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Abstract— Passive intermodulation interference in wireless
systems is caused by downlink radio transmissions that are
nonlinearly mixed and frequency shifted in close conductive
objects. This interference may jam uplink receivers. The paper
proposes mitigation by logarithmic feedback control using
downlink transmission power actuation. The nonlinear single
downlink feedback loop is proved to be globally stable provided
that a loop-gain-loop-delay stability condition holds. The multi
downlink problem is then addressed by derivation of a degree
greedy multiple-input-single-output controller that is proved to
be optimal in a static sense. Simulations using measured data
traffic illustrate the performance of the control systems.

I. INTRODUCTION

The paper proposes new, globally stable feedback regula-
tion of passive intermodulation (PIM) disturbances in wire-
less systems. The regulation is achieved by carrier transmit
power actuation in the downlink (DL), to mitigate the PIM
disturbances in an uplink (UL) receiver at a site. PIM may be
created in the radio itself, as well as in close conductive and
magnetic objects like loose connectors or rusty metal objects
littering the site close to the transmit antennas. Currents
induced by multiple radio transmissions may mix nonlinearly
in such PIM sources, thereby creating frequency shifted PIM
radio signals. In case the frequency shifted PIM signals are
within the frequency band of a receiver, the UL may be
interfered [3], [6], [8], [12].

In case the receiver antenna has more than one element
a receiver null can be formed against a point-wise PIM
source using interference rejection combining (IRC), [4],
[13]. In addition, large antenna arrays can be used to avoid
DL transmission in the direction of a PIM source with null
forming, [11]. The disadvantages are that suppression of
other UL interference competes with the need to reduce
PIM, and that the coverage and user throughput in the
direction of the PIM source are compromised. Another well
known mitigation technique is denoted PIM cancellation. For
example, a truncated Volterra series model of the PIM signal
can be obtained by techniques described in [9]. Estimation
of the Volterra channel, followed by subtraction of the
predicted PIM signal from the measured uplink signal can
then reduce the effect of the PIM disturbance. However,
PIM cancellation is demanding, computationally and from
an interface perspective. The reasons are the many super-
linear terms, that also lead to high bandwidth signalling of
over-sampled signals between carriers.
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When the above techniques are unavailable, the DL trans-
mit powers need to be reduced at the expense of a reduced
DL throughput. Such techniques are known as PIM avoid-
ance (PIM-A). The paper first contributes to PIM-A with
feedback control of the UL PIM power by actuation (muting)
of the momentary DL transmission bandwidth of a single
carrier. By a transformation to the logarithmic power domain,
the PIM channel is removed from the loop gain. Application
of integrating feedback control then avoids computationally
intense PIM channel estimation. The second contribution
uses the circle criterion [18] to derive a global loop-gain-
loop-delay stability condition that is only a function of the
degree of the regulated carrier in the PIM product, the con-
troller parameters and the loop delay. The paper then extends
the single-input-single-output (SISO) feedback controller to
a solution of the multi-input-single-output (MISO) feedback
control problem, guided by a solution of an optimization
problem. The resulting degree greedy algorithm distributes
the muting between the DL carriers and forms the third
contribution of the paper. Finally, the performance of the
SISO and MISO feedback controllers are evaluated and
compared using simulated and measured data. Alternative
PIM-A solutions include the use of model predictive control
[5], or to apply reinforcement learning [17]. However, the
guaranteed global stability would then be lost. This serves
to motivate the proposed integrating feedback loop, since
stability is an absolute requirement in a widely deployed
commercial control system.

Variables with an overhead bar denote signals in the linear
domain, while the lack of an overhead bar denote signals in
the logarithmic domain. Time is denoted t, while s is the
Laplace transform variable. The paper begins with a brief
review of PIM in Section II, followed by the derivation of the
logarithmic SISO feedback controller in Section III. Global
stability is proved in Section IV, and the degree greedy
algorithm is derived in Section V. A performance evaluation
is reported in Section VI. Conclusions close the paper in
Section VII.

II. PASSIVE INTERMODULATION MODEL

To develop a model of the PIM radio signal power, a
combination of stochastic differential equations [10] that
describe signals and channels, and a static nonlinear function
describing the PIM source may be used. When the static
nonlinear function is expanded according to the Stone-
Weierstrass theorem [15], [16], a truncated Volterra series
model results [9]. This model decomposes the PIM signal
into multiple terms each indexed by a selection of the K-
tuple n1, ..., nK , where each nk is the exponent of radio
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carrier k, cf. (1). The PIM degree n is the maximum value of∑K
k=1 nk, evaluated over all terms in the PIM model. A PIM

signal of degree n thus consists of a sum of channel weighted
products of carrier signals raised to a certain exponent, where
each product is such that the sum of all exponents does not
exceed n. This means that the generated PIM power of a
particular term in the sum can be expressed as

P̄p(t) =
∣∣h̄p

∣∣2 (t) K∏
k=1

(
P̄k(t)

)nk ,

K∑
k=1

nk ≤ n. (1)

where
∣∣h̄p

∣∣2 (t) is the PIM channel power and P̄k(t) is the
transmit power of carrier k. The subscript p refers to the PIM
generation.

III. SINGLE RADIO CARRIER

A. Fundamental PIM assumptions

The approach of the paper is based on the assumption that
A1) There is a dominating PIM power term.

Since A1 is an approximation building on (1), there will be
modeling errors as formalized by

A2) ¯̃Pp(t) is a multiplicative model error acting on the
dominating PIM power term.

The model A2 is selected to obtain an additive error in the
logarithmic domain. There stable integrating control will be
applied to attenuate P̃p(t).

B. PIM model and Logarithmic Feedback Control

The PIM model for single DL carrier regulation defined
by A1, A2 and (1) can be represented as

P̄p(t) =
∣∣h̄p

∣∣2 (t)
×
(
q̄kp(t)P̄kp,max

)nkp

 K∏
kp ̸=k=1

(
P̄k(t)

)nk

 ¯̃Pp(t). (2)

Here the muting factor q̄kp(t) ∈ [q̄kp,min, 1] is introduced
since the actuator mechanism defined below is selected to
limit the transit power with respect to the maximum DL
carrier power, by means of a scheduling actuating threshold
on the scheduled DL data bandwidth.

The PIM channel gain is computationally intense to es-
timate, and the model error is unknown by definition. It
is therefore undesirable to have these quantities as factors
of a loop gain that determines stability. This observation
together with A2 suggests the first main contribution of the
paper which is to perform feedback control in the logarithmic
domain. It follows from (2) that

Pp(t) = 10 log10(P̄p(t)) = nkp
qkp

(t)

+ |hp|2 (t) + nkp
Pkp,max +

K∑
kp ̸=k=1

nkPk(t) + P̃p(t). (3)

Note that all quantities of (3) are in decibels (dBs), thereby
avoiding multiple factors of 10. As can be seen the only
remaining term of (3) in the feedback loop of Fig. 1 that

is related to PIM regulation is nkp
qkp

(t). All other signals
related to PIM generation are additive and do no longer
affect the loop gain, and thereby the stability. The integrating
controller used below will attempt to regulate away all these
additive disturbances.

The handling of other interference I(t) from neighbor cell
UEs (mobiles) plus thermal noise N(t) needs the assumption

A3) The effect of Ī(t) and N̄(t) can be approximated
with addition in the logarithmic domain.

This is admittedly a modeling approximation, needed for
further control system design and stability analysis. It is be-
lieved to be reasonable in the normal case when the reference
value ∆P ref

p of the control loop is set to give a remaining
PIM power a few dBs above the other interference, and since
it is this PIM power excess that is the measured feedback
signal. This means that when the feedback loop operates as
intended the following motivation for A3 holds

10 log10
(
P̄p(t) + Ī(t) + N̄(t)

)
≈ 10 log10

(
10

∆P
ref
p
10

(
Ī(t) + N̄(t)

)
+ Ī(t) + N̄(t

)
= 10log10

(
10

∆P
ref
p
10 + 1

)
+ (I(t) +N(t)) . (4)

Here I(t) +N(t) needs to be treated as one signal.

C. Control Objective
The UL is always subject to other interference given by

I(t)+N(t). This limits the capacity according to Shannons
theorem [4]. When PIM is present and adds to the denomi-
nator of the signal to noise ratio, this leads to the conclusion
that the control objective should be to control the PIM
power to be of the same size as I(t) +N(t). If the passive
disturbance power would be much higher, the UL throughput
and capacity would be negatively affected, and in case the
passive disturbance power would be controlled to be much
below I(t)+N(t) the DL throughput and capacity would be
unnecessarily reduced. This is handled by the configurable
reference value ∆P ref

p (t) that appears in Fig. 1.

D. Feedback Measurement and Delays
To meet the control objective, it is necessary to measure

the PIM power level with respect to (I(t) + N(t)) in the
UL. Such a measurement can be constructed using the
standard UL interference measurements, by the introduction
of occasional and infrequent complete muting (blanking) of
the DL, zeroing one factor of (1) thereby creating an UL
signal free of PIM. The PIM power excess is then

∆Pp(t) = Pp(t) + I(t) +N(t)− (I(tblank) +N(tblank))

= Pp(t) + I(t) +N(t)−∆Pblank(t). (5)

Here ∆Pblank(t) denotes the total interference at the last
blanking occasion tblank.

There is a scheduling delay, ckp
Ts, before DL control and

blanking commands take effect on the UL, where TS is the
sampling period. There is also a feedback signalling delay
fkpTs. Here ckp and fkp are fractional numbers.
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Fig. 1. Block diagram of the single carrier PIM power feedback control system, operating in the logarithmic domain.

E. Actuator Mechanism
In 4G and 5G systems the transmission is defined on a

time-frequency grid, where the duration of a transmission
time interval (TTI) is further divided into symbols [1]. The
frequency band is divided into sub-carriers frequencies. Each
time frequency point in the grid represents a complex data
symbol. For each TTI, the resources are combined into
physical resource blocks (PRBs) that cover a certain part
of the frequency bandwidth. The PRBs are further grouped
into resource block groups (RBGs) that form the smallest DL
data item. There is therefore quantization effects on the DL
PIM power actuation quantity qkp

(·). The DL carrier power
is typically directly proportional to the number of scheduled
RBGs. Together with the transformation to the logarithmic
domain, this means that qkp

(·) will be a logarithmic quantizer
of the control signal u(t), where the control signal is defined
to be the negative number of scheduled PRBs. The reason for
this definition is the need to obtain a sector condition in line
with the circle criterion applied in Section IV. Despite the
fact that u(t) is not a logarithmic quantity, a notation without
an overhead bar is used below. The above discussion gives

qkp(u(t)) =

 0.0, u(t) ≥ ukp,max

qkp,u(u(t)), ukp,min ≤ u(t) < ukp,max

qkp,min u(t) < ukp,min,
(6)

ukp,min =
(
mkp,min −mkp,max

)
Qkp,PRB (7)

ukp,max = −Qkp,PRB (8)

qkp,min = 10 log10

∣∣∣∣mkp,min + 1

mkp,max

∣∣∣∣ (9)

qkp,u(u(t))

= 10 log10

∣∣∣∣⌊(u(t) + (mkp,max + 1)Qkp,PRB)/Qkp,PRB⌋
mkp,max

∣∣∣∣ .
(10)

Fig. 2. The block diagram for which the circle criterion holds.

Here Qkp,PRB , mkp,min and mkp,max denote the number
of PRBs per RBG, as well as the minimum and maximum
number of RBGs allowed to be muted for PIM-A, respec-
tively.

F. Integrating Controller

To regulate away biased disturbances, modeling errors and
noise, the following integrating controller is applied [2]

C(s) =
KP

TI

1

s
, (11)

The parametrization with both a proportional gain KP > 0
and an integration time TI > 0 enables a very intuitive tuning
of the loop gain based on the stability analysis of the next
section.

IV. GLOBAL L2 STABILITY

A. The circle criterion

Since Fig. 1 contains delay and a static nonlinearity, the
input-output version of the circle criterion can be applied
for stability analysis [18]. The circle criterion holds for the
system of Fig. 2 under the standard definitions of input-
output stability theory, see [18] for all details. In Fig. 2,
ĝ(s) is the loop gain, φ(·) the static nonlinearity, u1 and u2

the inputs, e1 and e2 the error signals, while y1 and y2 are
the outputs. The circle criterion is given by:
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Lemma 1 (Circle Criterion, zero lower sector limit, [18]
Theorem 6.7.8): Consider the system of Fig. 2, where

ĝ(s) = ĝa(s) +

∞∑
i=0

gie
−isT +

n̂(s)

d̂(s)
,

where n̂(s) and d̂(s) are polynomials in s, and where the
continuous φ(σ) is such that

0 ≤ σφ(σ) ≤ βσ2.

Assume that ĝa(s) ∈ Â and that ĝ(s) has no poles with
positive real parts. Under these conditions the system is L2-
stable if

inf
ω>0

Re[ĝ(jω)] +
1

β
> 0. �

Proof: See [18], Section 6.7. It is noted that a transfer
function ĝa(s) ∈ Â whenever it is asymptotically stable and
proper [18]. In addition, u1 ∈ L2 and u2 ∈ L2 are required
to conclude that y1 ∈ L2 and y2 ∈ L2.

B. Signals and Block Diagram

A pre-requisite for the stability analysis is to redraw Fig.
1 to the structure of Fig. 2 and define the quantities of Fig. 2
in terms of those in Fig. 1. This is done using re-ordering of
linear blocks according to the superposition principle, and
using the fact that delays can be interchanged with static
nonlinear blocks. This leads to the block diagram of Fig. 3.
It follows immediately from Fig. 3 that

u1(s) = e−sckpTS
(
nkpPkp,max(s)−∆Pblank(s)

)
+(I +N)(s) + P̃p(s) +

K∑
kp ̸=k=1

nke
−sckTSPk(s), (12)

u2(s) = e−sckpTSC(s)∆P ref
p (s), (13)

ĝ(s) = e−s(ckp+fkp )TSC(s), (14)

φ(u) = nkpqkp(u). (15)

C. Assumptions

The following assumptions are then introduced to enable
a verification of the conditions for the circle criterion:

A4) C(s) = KP

TI

1
s+δ , δ > 0.

A5) φ(u) = nkpqkp,ε(u), where qkp,ε(u) ≤ qkp(u) is
continuous, qkp,ε(u) → qkp

(u) when ε → 0, and
qkp,ε(u) and qkp

(u) obey the same sector condition.
A6) Pkp,max(s) is the Laplace transform of

H(t)Pkp,max, where H(t) is the Heaviside
function, and where the pole in 0 is replaced with
−δ, by replacement of s with s+ δ, δ > 0.

A7) ∆Pblank(s) is the Laplace transform of a signal
generated by proper asymptotically stable filtering.

A8) (I + N)(s) is the Laplace transform of a signal
generated by proper asymptotically stable filtering.

A9) P̃p(s) is the Laplace transform of a signal generated
by proper asymptotically stable filtering.

A10) Pk(s), kp ̸= k = 1, ...,K are the Laplace trans-
forms of signals generated by proper asymptotically
stable filtering.

A11) ∆P ref
p (s) is the Laplace transform of H(t)∆P ref

p ,
where the pole in 0 is replaced with −δ, by
replacement of s with s+ δ, δ > 0.

The parameter δ > 0 in A4, A6 and A11 ensures asymptotic
stability, therefore the main result becomes a conjecture
when δ → 0. A5 is needed to obtain the smoothness required
by Lemma 1. A6 and A11 ensure strict properness. They
hold since the control loop is started at time 0. A7-A10 are
standard signal conditions that together with A6 and A11
ensure that (12) and (13) meet u1 ∈ L2 and u2 ∈ L2.

D. Main Result

Theorem 1: Assume that A1-A11 hold, β is given by (16),
and δ > 0 is small. Then the feedback control loop of Fig. 1
with qkp,ε(·) replacing qkp(·) is globally L2-stable provided
that (

β
KP

TI

)(
(ckp + fkp)TS

)
< 1. �

Proof: The conditions underpinning Lemma 1 are first ver-
ified, using A1-A11. Starting with ĝ(s) of (14), asymptotic
stability and (strict) properness follow from A4. Since ĝ(s)
neither contains unstable poles nor impulses, ĝ(s) ∈ A.
A6-A10 and (12) show that u1(s) is a sum of Laplace
transforms that are all formed by asymptotically stable and
proper filtering, hence u1 ∈ L2. The same is true for u2(s),
referring to A4, A11 and (13). Fig. 4 illustrates the static
nonlinearity φ(u) = nkp

qkp
(u). Note that by (6) and (8),

the nonlinearity is designed with zero output when u(t)
commands less than one RBG, as well as when u(t) > 0.
This ensures that the red and blue sector bounds always
exist, hence the sector condition is always fulfilled. The
quantization and requirement on continuity is handled by
A5, with the consequence that the stability result needs to
be understood as a limiting case when ε → 0. The slope of
the blue sector bound follows from (7), (9), the value of nkp ,
and by noting that Qkp,PRB PRBs remain to the left of the
leftmost falling edge of the quantizer. The slope is

β = nkp

qkp,min

ukp,min +Qkp,PRB

= nkp

10 log10

∣∣∣mkp,min+1

mkp,max

∣∣∣(
mkp,min + 1−mkp,max

)
Qkp,PRB

. (16)

This proves that the circle criterion holds for Fig. 1.
The stability can then be analysed using Lemma 1. Refer-

ring to (14) and A4, the real part of the loop gain becomes

Re[ ˆg(jω)] = Re[
KP

TI

e−jω(ckp+fkp )TS

jω + δ
]

−KP

TI

ωsin(ω(ckp
+ fkp

)TS)

ω2 + δ2

+
KP

TI

δcos(ω(ckp
+ fkp

)TS)

ω2 + δ2
, ∀ω. (17)
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Fig. 3. The block diagram of the single carrier PIM power feedback control system, redrawn for L2 stability analysis.

Fig. 4. The static nonlinearity φ(u) = nkpqkp (u) for nkp = 2 together
with the sector bounds (red and blue). The parameters of (6)-(10) were
mkp,min = 4, mkp,max = 34, Qkp,PRB = 8.

After some rearrangements, (17) and the circle criterion leads
to the stability condition

−sin(ω(ckp + fkp)TS) > −
(
KP

TI

)−1
1

β
ω

−
(
KP

TI

)−1
δ2

β

1

ω
− δcos(ω(ckp + fkp)TS)

1

ω
, ∀ω > 0.

(18)
Two cases arise, depending on the last term of (18).

First, in case ω ≤ (π/(2(ckp
+ fkp

)TS) it follows from
the signs of the right hand side terms of (18) that if

−sin(ω(ckp
+ fkp

)TS) > −
(
KP

TI

)−1
1

β
ω, (19)

holds, then the stability condition of (18) also holds. Proceed-
ing with (19), the functions of the right and left hand sides
intersect at ω = 0. Therefore, if the slope of −sin(ω(ckp

+

fkp
)TS) is less negative than − (KP /TI)

−1
β−1ω, then there

are no further intersections between the functions of (19) for
ω > 0, since the slope of −sin(ω(ckp + fkp)TS) is minimal

in ω = 0 and equal to −(ckp + fkp)TS . Bounding (19) with
the minimum gives the condition

−(ckp
+ fkp

)TS > −
(
KP

TI

)−1
1

β
. (20)

Now (20) implies (19) and thereby (18). (20) can be re-
arranged into the following loop-gain-loop-delay stability
condition for the first case(

β
KP

TI

)(
(ckp + fkp)TS

)
< 1. (21)

Proceeding with the second case, it is first noted that
according to case 1 (21) needs to hold for ω ≤ (π/(2(ckp

+
fkp

)TS). Since (21) is independent of ω, it is assumed for
ω ≥ (π/(2(ckp

+ fkp
)TS) as well. The different terms of

(18) can now be bounded for ω ≥ (π/(2(ckp
+ fkp

)TS).
The minimum value of the left hand side term

−sin(ω(ckp
+fkp

)TS) = −1, which is obtained for example
for ω = (π/(2(ckp

+fkp
)TS). The first term of the right hand

side of (18) can be estimated as

−
(
KP

TI

)−1
1

β
ω < −

(
KP

TI

)−1
1

β

π

2(ckp
+ fkp

)TS
< −π

2
.

(22)
where the last inequality follows by (21). Hence, by (22)

−sin(ω(ckp + fkp)TS)

+

(
KP

TI

)−1
1

β
ω >

π

2
− 1, ω ≥ π

2(ckp
+ fkp

)TS
. (23)

Since ω ≥ (π/(2(ckp + fkp)TS), it follows that the absolute
value of the two remaining terms of the right hand side of
(18) can be made smaller than π

2 − 1 by selection of a small
enough δ > 0. Therefore (21) implies that (18) holds for
ω ≥ (π/(2(ckp

+ fkp
)TS) as well. This proves Theorem 1.

E. Implementation

The feedback loop is tuned as follows. The delays, sam-
pling period and actuator parameters are constants deter-
mined by the wireless system implementation. The user can
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select TI accounting for measurement filtering needs. The
gain KP can then be computed from Theorem 1, if preferred
with a margin. The continuous time control system also
needs to be discretized. This is performed with the stability
preserving Tustin’s approximation [14].

V. MULTIPLE RADIO CARRIERS

A. Optimal Dual Carrier Muting

To understand how the logarithmic feedback control al-
gorithm of Section III can be generalized to multiple DL
carriers, the dual carrier case is analysed. The problem to
maximize the relative throughput

V (q̄1(t), q̄2(t)) = q̄1(t) + q̄2(t), (24)

is considered, noting that q̄1(t)+ q̄2(t) measures the allowed
fraction of the DL bandwidth. A division of (2) without
modeling errors, with (1), results in the main constraint
which completes the throughput maximization problem:(

ˆ̄q1(t)
ˆ̄q2(t)

)
= arg max

q̄1(t),q̄2(t)
V (q̄1(t), q̄2(t)) (25)

subject to

(q̄1(t))
n1(q̄2(t))

n2 = ∆̄ (26)

q̄1(t) ∈ [q̄1,min, 1], q̄1,min ≥ 0 (27)

q̄2(t) ∈ [q̄2,min, 1], q̄2,min ≥ 0. (28)

Here 0 ≤ ∆̄ ≤ 1 expresses the desired PIM power reduction.
Note that the main constraint represents a full buffer traffic
case, i.e. a 100 % traffic case, since the muting of Section
III is by means of a scheduler threshold. To proceed, the
following assumption is introduced:

A12) The DL carriers of the PIM product term are sorted
in descending order of the size of their exponents,
and kp = 1.

The following result states that the optimal solution is to
apply a greedy algorithm in the PIM product degrees:

Theorem 2: Consider the problem (25)-(28), assume that
A1 and A12 holds and that n1 ≥ n2. Then it is optimal to
first mute carrier 1 as much as needed or as much as allowed
by q̄1,min. If more muting is needed, carrier 2 is muted as
much as needed or as much as allowed by q̄2,min �.

Proof: To solve the optimization problem, q̄2(t) is obtained
from (26) and inserted into (24), resulting in the one dimen-
sional loss function

V (q̄1(t)) = q̄1(t) + ∆̄
1
n2 (q̄1(t))

−n1
n2 . (29)

Any maximizing point in the interior region of (27) and (28)
needs to fulfil

dV

dq̄1(t)
= 1 + ∆̄

1
n2

(
−n1

n2

)
(q̄1(t))

−
(

n1
n2

+1
)
= 0. (30)

However, another differentiation results in

d2V

d (q̄1(t))
2 = ∆̄

1
n2

(
n1

n2

)(
n1

n2
+ 1

)
(q̄1(t))

−n1
n2

+2
> 0

(31)

by (27) and (28) and since ∆̄ ≥ 0. Therefore, there cannot
exist an interior maximum point and the maximum solution
must occur on the boundary of (27) and (28). To find
the optimum, all possibilities need to be evaluated and
the best one found. The rectangular boundary defined by
(27) and (28) give the cases of Table I. The value of the
criterion function for a row is the sum of the first and
second columns of that row. The cases of Table I may
impose simple constraints on ∆̄, the second case e.g. requires
that ∆̄ ≤ q̄n1

1,min. The proof now makes extensive use of

TABLE I
BOUNDARY CASES DEFINED BY (26), (27) AND (28)

ˆ̄q1(t) ˆ̄q2(t)

1 max

(
q̄2,min, ∆̄

1
n2

)
q̄1,min max

(
q̄2,min, ∆̄

1
n2 q̄

−n1
n2

1,min

)
max

(
q̄1,min, ∆̄

1
n1

)
1

max

(
q̄1,min, ∆̄

1
n1 q̄

−n2
n1

2,min

)
q̄2,min

1 1
1 q̄2,min

q̄1,min 1
q̄1,min q̄2,min

the facts that for n > 0, n1 > 0, n2 > 0 it holds that
0 < x

1
n ≤ 1, x ∈ (0, 1]; x

1
n , x ∈ (0, 1] is increasing; and

n1 > n2 ⇒ x
1
n1 > x

1
n2 , x ∈ (0, 1).

The solution to (25)-(28) is investigated by decreasing ∆̄
from 1. For ∆̄ = 1, only case 5 of Table I applies, and
V (ˆ̄q1(t), ˆ̄q2(t)) = 2. When ∆̄ is decreased so that neither
q̄1,min nor q̄2,min is reached, cases 1 and 3 apply. It follows
by (24), A12 and the properties listed above that

V (∆̄
1
n1 ) ≥ V (∆̄

1
n2 ), (32)

and therefore the choice is to mute the carrier with the largest
exponent, i.e. case 3, until q̄1,min is reached, i.e. case 7 is
reached. When ∆̄ is further decreased case 2 applies until
ˆ̄q2(t) = q̄2,min and case 8 is reached, and no more muting
is possible. This is the algorithm stated by Theorem 2.

B. Random Traffic Compensation
Theorem 2 builds on a full buffer assumption. Whenever

more than one carrier needs to be muted, the feedback loop
of the main carrier is broken which means that the threshold
acts on varying traffic that may be modeled as random. The
same is true for the thresholds of the remaining carriers. A
compensation for the full buffer traffic is therefore needed
to control the traffic that is to be rejected more accurately.

For following random traffic is therefore assumed
A13) P̄k(t) = p̄k(t)P̄k,max, p̄k(t) ∈ U(0, 1).

Here U(0, 1) is the uniform distribution, which is a flat
prior for the DL powers. Assuming that Theorem 2 would
produce a threshold ˆ̄qk(t), acting on the traffic of carrier k,
the expected normalized remaining power becomes

E
[
p̄k(t)| ˆ̄qk(t)

]
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=

∫ 1

0

ppU (p| ˆ̄qk(t))dp =

∫ ˆ̄qk(t)

0

p1dp =
ˆ̄q2k(t)

2
. (33)

One alternative to compensate for varying traffic would
be to use the loss of muted power, as compared to the
full buffer case compensation. However, that would lead to
compensation even without muting in the full buffer case
since the maximum value of (33) is 0.5. This is not desirable.
A more soft compensation is therefore selected from (33),
using ˆ̄qk(t) = 1 to represent the maximum power case. The
relative loss of remaining power then becomes

ℓ(t) =
1

2
−

ˆ̄q2k(t)

2
=

1− ˆ̄q2k(t)

2
. (34)

C. The Degree Greedy Algorithm

To define the degree greedy PIM-A algorithm in the
general case with K carriers, it is conjectured that Theorem
2 generalizes to K carriers. The total amount of muting
computed by the feedback controller of Section III is denoted
q̄tot(t), while the total amount allocated in the algorithm
so far is denoted q̄acc(t). Two additional effects need to
be accounted for. First, the total muting command of the
feedback loop relates to n1 = nkp

, by A12. Since, by (2)

∂Pp(t)

∂qk(t)
/
∂Pp(t)

∂q1(t)
=

nk

n1

q1(t)

qk(t)
≈ nk

n1
, (35)

it follows that the muting for carrier k needs to be scaled up
with an approximate factor of n1/nk. The last approximation
of (35) is motivated by simplicity, noting that there are
already several simplification involved. The accumulated
muting needs inverse scaling. Secondly, the muting for
carrier k needs to be compensated for by (34). This leads
to a compensated muting command equation

ˆ̄qk(t) = 1− n1

nk

(
q̄tot(t)− q̄acc(t)

ℓ(t)

)
. (36)

Inserting (34) leads to the third degree equation

1

2

(
1− ˆ̄qk(t)

)2 (
1 + ˆ̄qk(t)

)
=

n1

nk
(q̄tot(t)− q̄acc(t)) . (37)

This equation could be solved analytically with techniques of
Thomas Harriot, [7], cf. Wikipedia. To obtain an elementary
solution, the approximation (1 + ˆ̄qk(t)) ≈ 1 is used, which
gives

ˆ̄qk(t) = 1−
√

2n1

nk
(q̄tot(t)− q̄acc(t)). (38)

Assuming that A12 and A13 hold, the algorithm of The-
orem 2 can now be generalized to the algorithm of Table II.

D. Implementation

The feedback control of the main carrier results in a
control signal u(t) which is input to the degree greedy
algorithm. The outputs of the algorithm are new distributed
muting commands, ˆ̄qk(t), that are sent to each carrier.

TABLE II
DEGREE GREEDY ALGORITHM

Initialization

q̄tot(t) =
|u(t)|

m1,maxQ1,PRB

q̄acc(t) = 0.0
ˆ̄qk(t) = 1.0, k = 1, ...,K
ready = false
k = 1

Main Carrier

if q̄1,min < 1− n1

n1
(q̄tot(t)− q̄acc(t))

ˆ̄q1(t) = 1− n1

n1
(q̄tot(t)− q̄acc(t))

ready = true
else

ˆ̄q1(t) = q̄1,min

q̄acc(t) = q̄acc(t) +
n1

n1

(
1
2 − 1

2
ˆ̄q21(t

)
end

Secondary Carriers

while (k ≤ K) and (not ready)
if k > 1

if q̄k,min < 1−
√

2n1

nk
(q̄tot(t)− q̄acc(t))

ˆ̄qk(t) = 1−
√

2n1

nk
(q̄tot(t)− q̄acc(t))

ready = true
else

ˆ̄qk(t) = q̄k,min

q̄acc(t) = q̄acc(t) +
nk

n1

(
1
2 − 1

2
ˆ̄q2k(t

)
k = k + 1

end
else

k = k + 1
end

end

VI. PERFORMANCE

A. Simulation Assumptions

The interference Ī(t) was generated with simulation of
four neighbour cell UEs with Doppler fading frequencies of
2, 3, 7 and 15 Hz, with bursty interference powers of 0.1 W.
The path-losses were 25, 30, 35 and 40 dBs below the served
UE used for measurement of average signal to noise and
interference (SINR) power. The UL receiver had a noise
figure of 3 dB. All carriers used bandwidths of 100 MHz
and had maximum powers of Pk,max = 20 dBW. The PIM
signal was generated using a fading channel with a Doppler
frequency of 1 Hz. The actuator used mkp,min ∈ [4, 33],
mkp,max = 34, Qkp,PRB = 8, and nkp

= 3 from which β of
(16) was computed for varying mkp,min and corresponding
q1,min. The controller used TS = 0.050 s, ckp

= 0.04, fkp
=

0.96, and TI = 0.50 s. Kp was then computed from the
loop-gain-loop-delay stability condition of Theorem 1, which
therefore also provides a unique tuning of the feedback loop.
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Fig. 5. Performance of IM5 PIM-A, as a function of the allowed muting
of the main feedback control carrier. Single carrier (red), multiple carrier
(blue), full buffer traffic (solid) and varying traffic (dashed). The multiple
blue curves in the middle and bottom plots represent the two DL carriers.

B. Effect of Muting Limitations

The performance evaluation addresses the effect of q1,min.
IM5 PIM with n1 = 3, n2 = 2 was studied. The average loss
of SINR due to PIM was scaled to 15 dB for full buffer traffic
and 9 dB for varying traffic. The secondary carrier used a fix
m2,min = 4, while m1,min was varied. The results appear
in Fig. 5. The gains are comparable to the PIM cancellation
gains of [8]. However, the computational complexity of the
PIM-A algorithm is many orders of magnitude smaller. The
average SINR-improvement < ∆SINR > in the top figure
is significantly larger for the degree greedy algorithm than
for the single DL carrier feedback controller when run for
the carrier with n1 = 3. The difference levels out when
q̄1,min > 0.5 and the secondary DL carrier is fully utilized.

There is a large performance difference between full buffer
and varying traffic, between 6 and 8 dB for low q̄1,min.
The explanation follows by a comparison of the bottom and
middle plots - the average muted power for varying traffic is
much below the corresponding thresholds ˆ̄qk(t).

VII. CONCLUSIONS

The proposed SISO and MISO PIM-A algorithms reduce
PIM by feedback controlled data bandwidth muting of a
single or multiple DL carriers. The logarithmic single carrier
feedback control loop was proved to be L2-stable provided
that a loop-gain-loop-delay condition holds. The optimal
MISO algorithm was proved to be greedy in the exponents of
the PIM product, enabling a SISO feedback controller reuse
for MISO control. The performance evaluation indicated
that the simulated traffic has a very significant impact, and
motivates the use of the MISO controller for practical traffic.
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[2] K. J. Åström and T. Hägglund, Advanced PID Control. Reasearch
Triangle Park, NC: The Instrumentation, Systems and Automation
Society, 2006.

[3] L. Dussopt and G. M. Rebeiz, “Intermodulation distortion and power
handling in RF MEMS switches, varactors and tunable filters”, IEEE
Trans. Microwave Theory and Techniques, vol. 51, no. 4, pp. 1247-
1256, 2003.

[4] A. Goldsmith, Wireless Communications. Cambridge, MA: Cambridge
Univ. Press, 2005.

[5] G. C. Goodwin, M. M. Seron and J. A. DeDona, Constrained Control
and Estimation – An Optimization Approach. London: UK, Springer,
2005.

[6] W. J. Hall, M. H. Gibson, M.A. Kunes, J. M. Eskell and G. G. Connor,
“The control of passive intermodulation products in spacecraft anten-
nas”, In Proc. IEE Colloquium on Passive Intermodulation Products
in Antennas and Related Structures, 1989.

[7] T. Harriot, Artes Analyticae Praxis, 1631.
[8] B. Jang, H. Kim, Y. Seo, S. Im and S. Hong, “Mitigation of the third-

order passive intermodulation distortion interference on uplink signal”,
In Proc. IEEE International Conference on Electronics, Information
and Communication, Auckland, New Zeeland, 2019.

[9] B. Jang, S. Im, C. Kim and S. Hong, “Modeling of passive intermod-
ulation distortion using the neural networks and the cubic Volterra
filter”, In Proc. IEEE International Conference on Information and
Communication Technology Convergence, Jeju, Korea, 2019.

[10] A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York,
NY, USA: Academic Press, 1970.

[11] T. Kimono and N. Kuga, “Basic consideration on non-contact localiza-
tion for a PIM source in antenna array”, In Proc. IEEE International
Symposium on Antennas and Propagation, Osaka, Japan, 2020.

[12] C. Kudsia, R. Cameron and W. -C. Tang, “Innovations in microwave
filters and multiplexing networks for communications satellite sys-
tems”, IEEE Trans. Microwave Theory and Techniques, vol. 40, no.
6, pp. 1133-1149, 1992.

[13] Y. Leost, M. Abdi, R. Richter and M. Jeschke, “Interference rejection
combining in LTE networks”, Bell Labs Techn. J., vol. 17, no. 1, pp.
25-49, 2012.

[14] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1975.

[15] W. Rudin, Principles of Mathematical Analysis. New York, NY: Mc
Graw Hill, 1976.

[16] M. H. Stone, “The generalized Weierstrass approximation theorem”,
Mathematics Mag., vol. 21, no. 4, pp. 167-184, 1948.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning – An Introduc-
tion. Cambridge, MA: MIT Press, 2020.

[18] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ:
Prentice Hall, 1978.

161


