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Abstract— This paper introduces a novel direct approach to
system identification of dynamic networks with missing data
based on maximum likelihood estimation. Dynamic networks
generally present a singular probability density function, which
poses a challenge in the estimation of their parameters. By
leveraging knowledge about the network’s interconnections,
we show that it is possible to transform the problem into a
more tractable form by applying linear transformations. This
results in a nonsingular probability density function, enabling
the application of maximum likelihood estimation techniques.
Our preliminary numerical results suggest that when combined
with global optimization algorithms or a suitable initialization
strategy, we are able to obtain a good estimate of the dynamics
of the internal systems.

Index Terms— System identification, maximum likelihood
estimation, dynamical networks, singular Gaussian distribution.

I. INTRODUCTION

One of the greatest technical challenges in our society is to

efficiently, sustainably and safely control large-scale complex

systems. These systems put new demands on control theory.

Many of the available methods for modeling, analysis and

design do not scale well with increasing complexity. Further-

more, the majority of control theory has been developed in

a centralized setting, where all measurements are processed

together to compute the control signals. While this paradigm

offers conceptual advantages, it is not without inherent

limitations. In reality, industrial practice frequently relies

on distributed control structures, underscoring the need for

more systematic approaches to design and analysis of such

structures. The scope of applications spans a wide spectrum,

encompassing networks for transportation, communication,

and energy supply, as well as industrial production, logistics,

and healthcare.

Design methodologies for controller design are often

model based, and the time and effort needed for modeling is

usually substantially larger than for controller design. Thus,

achieving scalable control methods hinges on the ability to

obtain these models in an efficient and scalable manner.

Large-scale complex systems are typically described as

interconnections of simpler subsystems, i.e., as networked

systems. We will here address system identification for such

dynamic networks. These networks frequently contain inter-

nal variables that are not directly measurable, necessitating
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methods that are capable of handling what is termed “latent

variable” in statistics and “missing data” within the system

identification community. In essence, these methods should

be able to perform identification tasks while relying on only

partially observable variables.

When dealing with interconnected systems, there are

essentially two ways to estimate the parameters of the

systems: the direct approach and the indirect approach,

which are explained for a single feedback loop in [6]. These

approaches can be generalized to networks of systems. The

direct approach is typically based on minimizing prediction

errors to obtain the system parameters [6], [8]. The indirect

approach first estimates parameters that characterize the

closed loop transfer function between the inputs and the

observable variables, and it then uses these functions and

knowledge about the architecture of the system to estimate

the parameters of the transfer function for the subsystems

[5], [9].

As we will show with an example, the indirect approach

suffers from the problem that even if all the true subsystems

are stable and the closed loop is stable, the estimates of

the subsystems may be unstable. It also suffers from the fact

that the number of parameters that are needed to describe the

closed loop system can be significantly larger than the total

number of parameters describing the individual subsystems.

As a result, the variance of the estimated models may be

larger than if a direct method is used. However, current

direct methods often require more variables to be measured

in order for the method to give unbiased estimates using the

prediction error method. We will show that using maximum

likelihood (ML) estimation, we are able to obtain better

estimates by just observing as many variables as used in

the indirect method.

Deriving the ML problem is challenging since networks

of dynamical systems generally lead to a singular probability

density function (pdf) and some variables are not observable.

Before addressing this problem, we will first recapitulate

the results of [4] for ML estimation when not all variables

are observable for a Gaussian distribution in Section II.

Then, in Section III, we will show how a singular Gaussian

distribution can be transformed into a nonsingular one using

linear transformations, and in Section IV, we apply this

result to dynamic networks with known interconnections. We

present a numerical example in Section V, and we conclude

the paper in Section VI.
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II. NONSINGULAR GAUSSIAN DISTRIBUTION AND

MAXIMUM LIKELIHOOD ESTIMATION

We start by considering a model of the form

Φ(θ)x(θ) + Γ(θ) = e, (1)

where e ∈ R
m is a realization of a zero-mean Gaussian

random variable with covariance λI with λ > 0, θ ∈ R
q is

a vector of unknown model parameters, and Γ(θ) ∈ R
m.

The vector

x(θ) =

[
xo(θ)
xm(θ)

]
∈ R

n

is composed of observed data xo ∈ R
no and missing data

xm(θ) ∈ R
nm , and we partition Φ(θ) ∈ R

m×n conformably

as Φ(θ) =
[
Φo(θ) Φm(θ)

]
. To simplify notation, we will

henceforth omit the dependence on θ.

If m = n and Φ is nonsingular, then the pdf for x may

be expressed as

p(x;λ, θ) = N (x;μ,Ψ)

=
1√

(2π)m detΨ
exp

{
− 1

2λ
‖Φx+ Γ‖22

}

where μ = −Φ−1Γ = (μo, μm) is the mean and

Ψ = λ(ΦTΦ)−1 is the covariance matrix. Furthermore, the

marginal pdf of xo may be expressed as

p(xo;λ, θ) = N (xo;μo, λ(Φ
T
o ΠΦo)

−1)

where Π = I − Φm(ΦT
mΦm)−1ΦT

m is a projection matrix.

As is shown in [4], up to an additive constant, the negative

log-likelihood function can be expressed as

L(λ, θ) =
1

2λ
(Φoxo + Γ)TΠ(Φoxo + Γ) +

m

2
lnλ

− 1

2
ln det(ΦTΦ) +

1

2
ln detZ

(2)

where Z = ΦT
mΦm. An ML estimate of (λ, θ) can then be

obtained as

(λ̂, θ̂) ∈ argmin
(λ,θ)

L(λ, θ). (3)

We note that the partial derivatives of L with respect to λ
and θ can be found in [4].

III. SINGULAR GAUSSIAN DISTRIBUTION

Dynamical networks generally lead to a singular pdf,

making the derivation of the ML problem challenging. These

interconnected systems, as we will show in Section IV, can

be expressed as an instance of a more general model in the

form of

A(θ)x(θ) + b(θ) =

[
e
0

]
, (4)

where e ∈ R
m1 is a realization of a zero-mean Gaussian

random variable with covariance λI with λ > 0. As in the

previous section, we partition x(θ) as

x(θ) =

[
xo(θ)
xm(θ)

]
∈ R

no+nm ,

corresponding to observed and missing data, respectively,

and we then partition A(θ) ∈ R
(m1+m2)×(no+nm) and b(θ) ∈

R
m1+m2 conformably as

A(θ) =

[
A1(θ)
A2

]
=

[
A1o(θ) A1m(θ)
A2o A2m

]
, b(θ) =

[
b1(θ)
b2

]
.

Notice that A2 and b2 do not depend on the parameter vector

θ. We will see in Section IV that this assumption is satisfied

for dynamic networks with known interconnections. Once

again, we will omit the dependence on θ to simplify our

notation.

In contrast to the situation in the previous section, the pdf

for x is now singular, and hence the maximum likelihood

estimation is not readily applicable. We will address this

issue by transforming the model under the assumption that

A(θ) has full row-rank.

Given a singular value decomposition (SVD) of A2m, i.e.,

A2m =
[
U1 U2

] [Σ1 0
0 0

] [
V1 V2

]T
,

we can rewrite (4) as⎡
⎣A1o Ā1m1 Ā1m2

Ā2o1 Σ1 0
Ā2o2 0 0

⎤
⎦
⎡
⎣ xo

x̄m1

x̄m2

⎤
⎦+

⎡
⎣ b1
b̄21
b̄22

⎤
⎦ =

⎡
⎣e0
0

⎤
⎦

where

Ā2o =

[
Ā2o1

Ā2o2

]
=

[
UT
1

UT
2

]
A2o, (5)

Ā1m =
[
Ā1m1 Ā1m2

]
= A1m

[
V1 V2

]
(6)

and

x̄m =

[
x̄m1

x̄m2

]
=

[
V T
1

V T
2

]
xm, b̄2 =

[
b̄21
b̄22

]
=

[
UT
1

UT
2

]
b2.

Using Σ1 as a pivot, we can rewrite the system as⎡
⎣ Ā1o 0 Ā1m2

Ā2o1 Σ1 0
Ā2o2 0 0

⎤
⎦
⎡
⎣ xo

x̄m1

x̄m2

⎤
⎦+

⎡
⎣ b̄1
b̄21
b̄22

⎤
⎦ =

⎡
⎣e0
0

⎤
⎦ , (7)

where Ā1o = A1o − Ā1m1Σ
−1
1 Ā2o1 and b̄1 = b1 −

Ā1m1Σ
−1
1 b̄21. The assumption that A has full row-rank

implies that Ā2o2 has full row-rank, and hence there exists

an orthogonal matrix W =
[
W1 W2

]
such that Ā2o2W =[

Ã2o21 0
]

with Ã2o21 = Ā2o2W1 nonsingular. The matrix

W can be obtained by means of an SVD or an LQ decom-

position of Ā2o2. We then define[
Ã1o

Ã2o1

]
=

[
Ã1o1 Ã1o2

Ã2o11 Ã2o12

]
=

[
Ā1o

Ā2o1

]
W, (8)

x̄o =

[
x̄o1

x̄o2

]
= WTxo,

which allows us to rewrite equation (7) as

⎡
⎣ Ã1o1 Ã1o2 0 Ā1m2

Ã2o11 Ã2o12 Σ1 0

Ã2o21 0 0 0

⎤
⎦
⎡
⎢⎢⎣
x̄o1

x̄o2

x̄m1

x̄m2

⎤
⎥⎥⎦+

⎡
⎣ b̄1
b̄21
b̄22

⎤
⎦ =

⎡
⎣e0
0

⎤
⎦ .
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Using Ã2o21 as a pivot, we obtain the system

⎡
⎣ 0 Ã1o2 0 Ā1m2

Ã2o11 Ã2o12 Σ1 0

Ã2o21 0 0 0

⎤
⎦
⎡
⎢⎢⎣
x̄o1

x̄o2

x̄m1

x̄m2

⎤
⎥⎥⎦+

⎡
⎣ b̃1
b̄21
b̄22

⎤
⎦ =

⎡
⎣e0
0

⎤
⎦ ,

where b̃1 = b̄1 − Ã1o1Ã
−1
2o21b̄22. Finally, we rewrite this

system as two systems,

[
Ã1o2 Ā1m2

] [ x̄o2

x̄m2

]
+ b̃1 = e, (9)

[
Ã2o11 Σ1

Ã2o21 0

] [
x̄o1

x̄m1

]
+

[
b̄21 + Ã2o12x̄o2

b̄22

]
=

[
0
0

]
. (10)

From this we realize that only x̄02 and x̄m2 are directly

related to e. The matrix
[
Ã1o2 Ā1m2

]
has full row-rank, so

if it is a square matrix, then it is also invertible, and otherwise

we can make use of column compression to further reduce

the number of variables.

The equation (9) is of the form (1) with

Φ =
[
Ã1o2 Ā1m2

]
, Γ = b̃1,

and hence we can processed as for the nonsingular Gaussian

distribution in Section II. We note that Φ is a linear trans-

formation of A1. To see this, first note that Ã1o2 = Ā1oW2,

which follows from (8), and recall that

Ā1o = A1o − Ā1m1Σ
−1
1 Ā2o1 = A1o −A1mV1Σ

−1
1 UT

1 A2o.

Using (6), we arrive at

Φ =
[
Φo Φm

]
=

[
A1o A1m

] [ W2 0
−V1Σ

−1
1 UT

1 A2oW2 V2

]
.

Similarly, tracing the transformations applied to b, we find

that

Γ = b1 −
[
A1o A1m

] [ Hb2
V1Σ

−1
1 UT

1 (I −A2oH)b2

]
,

where H = W1(U
T
2 A2oW1)

−1UT
2 . Thus, the reduced non-

singular problem is obtained as a linear transformation of

(A1, b1) where the transformation matrices are functions of

(A2, b2), which are known and do not depend on θ.

IV. DYNAMIC NETWORKS

We will now consider a dynamic network model that can

be cast in the form of (4) where A2 and b2 do not dependent

on the parameters vector θ. Specifically, will consider a

network of M systems, where the ith system is described

by an ARMAX model of the form

yik = −
ni
a∑

j=1

aijy
i
k−j +

ni
b∑

j=0

biju
i
k−j + eik +

ni
c∑

j=1

cije
i
k−j (11)

for k = 1, 2, . . . , N . We will assume that yik, ui
k, and

eik are zero for all k ≤ 0. To simplify notation, we

define ui = (ui
1, . . . , u

i
N ), yi = (yi1, . . . , y

i
N ), and ei =

(ei1, . . . , e
i
N ), corresponding to the ith system’s input, output,

and disturbance signals. We also define ai = (ai1, . . . , a
i
ni
a
),

bi = (bi0, . . . , b
i
ni
b
), and ci = (ci1, . . . , c

i
ni
c
) as well as lower-

triangular Toeplitz matrices Tai ∈ R
N×N , Tbi ∈ R

N×N and

Tci ∈ R
N×N whose first columns are⎡

⎣ 1
ai

0

⎤
⎦ ,

[
bi

0

]
,

⎡
⎣1
ci

0

⎤
⎦ ,

respectively, c.f., [10]. This allows us to express the ARMAX

model (11) as

Taiyi = Tbiu
i + Tcie

i.

The interconnections are defined in terms of sparse matrices

Λ ∈ R
M×M and Ω ∈ R

M×Q with ±1 as nonzero entries

such that⎡
⎢⎢⎢⎣
u1
k

u2
k
...

uM
k

⎤
⎥⎥⎥⎦ = Λ

⎡
⎢⎢⎢⎣
y1k
y2k
...

yMk

⎤
⎥⎥⎥⎦+Ω

⎡
⎢⎢⎢⎣
r1k
r2k
...

rQk

⎤
⎥⎥⎥⎦ , 1 ≤ k ≤ N,

where ri = (ri1, r
i
2, . . . , r

i
N ), i = 1, . . . , Q, are exogenous

signals. We will assume that rik = 0 for all k ≤ 0.

We will now show that the dynamic network model can

be written as in (4). To this end, we define vectors y =
(y1, . . . , yM ), u = (u1, u2, . . . , uM ), e = (e1, e2, . . . , eM ),
and r = (r1, r2, . . . , rQ), and matrices Tyi = T−1

ci Tai and

Tui = T−1
ci Tbi for i = 1, . . . ,M . We also define two block-

diagonal matrices,

Ty = blkdiag(Ty1 , . . . , TyM )

Tu = blkdiag(Tu1 , . . . , TuM ).

This allows us to express the dynamic network model as an

instance of equation (4) with

A =

[
A1

A2

]
=

[
Ty −Tu

−Λ⊗ I I

]
(P ⊗ I)

x = (P ⊗ I)T
[
y
u

]

b =

[
b1
b2

]
= −

[
0

Ω⊗ I

]
r,

where P ∈ R
2M×2M is a permutation matrix that

is defined such that the observed parts of y and u
correspond to the leading entries of x. The parame-

ter vector θ represents the unknown model parameters

(a1, . . . , aM , b1, . . . , bM , c1, . . . , cM ).
The matrix A satisfies m1 = m2 = MN and n = 2MN ,

and hence it is square. Using the fact that the matrices

Tai and Tci are nonsingular for all i, we see that Ty is

nonsingular and then, using the Schur complement, we have

that A is nonsingular if Ty − Tu(Λ ⊗ I) is full rank. As

a result, the transformation described in Section III yields

a square and nonsingular matrix Φ =
[
Ā1o2 Ā1m2

]
as in

(9). Furthermore, A2 only depends on the network topology

and is independent of any model parameters. Thus, the

linear transformations that are needed to obtain Φ and Γ
are independent of the model parameters.
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V. NUMERICAL EXPERIMENT

We will now illustrate some properties of the proposed

method using a numerical example based on the network of

M = 3 systems shown in Fig. 1. The interconnections are

described by the matrices

Λ =

⎡
⎣0 1 1
0 0 0
1 0 0

⎤
⎦ , Ω = I.

The example matches the example in Fig. 2 in [5] except for

the way the disturbances enter the system.

G2 +

G3 + +

+

+

G1+
r1

r2 = u2

r3

e1

e2

e3
y2

y3

u1

y1

u3

Fig. 1. Block diagram for a dynamic network.

Each subsystem is a second-order system, and we only

have one observable variable, namely xo = (u3). As we will

show soon, the indirect approach does not handle ARMAX

models, so we will limit our attention to the case where

all subsystems are ARX models in order to facilitate a

fair comparison. We generated N = 500 measurements

where the error (e1, e2, e3) is a realization of a zero-mean

Gaussian random variable with covariance 0.1 · I , and the

input (r1, r2, r3) is a vector of independent samples from

the Rademacher distribution.

The true systems that we use to generate both the observ-

able and the missing states are zero-order hold discretizations

of continuous systems whose Laplace domain transfer func-

tions are given by

G1 =
0.5

(s+ 2)2
, G2 =

1

s2 + 2s+ 0.75
, G3 =

0.5

(s+ 0.5)2
.

The three systems are stable, and hence the poles of the

discrete models will be inside the unit circle.

A. Direct Approach

We will use gradient descent combined with a backtrack-

ing line search to find local minima of the negative log-

likelihood function, which is not a convex function. Given the

observed data xo, we generate 100 initial parameter vectors

θ such that the closed-loop system is stable. The parameters

for each system are drawn from a uniform distribution on

[−1, 1].
In order to reduce the complexity of the optimization

problem (3) we rewrote the cost function to eliminate the

dependence on λ. Minimizing (2) with respect to λ leads to

λ� =
1

m
(Φoxo + Γ)TΠ(Φoxo + Γ),

and then the cost function can be rewritten as

L(θ) =
m

2
ln(

1

m
(Φoxo + Γ)TΠ(Φoxo + Γ))

− 1

2
ln det(ΦTΦ) +

1

2
ln detZ +

m

2
.

Our experiments showed that performing this variable reduc-

tion leads to better convergence properties than solving the

original problem.

Our implementation is based on the Python library JAX

[1], which uses automatic differentiation to compute the

partial derivatives of the cost function.

B. Indirect Approach

The indirect approach first estimates the overall transfer

function between the inputs and the observable variables, and

then it uses this information to estimate a transfer function

for each subsystem separately.

To analyze the example using transfer functions, we first

write the ARMAX model in (11) as

yik = Gi(q)uk +Hi(q)eik

where q denotes the forward shift operator such that quk =
uk+1, and where

Gi(q) =
Bi(q)

Ai(q)
, Hi(q) =

Ci(q)

Ai(q)

and

Ai(q) = qn
i
a + ai1q

ni
a−1 + · · ·+ aini

a

Bi(q) = bi0q
ni
b + bi1q

ni
b−1 + · · ·+ bini

b

Ci(q) = ci0q
ni
c + ci1q

ni
c−1 + · · ·+ cini

c
.

It is straight forward to show using algebraic manipulations

that

Δ(q)u3
k =G1(q)r1k +G1(q)G2(q)r2k + r3k +H1(q)e1k

+G1(q)H2(q)e2k +G1(q)H3(q)e3k

where Δ(q) = 1−G1(q)G3(q). Equivalently, we can write

A2(A1A3 −B1B3)u3
k =B1A2A3r1k +B1B2A3r2k

+A1A2A3r3k + C1A2A3e1k

+B1C2A3e3k +B1A2C3e3k
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where we have omitted the dependence on q to simplify

notation. From this we realize that it is possible to use an

ARMAX model of the form

Āu3
k = B̄1r1k + B̄2r2k + B̄3r3k + C̄ēk (12)

where we only have measurements of u3
k and (r1k, r

2
k, r

3
k) in

order to estimate the model using any traditional identifica-

tion technique. In our numerical experiments, we used the

System Identification Toolbox [7] from MATLAB. It then

follows that

B1

A1
=

B̄1

B̄3

B2

A2
=

B̄2

B̄1

B3

A3
=

B̄3 − Ā

B̄1

from which Ai and Bi can be found. Notice that it is not

possible to recover Ci. Thus, we will from now on assume

that we have ARX models, i.e., Ci = 1.

If we assume that all the internal systems are order two,

the polynomials Ai(q) and Bi(q) will have degree two, then

the number of parameters are 5 for each ARX model, i.e., a

total of 15 parameters. However, we have that Ā and B̄i are

of degree 6 whereas C̄ is of degree of degree 4. We will then

need 26 parameters when estimating the reformulated model

described in (12). To prevent an increase in the number of

parameters, one can either add constraints to the problem

or perform a reparametrization of the cost function. Opting

for this approach comes with the trade-off of increasing the

computational complexity.

Here we have normalized such that Ā and C̄ are monic

polynomials.

For this example the number of parameters have increased

using the indirect approach. This may impair the quality of

the estimate, since it is known that the more parameters that

are estimated, the higher is the variance of the estimate.

However, the indirect approach benefits from that a standard

prediction error method may be used to obtain unbiased

estimates, and these estimates may be utilized to initialize

the algorithm. Moreover, the analysis shows what signals

need to be measured and which do not need to be measured.

Here we see that it is enough to measure u3 in addition to r.

Similar analysis can be carried out to show that either of u1,

u3, y1 or y3 are sufficient to measure, c.f. the example related

to Fig. 2 in [5]. This reference also discusses what signals

need to be measured for a general dynamic network in order

to estimate all parameters when using indirect approaches.

C. Results

When observing only xo = u3, we found that all 100

different initial points generated for the direct approach

converged to local minima corresponding to stable systems.

For most of these estimates, the missing states xm were

poorly estimated, while the observed states xo were well

estimated. Only the best local solutions (in terms of the cost

function value) led to good estimates of both the observable

and missing states.

Using the indirect approach, B̄1 presented unstable zeros,

which would result in unstable models for the subsystems 2

and 3. To mitigate this, the unstable zeros where removed

from B̄1 and the static gain was adjusted in order to match

its original value before the exclusion of the unstable zeros.

Fig. 2 presents the comparison between the true observed

variable (u3) and the one generated when we simulated the

system using the estimated parameter vector θ̂ from the

proposed direct approach with the lowest cost function value.

Fig. 3 features a similar comparison for the missing variables

(y1, y2, y3, u1).

Fig. 2. Estimated and true observable variables.

As explained in Section V-B, the indirect approach yields

degree six polynomials for the subsystems, requiring a model

reduction technique to allow a direct comparison between

the parameters. Such a reduction may introduce additional

errors in the estimate, so we instead compare the methods

using a frequency domain analysis. Fig. 4 presents such

a comparison based on Bode plots for each subsystem,

considering the ten best local solutions found using our

approach, the solution found with the indirect approach, and

the true system.

From the Bode plots in Fig. 4, we can see that both

approaches were able to obtain an estimate that somehow

captures the dynamics of subsystems 1 and 3. However,

when looking to the subsystem 2 the plots show a high

variance when using the direct approach with different initial

guesses. This highlights the necessity of implementing a

good initialization strategy.

Next, we compare the model fit for the parameter estimates

obtained using the direct and the indirect approach. Given

a parameter estimate θ̂ and new realizations of the signals

(e1, e2, e3) and the inputs (r1, r2, r3), the fit is defined as

fit(x̂) = 1− ‖x̂− xref‖2
‖x̂− 1x̄ref‖2 ,
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Fig. 3. Comparison between the true missing variables and the estimate obtained using the proposed direct approach.

Fig. 4. Comparison of indirect and direct approach: magnitude and phase Bode plots for each internal system.

where x̂ is the signal of interest from the estimated model

defined by θ̂, xref is the same signal from the true model, x̄ref

denotes the mean of the true signal xref , and 1 is a vector of

all ones. With the estimate given by the indirect approach,

the fit values for the observable and missing variables were

0.8934 and 0.6312, respectively, and with the best local

solution from the direct approach, the corresponding fit

values were 0.9008 and 0.8344, respectively. Analyzing these

results we can check a clear advantage for the proposed direct

approach, but when considering the other local solutions, we

found that the fit associated with the missing variables xm

rapidly decrease when going from the second best solution

to the worst one, which also highlights the impact of and

sensitivity to the choice of initial point.

As a simple initialization strategy, we tried using the

reduced model obtained via the indirect approach as the

initiation for the proposed direct approach. When comparing

with the original fit value obtained with the indirect approach

we had an improvement in the fit value for both the observed

and the missing variables, which were 0.8973 and 0.7253,

respectively. We repeated this experiment ten times with

different realizations of both the error signals (e1, e2, e3) and

the inputs (r1, r2, r3). Table I shows the fit of xo and xm for

the high order models obtained by the indirect method and

for the model obtained with the direct approach initialized

based on a reduced model. The table also show the fit

improvement, which is the difference between the direct

approach and the indirect approach. We see that the two
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TABLE I

FIT VALUES FOR THE SOLUTIONS FROM THE INDIRECT AND THE DIRECT

APPROACH, AND THEIR RESPECTIVE INCREMENTS.

Exp
100× Fit(x̂o) 100× Fit(x̂m)

IND DIR IMPROV IND DIR IMPROV
1 88.76 89.48 0.71 61.07 72.05 10.97
2 88.86 89.78 0.92 38.14 68.38 30.24
3 88.82 89.65 0.83 65.09 71.54 6.45
4 88.87 89.41 0.54 66.31 76.68 10.37
5 88.77 89.49 0.72 60.41 73.54 13.12
6 89.24 89.75 0.50 63.08 76.60 13.52
7 88.51 89.36 0.84 38.46 69.35 30.88
8 88.94 89.43 0.49 61.78 67.24 5.46
9 89.08 89.11 0.02 56.61 60.97 4.35
10 88.87 86.42 -2.44 57.71 62.23 4.51

methods obtain a similar fit for x̂o, but we see a significant

improvement in the fit for xm. The mean improvement for

xo and xm are 0.32% and 12.99%, respectively.

As indicated by the results, we observed that when only

observing a few signals, our method often converges to a

nearby local minimum at which the observable data xo is

approximated well. However, if the starting point is not in a

neighborhood of a global optimum, then we cannot ensure

that estimate of xm will be accurate, but the estimate of xo

is typically still good. We also observed that initialization

based on another approach such as the indirect method can

substantially improve the solution for the proposed direct

approach.

In contrast to the indirect approach where the knowledge

of additional signals does not necessarily translate to better

estimates, the proposed method can benefit from observing

more signals, thereby improving the estimation accuracy and

reducing the variance and sensitivity of the solutions for the

different initial points. Fig. 5 presents the Bode plots for each

of the internal subsystems. The figure shows the true system

and the estimate corresponding to the best local minimum

along the mean and standard deviation for the 50 best local

minima when observing both u1 and u3.

From the Bode plots in Fig. 5, we can see that observing

u1 together with u3 leads to a considerable increase in

the estimation accuracy while reducing the sensitivity to

initialization.

Comparing the results in Figures 4 and 5, we see that with

fewer observed signals, we are more likely to converge to a

poor local minimum, and when we observe more variables,

local optimization tends to end up in good local minima.

This suggests that global optimization should be considered

when only limited data are available.

VI. CONCLUSION

We propose a new direct approach based on the ML esti-

mation to perform system identification of dynamic networks

with missing data. Dynamic networks generally lead to a sin-

gular pdf, and we show that when we know how the systems

are interconnected, we are able to derive a nonsingular pdf by

rewriting the problem using linear transformations, allowing

us to perform the ML estimation.

The obtained results suggest that our approach is suitable

for estimating the parameters of dynamic networks when

combined with global optimization or a suitable initialization

strategy. Using random initialization, we found that choosing

the best local solution among many led to a precise prediction

of the observable state and a good estimation of the missing

ones.

As discussed in Section V-B, we are not able to recover Ci

using the indirect approach. In contrast, our direct approach

allows us to include this term, making it more suitable for

ARMAX models. Another drawback of indirect approaches

is that they can lead to unstable models for the subsystems

even when the internal transfer functions are known to be

stable. Moreover, the number of parameters that are required

to describe the closed-loop system can be significantly larger.

This either increases the variance of the estimator or requires

the addition of constraints to the problem or a reparametriza-

tion of the cost function to avoid increasing the number of

parameters.

The proposed direct approach can benefit from additional

observed variables, while for the indirect approach, observing

some of the signals does not add useful information. In

the numerical example presented in Section V, knowing

the sets (u3, u1), (u3, y3) or (u3, y1) does not add more

information when using the indirect approach than knowing

just u3. In contrast, using our method, each new observable

variable would contribute to a better estimation. With our

approach, the measurement of (u3, u1) led to a considerable

improvement in the fit values for both observed and missing

variables, while decreasing the variance and sensitivity of the

solutions for the different initial points.

When compared to prediction error based direct ap-

proaches, the proposed approach requires fewer observable

variables to be able to estimate the system parameters, al-

lowing the estimation of the network presented in Section V

while observing only u3, which would not be possible with

prediction error based approaches [3].

The major limitation of our approach results from the

nonconvexity of the cost function, requiring an initial set

of parameters in the neighborhood of the global optimum

to ensure the convergence towards it. Thus, a suitable ini-

tialization strategy is needed or, alternatively, the use of

global optimization is called for. To investigate the issue, we

explored two different approaches: the first approach was to

consider 100 randomly generated initializations and use the

best local solution with respect to the cost function value,

and the second approach was to compute an initial guess

from the estimate obtained using the indirect method. The

results show that both approaches were able to converge to

solutions for which the observable and the missing variables

could be well estimated.

In future work, we plan to apply the proposed approach

to bigger dynamical network architectures, explore different

initialization strategies and other optimization methods, e.g.,

trust-region methods or cheaper stochastic methods such as
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Fig. 5. Magnitude and phase Bode plots for each internal system, considering the 50 best solutions, when observing both u3 and u1 using the proposed
direct approach.

AdaHessian [11] or AdaSub [2] that incorporate second-

order information. We also plan to derive sufficiency con-

ditions that characterize which signals need to be observed

to obtain consistent estimates of each internal system in

the dynamical networks when using the proposed maximum

likelihood approach.

REFERENCES

[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James John-
son, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke,
Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX:
composable transformations of Python+NumPy programs, 2018.

[2] João Victor Galvão da Mata and Martin S. Andersen. Adasub: Stochas-
tic optimization using second-order information in low-dimensional
subspaces, 2023.

[3] Paul M.J. Van den Hof. Personal communication.
[4] A. Hansson and R. Wallin. Maximum likelihood estimation of

Gaussian models with missing data—Eight equivalent formulations.
Automatica, 48:1955–1962, 2012.

[5] J. M. Hendrickx, M. Gevers, and A. S. Bazanella. Identifiability of dy-
namical networks with partial node measurements. IEEE Transactions
on Automatic Control, 64(6):2240–2253, 2019.

[6] L. Ljung. System Identification: Theory for the User. Prentice Hall
information and system sciences series. Prentice Hall PTR, 1999.

[7] Lennart Ljung. System identification toolbox. Math Works Natick,
MA, USA, 1995.

[8] Paul M.J. Van den Hof, Arne Dankers, Peter S.C. Heuberger, and
Xavier Bombois. Identification of dynamic models in complex
networks with prediction error methods—basic methods for consistent
module estimates. Automatica, 49(10):2994–3006, 2013.

[9] Paul M.J. Van Den Hof and Ruud J.P. Schrama. An indirect method
for transfer function estimation from closed loop data. Automatica,
29(6):1523–1527, 1993.

[10] R. Wallin and A. Hansson. Maximum likelihood estimation of linear
siso models subject to missing output data and missing input data.
International Journal of Control, 87(11):2354–2364, 2014.

[11] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and
Michael W. Mahoney. ADAHESSIAN: an adaptive second order
optimizer for machine learning. CoRR, abs/2006.00719, 2020.

3116


