = ΓaṠa + ΓuṠu = Γa(ëa +Υaėa) + Γu(ëu +Υuėu)

= f + Sr + gτ (7)
where f = (Γa − ΓuM

−1
uuM

T
au)ha − ΓuM

−1
uuNu, Sr =

ΓaΥaėa + ΓuΥuėu − Γaq̈a,r − Γuq̈u,r and g = (Γa −
ΓuM

−1
uuM

T
au)M

−1
s .

Consider the following controller designed by [22]

τ=ḡ−1(−ΛS−Sr−τr), τr=

{
ρ S
∥S∥ , if ∥S∥ ≥ ϵr

ρS
ϵ , if ∥S∥ < ϵr

(8)

where Λ ∈ Rm×m satisfies Λ > 0, τr deals with uncer-
tainties using the gain ρ and ϵ is a small scalar to avoid
chattering. A more detailed explanation of controller design
in (8) can be found in [22]. Note that ḡ is not a constant
matrix but satisfies the following assumption.

Assumption 5 ( [22]): A scalar E is known such that
∥gḡ−1 − Im∥ ≤ E < 1. (9)

In [22] the closed-loop stability has been analyzed based
on Assumption 5 and the uniformly ultimately boundedness
of the closed-loop trajectories has been proven.

III. DATA-DRIVEN ADAPTIVE SLIDING MODE
CONTROL

In (9) the mathematical expression of g is still required
to select the matrix ḡ. Though a sufficiently large ḡ may
also satisfy Assumption 5, it may cause a weak or even
unstable tracking performance, as shown by [25]. Therefore,
ḡ should be able to sufficiently represent the dynamics of g.
In this section, we shall present a data-driven approach to
determine ḡ directly from the input and output data without
any knowledge of g.

A. TDE-Based sliding variable
Let ḡnew∈Rm×m be a constant diagonal matrix. Then the

nonlinear system equation (7) at time t can be rewritten as
Ṡ(t) = H(t) + ḡnewτ(t) (10)

where H(t) = f(t) + Sr(t) + (g(t) − ḡnew)τ(t). For a
sufficient small sampling time Ts, the value of H(t) can be
approximated by its time-delayed value by considering the
continuity of the function H(t) [2], i.e. H(t) ≈ H(t−Ts) =
Ṡ(t− Ts)− ḡnewτ(t− Ts). Thus, one obtains

Ṡ = Ṡ0 + ḡnew∆τ + ϵ(t). (11)
where ϵ(t) = H(t) − H(t − Ts) denotes the TDE error.
Ṡ0 = Ṡ(t− Ts), τ0 = τ(t− Ts) and ∆τ = τ(t)− τ0.

B. Data-driven determination of the diagonal matrix ḡnew
To get the diagonal matrix ḡnew based on data while

guaranteeing the closed-loop stability, a persistently exciting
input signal is used to excite the system. Choose ḡnew as

ḡnew = diag{ḡ1, ḡ2, · · · , ḡm}. (12)
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Then the system (11) can be rewritten as m subsystems by
Ṡj = Ṡj

0 + ḡjnew∆τ
j + ϵj , j = 1, · · ·,m. (13)

where S = [S1 S2 · · · Sm]T .
Assume that the system is controllable. At sampling

instants t = kTs, k = 1, 2, · · ·, N , a persistently exciting
control input sequence τ j(kTs) satisfying Assumption 1 is
used to excite the system to get the dynamic behaviour of the
system. In practice, some commonly used test signals such
as pseudo random binary sequence can be applied here.

The measurements of the states qja(kTs), q̇
j
a(kTs), q

j
u(kTs)

and q̇ju(kTs) are collected. Note that q̈j(kTs) can be calcu-
lated by the Euler method as q̈j(kTs) =

q̇j(kTs)−q̇j((k−1)Ts)
Ts

.
Under Assumption 1 and recalling Property 1, the follow-

ing Lemma can be obtained.
Lemma 1: Given system (1) with Property 1 and choose

a sufficiently small sampling time Ts. Under Assumptions 1,
there always exists a finite positive number K1, so that the
function q̈ satisfies the following relation

∥q̈ − q̈0∥ ≤ K1∥x− x0∥+ 4µ−1
1 Umax, (14)

where x0 and q̈0 denote, respectively, the value of x and q̈
at the last sampling instant.

Proof: Let x0 and u0 denote, respectively, the value
of x and u at the last sampling instant. Due to Property 1,
the matrix ϕ(x) = M−1(q) is bounded by µ−1

2 I ≤ ϕ(x) ≤
µ−1
1 I. Under Assumption 1, we obtain
∥q̈ − q̈0∥ = ∥ψ(x) + ϕ(x)u− ψ(x0)− ϕ(x0)u0∥
≤ K1∥x− x0∥+ ∥ϕ(x)u− ϕ(x)u0 + ϕ(x)u0 − ϕ(x0)u0∥
≤ K1∥x− x0∥+ µ−1

1 ∥u− u0∥+ 2µ−1
1 ∥u0∥ (15)

≤ K1∥x− x0∥+ 4µ−1
1 Umax.

Thus, the inequality (14) holds.
Making use of Lemma 1, the following lemma shows the

boundedness of the sliding mode variables Ṡ − Ṡ0.
Lemma 2: Given system (1) with Property 1 and choose

a sufficiently small sampling time Ts. Under Assumptions
1-4, there always exists finite positive numbers K and Kr,
so that the function Ṡ− Ṡ0 satisfies the relation ∥Ṡ− Ṡ0∥ ≤
KUmax +KrTs, where S0 = S(t− Ts).

Proof: From (7), we obtain ∥Ṡ − Ṡ0∥ = ∥Γaëa +
ΓaΥaėa+Γuëu+ΓuΥuėu−Γaëa,0−ΓaΥaėa,0−Γuëu,0−
ΓuΥuėu,0∥ ≤ [Γa Γu]∥ë− ë0∥+ [ΓaΥa ΓuΥu]∥ė− ė0∥ ≤
[Γa Γu]∥q̈− q̈0∥+[ΓaΥa ΓuΥu]∥q̇− q̇0∥ +[Γa Γu]∥q̈r−
q̈r,0∥+[ΓaΥa ΓuΥu]∥q̇r − q̇r,0∥. Under Assumption 3, it is
reasonable to assume that there exists a constant Kr > 0 such
that [Γa Γu]∥q̈r− q̈r,0∥+[ΓaΥa ΓuΥu]∥q̇r− q̇r,0∥ ≤ KrTs.
Making use of Lemma 1 and considering that ∥q̇ − q̇0∥ ≤
∥x− x0∥, we obtain
∥Ṡ−Ṡ0∥ ≤ [Γa Γu]∥q̈−q̈0∥+[ΓaΥa ΓuΥu]∥q̇−q̇0∥+KrTs

≤ [Γa Γu](K1∥x− x0∥+ 2µ−1
1 Umax) (16)

+ [ΓaΥa ΓuΥu]∥q̇ − q̇0∥+KrTs

= [ΓaK1 ΓuK1]∥x− x0∥+ [2Γaµ
−1
1 2Γuµ

−1
1 ]Umax

+ [ΓaΥa ΓuΥu]∥x− x0∥+KrTs.

Many studies [26]–[28] assume that the actuator’s dynamics
are much faster than the dynamics of the system itself. Thus,
the change in the position x1 − x1,0 and the change in the

velocity x2−x2,0 are much smaller than the change in input
u− u0, i.e. ∥x− x0∥ ≪ ∥u− u0∥.

Then, from (16) we obtain ∥Ṡ−Ṡ0∥ ≤ [ΓaK1 ΓuK1]∥u−
u0∥+ [2Γaµ

−1
1 2Γuµ

−1
1 ]Umax + [ΓaΥa ΓuΥu]∥u− u0∥+

KrTs ≤ [2Γa(K1+µ
−1
1 +Υa) 2Γu(K1+µ

−1
1 +Υu)]Umax+

KrTs ≤ KUmax + KrTs, where K = [2Γa(K1 + µ−1
1 +

Υa) 2Γu(K1 + µ−1
1 +Υu)].

Assumption 6: For a sufficiently large number of data
samples N in offline data set and under a persistently exciting
control input signal τ , the largest values

∆Ṡj
max,N = max

k
{|Ṡj(kTs)− Ṡj((k − 1)Ts)|}

∆τ jmax,N = max
k

{|τ j(kTs)− τ j((k − 1)Ts)|}
(17)

provide a good estimation of the largest acceleration and the
largest input change in a bounded moving area.

Under Assumption 6 and making use of Lemma 2, the
following lemma shows that the TDE error ϵ is bounded if
ḡ1, ḡ2, · · · , ḡm are selected suitably.

Lemma 3: There exists a constant ϵ̄ ∈ R>0 such that
∥ϵ∥ ≤ ϵ̄, if the sampling period Ts is sufficiently small and
ḡ1, ḡ2, · · ·, ḡm in (12) are chosen as

ḡj = ∆Ṡj
max,N/∆τ

j
max,N , j = 1, 2, · · · ,m. (18)

Proof: Under Assumption 4 and considering (13), the
TDE error ϵj , j = 1, 2, · · · ,m of j-th sliding variable is
|ϵj(kTs)|=|Ṡj(kTs)−Ṡj((k − 1)Ts)− ḡj∆τ j(kTs)| (19)

Taking into account (17) and (18), we obtain

|ϵj(kTs)|=|Ṡj(kTs)−Ṡj((k−1)Ts)−
∆Ṡj

max,N

∆τj
max,N

∆τ j(kTs)| =

∆Ṡj
max,N

∣∣∣ Ṡj(kTs)−Ṡj((k−1)Ts)

∆Ṡj
max,N

−∆τj(kTs)

∆τj
max,N

∣∣∣ ≤ 2∆Ṡj
max,N .

According to Lemma 2, |ϵj(kTs)| ≤ 2∆Ṡj
max,N =

2max
k

{|Ṡj(kTs) − Ṡj((k − 1)Ts)|} ≤ 2max
k

{∥Ṡ(kTs) −
Ṡ((k−1)Ts)∥} ≤ 2KUmax+2KrTs. Therefore, ∥ϵ(kTs)∥ =√∑n

j=1(ϵ
j(kTs))2 ≤ ϵ̄, where ϵ̄=

√
n·2K(KUmax+KrTs).

Thus, the conclusion of Lemma 3 holds.
According to Lemma 3, ḡnew can be selected as

ḡnew = diag
{∆Ṡ1

max,N

∆τ1max,N

, · · · ,
∆Ṡm

max,N

∆τmmax,N

}
. (20)

Correspondingly, the unknown TDE error ϵ is bounded.

C. Data-driven adaptive control

Consider the following controller
τ(kTs) = τ((k−1)Ts) + ∆τ, (21)

∆τ = ḡ−1
new(−ΛS − Ṡ0 −∆ur), ∆ur = Ks · sgn(S)

where S = Γaėa+ΓaΥaea+Γuėu+ΓuΥueu is the sliding
variable defined in (6). To tackle the bounded TDE error ϵ,
an adaptive sliding mode controller ∆ur is introduced with
the gain Ks(t) defined as [29]

K̇s =

{
K̄s · ∥S∥ · sgn(∥S∥ − ϵb) if Ks ≥ µ

µ if Ks < µ
(22)

with Ks(0) > µ, K̄s > 0, ϵb > 0, µ > 0 and sgn denotes
the sign function. The parameters ϵb > 0 and µ are very small
and µ is introduced in order to get only positive values for
Ks. Next, we suppose that Ks(t) > µ for all t > 0 [29].
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Using Lemma 3, the following Lemma shows that the gain
Ks in ∆ur in (21) will not increase to be infinity large.

Lemma 4: Given system (1) with Property 1 and choose a
sufficiently small sampling time Ts with the sliding variable
S defined in (7) controlled by (21), the gain Ks(t) has an
upper-bound, i.e. there exists a positive constant K∗

s so that
Ks(t) < K∗

s , ∀t > 0 (23)
Proof: Substituting (21) into (11) yields

Ṡ = −ΛS −Kssgn(S) + ϵ (24)
Suppose that the initial value |S(t0)| > ϵb. From (22), Ks

increases and there exists a time instant t1 such that Ṡr(t1) =
0 and Ks(t1) = ∥ −ΛS(t1) + ϵ(t1)∥. From t = t1, the gain
Ks is large enough to make the sliding variable S decrease.
Thus, in a finite time t2, ∥S∥ < ϵb. It yields that the gain
Ks reaches a maximum value at t = t2 and decreases after
t = t2. Then, there exists a time instant t3 > t2 such that
Ṡr(t3) = 0 and Ks(t3) = ∥−ΛS(t3)+ ϵ(t3)∥. From t = t3,
the gain Ks is not large enough to deal with the TDE error ϵ
as Ks is decreasing. It yields that there exists a time instant
t4 > t3 such that ∥S(t4)∥ < ϵb. Then, the process restarts
from the beginning. By using Assumption 2 and Lemma 3,
the sliding variable S and the TDE error ϵ are bounded. Thus,
the gain Ks(t) is bounded uniformly on t by K∗

s > 0.
In the next, the error dynamics of the unactuated states

will be analyzed. Rewrite (4) by
q̈a = −(MT

au)
−1Muuq̈u − (MT

au)
−1Nu (25)

Substituting (25) into (7) yields
Ṡ = Γaëa + ΓaΥaėa + Γuëu + ΓuΥuėu

= Γa(−(MT
au)

−1Muuëu − (MT
au)

−1Nu)

+ ΓaΥaėa + Γuëu + ΓuΥuėu (26)
By substituting (21) and (26) into (11), we obtain
Γa(−(MT

au)
−1Muuëu − (MT

au)
−1Nu) + ΓaΥaėa + Γuëu +

ΓuΥuėu = −Λ(Γaėa+ΓaΥaea+Γuėu+ΓuΥueu)+ϵ−∆ur.
Let xu,1 = eu and xu,2 = ėu. Then

ẋu,1 = x2

ẋu,2 = −ku,1xu,1 − ku,2xu,2 + b−1(ϕu −∆ur) (27)
where ϕu=Γa(M

T
au)

−1Nu−ΓaΥaėa−ΛΓaėa−ΛΓaΥaea+ϵ,
ku,1=

ΛΓuΥu

b , ku,2=
ΓuΥu+ΛΓu

b , b=Γu−Γa(M
T
au)

−1Muu.
One can design the Γa amd Γu such that b > 0 holds.

Therefore, ku,1 > 0 and ku,2 > 0 hold. Let xu =[
xu,1
xu,2

]
, Au =

[
0 I

−ku,1 −ku,2

]
, Bu =

[
0
b−1

]
. Then (27)

can be rewritten as
ẋu = Auxu +Bu(ϕu −∆ur) (28)

Note that Au is Hurwitz and ϕu is a function including
system state q, reference signal qr and TDE error ϵ. From
Assumption 2 and Assumption 3, both the true states and the
reference signals are bounded. From Lemma 3, ϵ is bounded.
Therefore, there exists a constant ϕ̄u such that ϕu ≤ ϕ̄u.

D. Stability analysis of the data-driven adaptive control

In this subsection, it will be shown that the tracking error
is uniformly ultimately bounded (UUB) [30]–[32].

Theorem 1: Given the plant (1) controlled by (21) where
ḡnew is obtained by (18). Under Properties 1 and Assumption

1-4, the tracking error of the closed-loop system is UUB.
Proof: Consider the Lyapunov function candidate

V =
1

2
S2 +

1

2γ
(Ks −K∗

s )
2 +

1

2
x2u. (29)

where γ > 0 is a positive scalar factor. As discussed in
Subsection C of Section III, one supposes that Ks(t)>µ for
all t>0. Thus, we only discuss when Ks>µ in the following.

At first we show that the Lyapunov candidate function
V defined in (29) is bounded by two continuous, strictly
increasing functions. Let γ1(∥xu∥) = c1S

2+ c1
γ (Ks−K∗

s )
2+

c1x
2
u and γ2(∥xu∥) = c2S

2 + c2
γ (Ks −K∗

s )
2 + c2x

2
u, where

c1 ∈ R≥0, c2 ∈ R≥0 and c1 ≤ 1
2 ≤ c2. Considering (29),

for the function V it holds γ1(∥xu∥) ≤ V ≤ γ2(∥xu∥).
Next, we show that the function V is decreasing outside

a compact set of xu. From (21), (24) and (28), we obtain
V̇ = S(−ΛS + ϵ − Ks · sgn(S)) + 1

γ (Ks − K∗
s ) · K̄s ·

∥S∥sgn(∥S∥ − ϵb) + xTu (Auxu +Bu(−Kssgn(S) + ϕu)).
Because Au is Hurwitz, there exists a positive

definite matrix P such that xTuAxu ≤ −xTuPxu
holds. According to Lemma 3, ∥ϵ∥ ≤ ϵ̄. One obtains
V̇≤(−ΛS+ϵ̄)∥S∥−Ks∥S∥+ (Ks−K∗

s )K̄s∥S∥sgn(∥S∥−ϵb)
γ −

xTuPxu + ∥xTu ∥b−1(K∗
s + ϕ̄u) = −∥S∥(ΛS − ϵ̄ + K∗

s ) +
(Ks − K∗

s )(−∥S∥ + 1
γ K̄s∥S∥sgn(∥S∥ − ϵb)) − xTuPxu +

∥xTu ∥b−1(K∗
s + ϕ̄u)).

From Lemma 4, there always exists K∗
s > 0 such that

Ks(t)−K∗
s < 0 for all t > 0. It yields

V̇ =− ∥S∥(ΛS − ϵ̄+K∗
s )− xTuPxu

− ∥Ks −K∗
s ∥

{
− ∥S∥+ 1

γ
K̄s∥S∥sgn(∥S∥ − ϵb)

− ∥xTu ∥b−1(K∗
s + ϕ̄u)

∥Ks −K∗
s ∥

}
(30)

Let ξ1 = ΛS− ϵ̄+K∗
s and ξ2 = −∥S∥+ 1

γ K̄s∥S∥sgn(∥S∥−
ϵb)− ∥xT

u ∥b−1(K∗
s+ϕ̄u)

∥Ks−K∗
s ∥

. Then, from (30) one gets

V̇ =− ∥S∥ξ1 − xTuPxu − ∥Ks −K∗
s ∥ξ2. (31)

From Lemma 4 and (23), ξ1 > 0 holds.
In the next, we analyze the stability by considering two

cases. In the first case, ∥S∥≥ϵb. In the second case, ∥S∥<ϵb.
Case 1: Suppose that∥S∥ ≥ ϵb. ξ2 is positive if −∥S∥+

1
γ K̄s∥S∥sgn(∥S∥−ϵb)− ∥xT

u ∥b−1(K∗
s+ϕ̄u)

∥Ks−K∗
s ∥

> 0. Thus, ξ2 > 0
holds if

γ <
K̄sϵb∥Ks −K∗

s ∥
ϵb∥Ks −K∗

s ∥+ ∥xTu ∥b−1(K∗
s + ϕ̄u)

(32)

From Assumption 2 and Assumption 3, ∥xu∥ is bounded.
Thus, it is always possible to choose γ such that (32)
holds. From (31), one get V̇ < 0. Therefore, finite time
convergence to a domain ∥S∥ ≤ ϵb is guaranteed from any
initial condition ∥S(0)∥ > ϵb.

Case 2: Suppose that ∥S∥ < ϵb. Then ξ2 can be negative.
So V̇ could be sign indefinite. Therefore, it is necessary to
analyze V̇ in terms of xu in the domain ∥S∥ < ϵb.

In the following, we consider the influence of unactuated
state xu on V̇ when ∥S∥ < ϵb. Let p = λmin(P ). Because
P is a positive definite matrix, there is p > 0 and xTuPxu ≥
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pxTuxu = p∥xTu ∥∥xu∥. From (30) one obtains

V̇ ≤−∥S∥(ΛS−ϵ̄+K∗
s )−∥Ks −K∗

s ∥
(
−∥S∥− 1

γ
K̄s∥S∥

+
p∥xTu ∥∥xu∥ − ∥xTu ∥b−1(K∗

s + ϕ̄u)

∥Ks −K∗
s ∥

)
(33)

Let ξ4 = −∥S∥ − 1
γ K̄s∥S∥ +

p∥xT
u ∥∥xu∥−∥xT

u ∥b−1(K∗
s+ϕ̄u)

∥Ks−K∗
s ∥

.
Then, from (33) one gets

V̇ =− ∥S∥ξ1 − ∥Ks −K∗
s ∥ξ4. (34)

If ξ4 is positive, V̇ is negative. ξ4 > 0 holds, when
ka∥xu∥2 − kb∥xu∥ − kc > 0 (35)

where ka = p > 0, kb = b−1(K∗
s + ϕ̄u) > 0 and kc =

∥Ks−K∗
s ∥∥S∥(1+ 1

γ K̄s) > 0. Therefore, from (34) and (35),

V̇ < 0, when ∥xu∥ >
kb+

√
k2
b+4kakc

2ka
. Hence, V̇ is negative

outside of the compact set {∥xu∥ ≤ kb+
√

k2
b+4kakc

2ka
}.

Combining Case 1 and Case 2, the following conclusion
can be obtained. When ∥S∥ ≥ ϵb, V̇ is negative and V
decreases. In the region ∥S∥ < ϵb, V̇ is negative and V still

decreases when ∥xu∥ ≥ kb+
√

k2
b+4kakc

2ka
. UUB of xu can be

concluded [30], [31], which implies that S, eu, ėu,Ks are
bounded. From (6), one gets

ėa = −Υaea − Γ−1
a (Γuėu + ΓuΥueu) + Γ−1

a S (36)
Because Γa > 0, Γ−1

a exists. Considering Υa > 0 and
S, eu, ėu,Ks being bounded, one concludes that ea, ėa are
bounded. Therefore, the conclusion of Theorem 1 holds.

IV. SIMULATION EXAMPLE

In this section, the offshore boom crane [22] is used
to evaluate the proposed data-driven approach. In Fig. 1,
{OXEYE} and {OXSYS} define, respectively, the Earth-
fixed and ship-fixed coordinates. ϑ is the luffing angle of
the boom, α is the swing with respect to Ys of the payload
having mass mp, χ is the roll angle of the ship, L(t) is the
length of the rope, PL, m and J are, respectively, the length,
mass and inertia of the boom and the point O. The system
dynamics can be described by [22], [33] as

M(q)q̈ + C(q, q̇)q̇ +G(q) + ds = [τT 0]T . (37)
where τ = [τ1 τ2]

T , q = [q1 q2 q3]
T = [ϑ−Ψ L α− χ]T ,

M(q) =

 J +mpP
2
L −mpPLC1−3 −mpPLq2S1−3

−mpPLC1−3 mp 0
−mpPLq2S1−3 0 mpq

2
2


S1−3 = sin(q1 − q3), C1−3 = cos(q1 − q3),

the centrifugal and Coriolis terms C(q, q̇) and the gravi-
tational terms G(q) can be found in [22], [33]. The true
system parameters used in the simulations are m = 20 kg,
mp = 0.5 kg, d = 0.4 m and J = 6.5kg· m2. In the
simulation, ds = (0.1sin(0.01t) + dn)[1 1 1]T , with dn a
zero-mean Gaussian noise with variance 0.002.

The proposed data-driven adaptive controller is applied to
the offshore boom crane without using any model knowl-
edge. We only know the offshore boom crane belongs to
Euler-Lagrange system and the number of actuated states
and unactuated states. Select Γa = diag{50, 50}, Γu =
50[1 1]T , Υa = 8 and Υu = 8 to generate the coupled
sliding variable defined in (6). The matlab function idinput

Fig. 1: Schematic description of offshore boom crane [22]

is used to generate a persistently exciting input torque of each
joint uj(kTs), k = 1, 2, · · ·, N ; j = 1, 2. Let N = 213 =
8192. The position qj and the velocity q̇j are measured at
discrete time instants kTs, k = 1, · · ·, N . The sampling time
Ts = 0.001s. According to the coupled sliding variable given
in (6) with parameters Γa = diag{50, 50}, Γu = 50[1 1]T ,
Υa = 8 and Υu = 8, the first derivative of the coupled
sliding variable Ṡ(kTs), k = 1, 2, · · ·, N is calculated by
the Euler method as Ṡ(kTs) = S(kTs)−S((k−1)Ts)

Ts
. Among

these 8192 data samples, the largest value ∆Ṡj
max and

∆ujmax are obtained by (17), respectively, as ∆Ṡmax,N =
[68.23 267.75]T and ∆umax,N = [2 2]T . Then the con-
stant gain matrix ḡnew is obtained from (20) as ḡnew =
diag{34.12, 133.87}. Select Λ = diag{15, 15}, K̄s = 2,
ϵb = 0.5, µ = 0.5. The controller is constructed as (21).

For comparison, the adaptive robust control (ARC) ap-
proach [22] is applied. As shown in [22], the gain matrix ḡ =
(Γa−ΓuM

−1
uuM

T
au)M

−1
s is not constant but designed based

on the knowledge of M(q) with the nominal parameters
m̂p = 0.45 kg and Ĵ = 6 kg·m2. The parameters Γa =
diag{50, 50}, Γu = 50[1 1]T , Υa = 8, Υu = 8 and Λ =
diag{15, 15} are chosen to be the same as in the data-driven
adaptive controller. The other parameters used in the ARC
approach can be found in [22]. The objective of transporting
the payload to (aL, bL) can be transformed into stabilization
around the position qr1=arccos(aL/PL), q

r
2=

√
P 2
L − a2L −

bL, q
r
3=0. In the simulation, we take aL = 0.4 m, bL =

0.2 m and PL = 0.8 m, resulting in q1r = 1.05 rad (i.e.
60 degrees), q2r = 0.5 m and q3r = 0. The initial states of
the system are chosen as q(0) = [0.2 0.1 0.1]T .
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Fig. 2: Tracking Performance

As can be seen from Figure 2 and Figure 3, the data-driven
adaptive controller has reduced the overshoot of the tracking
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Fig. 3: Tracking Error
performance in q1 and q3 achieved by the ARC controller.
The oscillated performance in q2 of the ARC approach has
also been improved by the data-driven adaptive controller.
These results show that the data-driven adaptive controller
achieves a better tracking performance.

V. CONCLUSIONS
A data-driven adaptive control approach is developed for

unknown underactuated Euler-Lagrange systems. Compared
with the existing TDC approaches, the proposed control
approach only uses the input and output data without using
any knowledge of the inertia matrix. Moreover, only few
control parameters are required. In the future, the data-driven
optimal controller will be investigated to achieve the optimal
performance for underactuated systems.
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