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Abstract— We present a frequency-domain stability analysis
tool for the feedback interconnection of a linear time-invariant
multi-input-multi-output plant and a nonlinear multi-input
multi-output controller. The controller consists of several hybrid
elements interconnected with well-crafted linear filters that
together enable favourable phase properties and allow for
improved controller performance. Stability and performance
of the proposed controller design is evaluated on a wafer stage
of an industrial metrology inspection machine.

I. INTRODUCTION

Traditionally, motion systems in, e.g., wafer scanners and
metrology inspection tools are controlled by proportional-
integral-derivative (PID) control, despite the fact that these
PID designs, or more generally speaking any linear time-
invariant (LTI) control design, is subject to fundamental de-
sign limitations, see, e.g., [5]. Nowadays, these fundamental
limitations pose a serious challenge as the growing demands
on operational speed, accuracy, and robustness of industrial
motion systems are becoming increasingly difficult to meet.

To potentially relax these obstructions and push the perfor-
mance of high-tech motion systems beyond what is possible
with LTI control, the field has witnessed a paradigm shift
towards the use of nonlinear or hybrid controllers. A well-
known early example is the Clegg integrator [3], which has
spurred further developments into generalized reset elements
and applications [1], [2], [9], [12], [17], nonlinear phase
lead compensators [10] and hybrid integrator-gain systems
(HIGS) [4], [7], [13]. Within the context of high-precision
motion control, HIGS is of particular interest as, opposed
to discontinuous control with traditional reset elements,
it utilizes continuous control signals for enhancing, e.g,
disturbance rejection properties and transient closed-loop
response. Successful application of HIGS-based control for
performance improvements in wafer scanners can be found
in, e.g., [7], [15] and the references therein.

In all the aforementioned works, HIGS-based controller
design has only been considered within a multi-loop single-
input single-output (SISO) context. However, many practical
motion control applications consist of multiple controlled
directions, where mutivariable aspects such as cross-coupling
between the controlled directions of the system plays a
significant role. In this paper, we consider the HIGS-based
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controller design problem within a multi-input multi-output
(MIMO) context. Specifically, we consider both stability and
performance aspects during the design process, which in a
nonlinear MIMO setting is not trivial.

At its basis, the HIGS-based controller design procedure
that we propose in this paper relies on the SISO approach
outlined in [7, Sec. IV], where the describing function
approximation of HIGS is embedded within a classical loop-
shaping framework. Although such a describing function
method is useful for frequency-domain design of nonlinear
controllers, only stability indications can be provided by
such an approximation in the frequency domain by, e.g.,
evaluating the quasi-linear Nyquist criterion. A rigorous sta-
bility analysis of HIGS-based controllers can instead be pro-
vided through numerically tractable linear matrix inequalities
(LMIs), see, e.g., [15]. Such an analysis, however, requires
a sufficiently accurate parametric model of complex systems
which may not be easy to obtain. In order to favor industri-
alization of HIGS-based controllers, we present frequency-
domain conditions for a stability analysis of MIMO control
systems with a HIGS-based integrator [15, Sec. 3.2] for each
controlled direction. These frequency domain conditions are
based on a nontrivial description of the closed-loop system,
eventually exploiting the multivariable circle criterion, and
can hence be verified graphically using measured frequency
response data of the considered system. The developments in
this paper build upon the analysis presented in [16], where
only SISO systems and a specific HIGS-based configuration
is addressed, that fundamentally differs from the HIGS-based
integrator configuration considered in this paper.

The main contributions of this paper are 1) a frequency-
domain tool for stability analysis of MIMO HIGS-based con-
trol systems, and 2) an experimental performance assessment
of a HIGS-based control design on a MIMO wafer stage of
an industrial metrology inspection machine.

The remainder of this paper is organized as follows. We
present our MIMO HIGS-based controller design in Sec-
tion II and discuss the closed-loop setting in Section III. Our
main results are presented in Section IV and Section V in the
form of, respectively, a frequency-domain stability condition,
and an experimental performance assessment. Conclusions
are provided in Section VI

II. HIGS-BASED CONTROL

We consider a nonlinear controller design where we em-
ploy a HIGS-based integrator instead of a linear integrator in
a PID-type filter. Before introducing the nonlinear controller
structure, we present the HIGS element H as the following
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piecewise linear system:

H :


ẋh = ωhz, if (z, uh, ż) ∈ F1,

xh = khz, if (z, uh, ż) ∈ F2,

uh = xh,

(1a)
(1b)
(1c)

with state xh ∈ R, z ∈ R the input (with ż its time
derivative), and uh ∈ R the generated output. The integrator
frequency ωh ∈ (0,∞) and gain kh ∈ (0,∞) are tuning
parameters.

The main philosophy of HIGS is to keep the sign of the
integrator output uh equal to the sign of the input z at all
times by switching between two modes of operation, i.e.,
integrator mode according to (1a), and gain mode according
to (1b). Integrator mode (the primary mode of operation) is
allowed as long as the input-output pair (z, uh) resides inside
the sector [0, kh] in the (z, uh)-plane defined as

F :=

{
(z, uh, ż) ∈ R3 | zuh ≥ 1

kh
u2
h

}
. (2)

Note that the definition of F in (2) requires a suitable
initialization of z(0) ∈ F . A switch from integrator mode to
gain mode occurs as soon as the trajectory tends to escape the
sector [0, kh], whereby the trajectory slides over the boundary
according to (1b). Conversely, a transition from gain mode
back to integrator mode occurs whenever the vector field
points towards the interior of F . Switching is governed by
the sets F1 and F2, i.e.,

F1 := {(z, uh, ż) ∈ R3 | khzuh ≥ u2
h ∧ z /∈ F2}, (3a)

F2 := {(z, uh, ż) ∈ R3 | uh = khz ∧ ωhz
2 > khżz}. (3b)

A quasi-linear approximation of the HIGS element H
in the frequency domain can be obtained by its first-order
describing function, given by

D(jω) =
ωh

jω

(
γ

π
+ j

e−2jγ − 1

2π
− 4j

e−jγ − 1

2π

)
+kh

(
π − γ

π
+ j

e−2jγ − 1

2π

)
,

(4)

with γ = 2atan
(

khω
ωh

)
∈ [0, π] the periodic switching

instance between integrator mode and gain mode. The de-
scribing function (4) reveals that the HIGS element experi-
ences first-order low-pass filter magnitude characteristics in
the frequency domain, where the induced phase lag is only
38.15 degrees (in contrast to a classical, linear low-pass filter,
inducing 90 degrees phase lag), see Fig. 1.

With the definition of the HIGS element H and its describ-
ing function D in place, we construct a HIGS-based integra-
tor Ci{H}, following the rationale as in [15, Sec. 3.2]. Take
kh = 1, and perform a pre- and post-multiplication of H with
a lead filter T1 := (s+ωN )/ωN , with ωN := ωh |1 + 4j/π|,
and simple integrator T2 := ωi/s, respectively, i.e.,

Ci{H} := T1(s)L{H(z, ż, uh)}T2(s), (5)

with s ∈ C, and L denotes the Laplace transform of H on
the input signals z, ż, and uh. The design philosophy for the
HIGS-based integrator (5), illustrated in Fig. 2, stems from
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Fig. 1. Bode diagrams of the describing functions D(jω) of the HIGS
element H (with corner frequency ωN := k−1

h ωh |1 + 4j/π|), Di(jω) of
the HIGS-based integrator Ci{H}, and a linear integrator.

describing function analysis. Indeed, a describing function
for the HIGS-based integrator Ci is given by Di(jω) :=
T1(jω)D(jω)T2(jω), which yields precisely the magnitude
characteristic of a classical integrator, but with (locally)
reduced phase lag, see Fig. 1. This phase benefit is the
key mechanism to (transient) performance improvements
for high-tech systems, as we illustrate in Section V below.
Moreover, the state of the simple integrator in Ci ensures
that the HIGS-based integrator is capable of sustaining a DC
output, which is not possible for the HIGS element H in (1).

Consider Fig. 2, where we introduce the HIGS-based
controller structure, and a representation of the controller
in feedback with an LTI plant P . For the sake of brevity,
the representation is given for a single DOF, but naturally
extends to a MIMO context by considering each filter as a
diagonal matrix, and each signal as a time-varying vector of
suitable dimensions (as we formalize in the next section).
Next to the HIGS-based integrator Ci, the controller consists
of a second order low-pass filter Clp, and a parallel PD branch
(with differentiator frequency ωd). Note that this controller
structure mimics a classial PID-type controller design, where
we have replaced a classical integrator by the HIGS-based
one.

Remark 1. The considered PID-type controller structure as
depicted in Fig. 2 can be trivially extended with a series of
Notch filters, commonly used in high-tech motion systems.

Remark 2. In order to avoid known problems in a HIGS-
based controller design such as gain loss associated with too
frequent switching of HIGS, a pre-and post filtering strategy
is applied in the design, see [8].

kpClp 1 + 1
ωd

d
dt Σ P

T1 H(ωh) T2

Ci{H}

Σ
−

r

−uz G

Fig. 2. Closed-loop HIGS-based control structure consisting of a second-
order low-pass filter Clp, and a PD branch parallel to a HIGS-based
integrator Ci{H}.
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III. CLOSED-LOOP SYSTEM DESCRIPTION

The MIMO representation of the closed-loop HIGS-based
control system depicted in Fig. 2, with m controlled direc-
tions, is rewritten as the feedback interconnection of a MIMO
LTI system G ∈ Rm×m and a matrix H̄ ∈ Rm×m, with the
individual HIGS elements on the diagonal, see Fig. 3. The
LTI system G is given by

G :

{
ẋl = Alxl +Blu+Brr,

z = Clxl +Dlu,

(6)
(7)

with state vector xl ∈ Rn, output z ∈ Rm, exogenous input
r ∈ Rm, and control input u ∈ Rm. The corresponding
transfer functions from u to z, and from r to z are given by

Gzu(s) = Cl(sI −Al)
−1Bl +Dl, (8a)

Gzr(s) = Cl(sI −Al)
−1Br, (8b)

respectively, on which we pose the following assumption:

Assumption 1. The transfer functions Gzu and Gzr have a
relative degree of at least two, and Gzu is observable.

Assumption 1 is considered mild, since mechanical motion
systems are typically described by double integrators with
additional dynamics, which naturally leads to a relative
degree of at least two. A consequence of Assumption 1 is
that Dl = 0 and ClBl = ClBr = 0.

Each HIGS element in the closed-loop system satisfies (1)
with kh = 1†. With multiple HIGS elements present in the
considered system, we reformulate each individual HIGS
element to have an appropriate definition in a MIMO motion
control context, and we adopt a different definition for
the gain mode. That is, the i-th HIGS element, for i ∈
{1, . . . ,m}, satisfies

Hi :


ẋh,i = ωh,izi, if (zi, żi, uh,i) ∈ F1,i,

ẋh,i = żi + λi(xh,i − zi),

if (zi, żi, uh,i) ∈ F2,i,

(9a)
(9b)

with the set definitions for F1,i and F2,i equivalent to
the definitions in (3), xh := [xh,1, . . . , xh,m]⊤, z :=
[z1, . . . , zm]⊤, and u := −xh. In addition, the HIGS fre-
quencies ωh,i are collected in a diagonal matrix Ωh, denoted
by Ωh := diag([ωh,1, . . . , ωh,m]⊤).

Observe the slightly different definition of gain mode
in (9b), compared to (1b). In (9b), we differentiate (1b) with
respect to time, and add an extra term λi(xh,i − zi), with
λi ∈ R \ {0}. This term is zero for (zi, żi, uh,i) ∈ F2,i, and
thus may be added to the gain-mode characteristics without
changing the dynamics. In particular, the term λ(xh,i − zi)
achieves avoiding the open-loop having one or more poles
on the imaginary axis when HIGS is in gain mode, which is
instrumental for the stability analysis presented in the next
section.

†Without loss of generality we set kh = 1 in HIGS. Because of
homogeneity of the dynamics, the gain is then incorporated into the gain of
T2.

Σ
−

G

H1(ωh,1)

Hm(ωh,m)

. . .

z
r

u

H̄(Ωh)

Fig. 3. Lur’e-type feedback interconnection of the MIMO HIGS-based
control system, with LTI part G and HIGS elements H̄.

For the purpose of constructing the frequency-domain
stability analysis tools, we include the linear integrator/gain
mode dynamics of each HIGS element Hi, according to (9),
in the linear part of the closed-loop system, and describe the
state-dependent switching between these gain and integrator
modes of the subsequent HIGS elements by an “on/off”
switch, as considered before in [16]. Specifically, we rewrite
the closed-loop representation of Fig. 3 as follows:

Σ:


ẋ = Ax+Bw +Brr,

y = Cx,

w = Φ(x)y,

(10a)
(10b)
(10c)

with x := [x⊤
l , x

⊤
h ]

⊤, and where the switching between
integrator mode and gain mode for each HIGS element
is governed by a state-dependent switching law Φ, on
which we now elaborate further. With the definition Λ :=
diag([λ1, . . . , λm]⊤), the system matrix A in (10) is given
by

A :=

[
Al Bl

ClAl − ΛCl Λ

]
. (11)

Moreover, the matrices B and C in (10) are given by

B :=
[
0m×n Im

]⊤
. (12a)

C :=
[
ΩhCl − ClAl + ΛCl −Λ

]
, (12b)

with Im the m × m identity matrix. The matrix Φ :=
diag([ϕ1, . . . , ϕm]⊤) contains on its diagonal the “on/off”-
type switches ϕi ∈ [0, 1] for each HIGS element Hi. In
particular, for ϕi = 0 the considered element is in gain mode,
and for ϕi = 1 in integrator mode, i.e.,

ϕi :=

{
1, if (zi, żi, uh,i) ∈ F1,i,

0, if (zi, żi, uh,i) ∈ F2,i.

(13a)
(13b)

Using the definition of HIGS in (9) (instead of the one in (1))
leads to the matrix A in (11) having nonzero eigenvalues.
This property is instrumental in the stability analysis of
Section IV below.

IV. FREQUENCY-DOMAIN STABILITY ANALYSIS

In this section, we present sufficient frequency-domain
conditions for input-to-state stability of closed-loop sys-
tem (10)-(13) according to the next definition.

Definition 1. The closed-loop system (10)-(13) is input-to-
state stable (ISS) if there exist a KL-function α and K-
function β such that, for any initial condition xl(0) ∈ Rn,
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and, for each i ∈ {1, . . . ,m}, xh,i(0) ∈ F1,i ∪F2,i, for any
bounded input signal r, all solutions to (10)-(13) satisfy

∥x(t)∥ ≤ α(∥x(0)∥, t) + β

(
sup

0≤τ≤t
∥r(τ)∥

)
, (14)

for all t ≥ 0.

Locally absolutely continuous solutions to (10)-(13) exist
for all t ≥ 0 by the developments in [6]. We are now ready
to pose our main theorem:

Theorem 1. Suppose that Assumption 1 and the following
conditions hold:

1) The matrix Q(jω)+Q(jω)∗ with Q(jω) := I+W (jω),
and where

W (jω) := ((V2(jω)− Λ)Gzu(jω)(I+

Gzu(jω))
−1 + Λ

)
V1(jω),

(15)

with V1(jω) = (jωI−Λ)−1, and V2(jω) = Ωh−jωI+
Λ, is positive definite for all ω ∈ R ∪ {∞}.

2) W is Hurwitz.
Then, the closed-loop system (10)-(13) is ISS.

Proof: see Appendix I.

The second condition in Theorem 1 amounts to a stable
closed loop when all HIGS elements reside in gain mode,
i.e., Φ = 0, which can be satisfied by design. Specifically, the
condition is satisfied as long as the system matrix A in (11)
is Hurwitz, which, in turn requires the description for HIGS
as in (9) with λi < 0. Indeed, it is easy to see that using
the description for HIGS in (1) would result in the matrix A
having at least one zero eigenvalue.

Both conditions in the theorem can be verified graphically
based on known frequency response functions, and measured
frequency response data of the plant P . To elaborate on
the origin of these conditions, let us consider the following
rationale. The input to the nonlinear logic Φ is denoted by
y = Cx = Ωhz − ż + Λ(z − xh), whereas its output is
given by w = Φ(x)y = Φ(x)Cx. Furthermore, note that
the dynamics of the HIGS elements xh can be expressed
as ẋh = Λxh + ż − Λz + w, which, in terms of a transfer
function representation can be written as

xh = z + V1(s)w, with V1(s) = (sI − Λ)−1. (16)

Recall that w = Φ(x)y and y = V2(s)z−Λxh with V2(s) =
Ωh− sI+Λ, and u = −xh. With these ingredients in place,
we see from Fig. 4 that the transfer function from w to y is
given by

W (s) := ((V2(s)− Λ)Gzu(s)(I+

Gzu(s))
−1 + Λ

)
V1(s).

(17)

Since Φ is a diagonal matrix for which the elements are
either zero or one, we can essentially apply the circle-
criterion [11] to guarantee stability of the closed-loop system
in Fig. 4. This amounts to verifying whether the transfer
function matrix W (s) + I is strictly positive real, which
exactly corresponds to the conditions in Theorem 1.

V1 Σ Gzu V2 Σ

Λ

Σ

Φ

W u = −xh

z

yw

Fig. 4. Lur’e-type feedback interconnection of system (10)-(13), with LTI
part W and switching logic Φ.

V. PERFORMANCE ANALYSIS

In this section, we experimentally illustrate the perfor-
mance benefits of the HIGS-based controller compared to
its linear counterpart, by applying it to a state-of-the-art
metrology inspection tool.

A. Metrology Inspection Tool

Modern microchips, fabricated through a photolitho-
graphic process [7], can contain up to 100 layers, which all
need to align on top of each other as accurately as possible.
Such an overlay property is monitored by a metrology
inspection machine, which contains a moving wafer stage
(on which we focus in this paper) that positions the wafer
under an optical sensor. The sensor measures overlay by
emitting light onto specific markers at several locations on
a wafer, and measures back the diffraction pattern. The
intensity difference of the scattered light pattern results in
a metric for overlay accuracy.

A large amount of markers, spread across the complete
wafer surface, are positioned under the sensor through a
sequence of point-to-point motion profiles of the wafer stage
from one marker to the next, where stringent requirements on
settling time are imposed to maximize machine throughput.
Once the stage has settled within an allowable positioning
error bound, the optical sensor can perform an overlay
measurement (i.e., acquirement), after which the stage moves
to the next marker. Control performance can, therefore, be
expressed in terms of overshoot and settling time.

A schematic representation of the wafer stage of a modern
metrology inspection machine is presented in Figure 5. The
stage consists of two perpendicular beams to which a wafer
carrier is attached. Actuators are located at either end of
the beams, and a mapping from the point-of-interest (i.e.,
the point on the wafer that lies under the optical sensor)
to actuator forces is employed, allowing us to control the
logical x and y directions of the point-of-interest. Although
the resulting MIMO plant is dominantly diagonal, cross-talk
is still evidently present due to the presence of low-frequency
stiffness effects and high-frequency dynamics, illustrated
by the relative gain array (see [14, Sec. 3.6]) in Fig. 6.
We take this multivariable aspect explicitly into account
in the (nonlinear) feedback controller design. Furthermore,
we emphasize that a suitable multi-loop SISO feedforward
controller is taken into account, comprising of mass feed-
forward (including delay compensation), and compliance
compensation.
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X-beam

Y-beam

POI x

y

wafer

Fig. 5. Schematic representation of a wafer stage of a metrology inspection
tool. The stage is driven by four actuators at either side of the X-beam and
Y-beam. The point-of-interest (POI) position is measured by interferometers.
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Fig. 6. Relative Gain Array of the MIMO wafer stage system, indicating
low and high-frequency cross-talk between the controlled directions.

B. Nonlinear controller design and stability assessment

The purpose of the experimental case study is to demon-
strate the (transient) performance improvements that can be
obtained by the HIGS-based controller, compared to its linear
counterpart. First, we design a diagonal linear PID-type
controller consisting of a PID filter, a second-order low-pass
filter, and a series of Notch filters, using an automated H∞
loopshaping procedure, explicitly taking into account any
cross-talk between the logical controlled directions x and
y. Trivially, for such linear controller design, closed-loop
system stability is achieved by evaluation of the generalized
Nyquist criterion.

Next, we replace the linear integrator in the PID filter
by the HIGS-based equivalent in (5), where we keep the
same controller parameter values as for the linear case. In
addition, we aim to tune the HIGS parameters in Ωh in
such a way that stability is guaranteed through satisfaction
of the conditions in Theorem 1, and such that it achieves sat-
isfactory time-domain performance. In particular, condition
1) of Theorem 1 is verified graphically by evaluating the
eigenvalues of Q(jω) +Q(jω)∗ in Fig. 7(a), which reveals
strictly positive eigenvalues for all ω, thereby satisfying the
condition. Condition 2) can be verified by evaluating the

characteristic loci of the open loop of W , given by

OW := (sI − Λ)Gzu
1

s
I − Λ

1

s
I. (18)

The characteristic loci of OW , where we select Λ = −20I ,
are presented in Fig. 7(b), from which we conclude that
W (jω) is Hurwitz since there are no encirclements of the
point (−1, 0).

Finally, in order to achieve a correct switching behavior
of the HIGS element, we employ pre- and post filtering of
the HIGS elements to avoid loop gain loss (cf. Remark 2),
see [8].
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Fig. 7. Graphical verification of the stability conditions of Theorem 1.

C. Comparative performance analysis
Consider Fig. 8, which presents the positioning errors for a

series of point-to-point wafer stage moves in combined x and
y direction. A scaled acceleration reference is visualized, the
end of which is indicated by “move end”. When the setpoint
has finished, the stage is allowed 5ms settling time before a
measurement of a marker takes place (indicated by “settling
end”). Such a measurement (or acquirement) may take up
to 22.5ms (indicated by “acquirement end”), so that a high
accuracy is required within the time interval [0.005, 0.0275]
s. The required accuracy is indicated by the horizontal black
dashed lines.

Observe that, for the linear controller, the maximum
allowable settling time is exceeded due to overshooting
the setpoint. Instead, the HIGS-based controller significantly
reduces overshoot in both logical directions due to the
phase advantages of the HIGS integrator, thereby achieving a
significant settling time reduction. Moreover, such overshoot
reduction leads to a reduced peak-to-peak error after ”settling
end” by a factor 2, resulting in improved measurement
quality.

For the considered use case, the HIGS parameters ωh,i (for
both the x and y controller) are tuned such that settling time
is minimized and accuracy is achieved during acquirement.
Although the HIGS controller clearly realizes this goal, a
larger error during deceleration can be observed due to some
remaining loop gain loss caused by the interplay of the pre-
and post filters [8] and the relatively low value for ωh,i.
A possible solution to reduce such gain loss, and improve
performance even further, is to increase the HIGS parameters
ωh,i.
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Fig. 8. Measured position errors after a typical combined x-y wafer stage
move for the linear controller (black), and a HIGS-based controller (red).

VI. CONCLUSION

We have presented frequency-domain stability conditions
for nonlinear multivariable control systems with HIGS-
based integrators. The stability conditions can be checked
graphically, which is illustrated by a HIGS-based controller
design for an industrial metrology inspection machine. The
performance benefits of the HIGS-based controller is ex-
perimentally validated. Future work encompasses reduction
of conservatism and extension of the stability tools towards
more generic HIGS-based controller designs.

APPENDIX I: PROOF OF THEOREM 1

The conditions of the theorem amount to the transfer
function Q(s) := I + W (s) being strictly positive real.
Under the hypothesis stated in the theorem, by virtue of the
Kalman-Yakubovich-Popov Lemma [11, Lemma 6.3], there
exists P = P⊤ > 0, L, and ε > 0 such that

A⊤P + PA = −L⊤L− εP, (19a)

PB = −C⊤ +
√
2L⊤. (19b)

Consider the quadratic candiate ISS-Lyapunov function V =
x⊤Px, for which V (x) > 0 for all x ̸= 0. Its time derivative
along solutions of (10)-(13) is given by

V̇ = −x⊤L⊤Lx− εV − 2x⊤
(
C⊤ −

√
2L⊤

)
w

+ 2x⊤PBrr

= −x⊤L⊤Lx− εV − 2 (Cx− w)
⊤
w − 2w⊤w

+ 2
√
2x⊤L⊤w + 2x⊤PBrr

= −
(
Lx−

√
2w

)⊤ (
Lx−

√
2w

)
− 2 (Cx

−w)
⊤
w − εV + 2x⊤PBrr

≤ −εV = −2 (Cx− w)
⊤
w + 2x⊤PBrr

= −εV − 2x⊤C⊤w + 2w⊤w + 2x⊤PBrr.

Using the equalities in (19), w = Φ(x)y, and y = Cx, V̇
yields

V̇ = −εV − 2x⊤C⊤Φ(x)Cx

+ 2x⊤C⊤Φ(x)Φ(x)Cx+ 2x⊤PBrr

= −εV + 2x⊤PBrr,

where we have used the identity Φ(x)Φ(x) = Φ(x) ≥ 0. Let
λ(P ) and λ(P ) denote the largest and smallest eigenvalue
of P , respectively. Then, an upper bound for V̇ is given by

V̇ ≤ −ελ(P )∥x∥2 + 2∥PBr∥∥x∥∥r∥
≤ µ∥x∥2 + γ∥r∥2,

with µ := ελ(P )− δ, γ :=
√

λ(P )
λ(P )

2∥PBr∥
δ , and δ such that

0 < δ < ελ(P ).
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