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Abstract— We consider the problem of identifying linear time
invariant systems using regularization schemes, and address
the fact that generally the mean value of the corresponding
parameter prior is set to zero. We thus consider the scenario
where it is beneficial to use a prior with nonzero-mean, where
this mean moreover depends on some hyperparameters. We
show how to construct such priors and do hyperparameter
tuning by marginal likelihood, and since a parameter dependent
mean may slow down optimization, we also derive an efficient
and stable way of treating them, leading to an overall scheme
whose leading order numerical complexity is the same as in the
case where the prior mean is zero. The proposed method thus
allows including new types of external information in the prior,
and we exemplify how this extension can improve the existing
regularization techniques.

I. INTRODUCTION

This article explores ways of making established methods
from regularized system identification utilize more types of
information via data fusion (making them more Bayesian).
A consequence of this will sometimes be that the prior
mean has a mean dependent on some hyperparameters, that
should be tuned, and we develop a way of doing so more
efficiently than the naive approach. We are motivated by
the fact that often there exists expert knowledge (that goes
beyond only parameter correlations) that is not utilized in
data-driven modeling, which the Bayesian methodology can
incorporate [2]. An example of such expert knowledge is a
(simple) physics based model of the observed system. Similar
ideas are presented in [11], [14], though the perspective on
regularization and hyperparameters here shines a new light
on the topic.

Classical system identification relies on adjusting the
model complexity through selecting the order of the dy-
namical model [17], i.e. the number of parameters and the
model structure, alternating between parameter estimation
and evaluating each model order and structure. The classical
methods come with problems such as identifiability, persis-
tence of excitation and ill-posedness, that is circumvented
when using a weakly informative prior on the model [22].
The weakly informative prior regularizes the model, in the
sense that the posterior inference is put on a reasonable
level [12] (reasonable considering the evidence and the prior
knowledge the prior reflects). Then the model complexity
selection can be made in a continuous fashion, via tuning the
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regularization parameters. The Bayesian interpretation of this
regularization approach is well known [21], [22]. A specific
regularization penalty is equivalent to setting a specific prior
p(θ) on the model parameters in the parametric Bayesian
framework. E.g., L2 regularization penalties (such as ridge
regression) translate well into Gaussian priors.

The main benefit of the simplest explicit regularization
method, ridge regression, is that it can yield a reasonable
posterior via selecting the regularization parameter in an
opportune way (more on this below). More informed ker-
nel design allows for more informative priors, embedding
information on stability, smoothness and frequency response
of the system [19] (with e.g. DI, TC, DC kernels). This is
briefly why regularized methods have succeeded so well,
and gained much attention in recent years [22]. These
regularization methods introduce prior knowledge only via
parameter correlations, i.e. the second moment of the model
parameters. In this article we pursue methods that extend this,
that construct and utilize more informative priors, being able
to embed more or different information about the system
(when available), in that they also carry information on
the first moment of the model parameters (denoted θ). The
models are arguably then more Bayesian.

Embedding more and different information into the prior
often yields models that are more robust [26]. However, such
information is often incomplete or uncertain, raising a need
for hyperparameters. Empirical Bayes approaches that tune
hyperparameters in the prior are indeed meaningful given
that the prior information is meaningfully encoded [10]. The
empirical Bayes procedure in the present article of selecting
point estimates for the hyperparameters η is well-known and
standard in regularized system identification; maximizing the
output likelihood over η, given the prior p(θ) only. Maxi-
mizing this by evaluating the marginal likelihood function
directly has some known issues; it is prone to numerical
inaccuracies and has large computational complexity. We
adapt two effective algorithms that amend these issues to the
case where the parameter prior can have a nonzero mean.

Hyperparameters can of course alternatively be tuned
based on cross-validation, though this may be criticized
for e.g. tending to undersmooth [13] or simply for being
a trial-and-error approach on a discretized set. Optimizing
rather the generalized cross-validation (GCV) error function
is another alternative to marginal likelihood [20], though
a version (particularly an efficient one) for nonzero prior
means is unknown. GCV is furthermore only approximate
for regularizers other than ridge.

Maximizing the marginal likelihood with a nonzero prior
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mean has briefly been mentioned in [5], [8], though not
one that depends on hyperparameters, but rather a fixed one
obtained from a baseline model. This difference is significant
when it comes to efficient tuning of hyperparameters in the
prior. It is briefly pointed out in [22] how the mean may
depend on hyperparameters, though doing empirical Bayes
efficiently in that scenario lacks. In Section III we argue and
exemplify how regularized identification problems may end
up with a prior mean that depends on hyperparameters.

This work extends the main findings of Chen and Ljung in
[6], in its turn a significant improvement of [4]. This work is
also based on the manuscript and the derivations of the so-
called Algorithm 2 in [6]. Evaluating the marginal likelihood
can be costly and ill-conditioned when approached naively,
and the Algorithm 2 partly amends this issue, though only
for priors p(θ) with zero mean (or equivalently, constant
wrt. η). Further improvements to Algorithm 2 can be made
whenever the inverse of the prior covariance matrix is
available (meaning that computing it does not require matrix
inversion), as shown by [3] and their Algorithm 1. The main
findings in our article is an efficient algorithm for including
also a mean dependent on hyperparameters, and is thus a
generalization of Algorithm 1 (when available) and Algorithm
2, as the procedures are adapted to also the case of nonzero
prior means, derived in Section IV.

The application of the new algorithm is illustrated by
simulation examples in Section V. As an example, a prior
on the DC gain of the system can be embedded, though it
requires tuning of a prior with nonzero mean that depends
on additional hyperparameters. This metric is a decent indi-
cator of out-of-sample performance of the model using the
posterior mean, and also a meaningful metric considering
that this Bayesian approach seeks to include properties of
the true system to estimate it better. The tests indicate that
the proposed method is able to improve modeling not only
in theory but also in practice.

Together, these examples illustrate how regularized system
identification can combine more general sources of prior
information, with automatic hyperparameter tuning, which
can lead to models that better describe the system to be
identified and/or yield more robust modeling in scenarios
with poorer data quality or adaptive models.

II. PROBLEM DEFINITION AND STATEMENT OF
CONTRIBUTIONS

We consider the standard case of a parameter affine model
structure (corresponding to many linear model structures)

y = Xθ + e , (1)

for modeling a dynamical system from measured input-
output data. The regressors X ∈ Rn×k are assumed to be
known and deterministic, the output y ∈ Rn to be thus
linear in the (unknown) parameters θ ∈ Rk, the parame-
ters θ to follow some prior distribution discussed in more
details below. The overall goal is to estimate the posterior
distribution of θ. The noise e is for simplicity assumed i.i.d.
as e ∼ N(0, σ2In) with variance σ2 assumed to be known

or to have been estimated from the data, e.g., by means of
some low-bias FIR or ARX models [23], before this posterior
distribution estimation step.

As for the prior available information on θ, we consider
a parameterized Gaussian prior of the form

p
(
θ; η
)
∼ N

(
m(η), V (η)

)
(2)

with the functions m(η) and V (η) structurally known, but
whose hyperparameter vector η is unknown.

For computing the posterior, the derivations implicitly con-
sider the fact that for a given point value of the hyperparam-
eters η̂ one may select the specific prior moments m̂ = m(η̂)
and V̂ = V (η̂), which is a commonly applied simplification
for such hierarchical models [18]. When observing some
measured data {X, y}, assuming this dataset to follow (1)
means assuming a specific likelihood. By applying the Bayes
rule, this likelihood and the prior in (2) may be combined
giving the posterior parameter distribution

p(θ|y) ∼ N (m∗, V ∗) (3a)

V ∗ =
(
V̂ −1 +XTX/σ2

)−1

(3b)

m∗ = V ∗
(
XT y/σ2 + V̂ −1m̂

)
. (3c)

Generally marginalizing this distribution over θ may require
some calculus efforts; though in this linear-Gaussian case
with deterministic X the marginal distribution of y given
the prior (2) follows algebraically as

p(y|η) ∼ N
(
Xm(η), XV (η)XT + σ2I

)
. (4)

The hyperparameter maximizing the marginal likelihood (4)
follows thus as

η∗ = argmax
η

p(y|η)

= argmin
η

(y −Xm)T
(
XVXT + σ2I

)−1
(y −Xm)

+ log det
(
XVXT + σ2In

)
, (5)

where for notational brevity we assume the dependence of
m and V on η as tacit. If m did not depend on η, then
one could eliminate Xm from (5) [5], and this marginal
likelihood would be identical to that considered in [6], which
is though not the case in this work.

As for numerically finding η∗, the simplest approach
would be to optimize this cost function, but evaluating (5)
as it is has leading order of complexity O(n3). This can
be computationally demanding when n is large. Typically
in system identification n ≫ k [6] (though in machine
learning it is at times the other way around). In the outlined
framework, our main goal is thus to improve this naive and
expensive approach of evaluating the marginal likelihood. To
the best of our knowledge considering the body of available
literature, m(η) = 0 is the typical assumption, while having
m(η) ̸= 0 in (2) is a novel contribution. In the remainder of
the paper we thus:

1) motivate in Section III why the case m(η) ̸= 0 is of
practical relevance;
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2) derive in Section IV an algebraically equivalent imple-
mentation to (5) with favorable numerical properties;

3) assess in Section V the performance of the proposed
algorithm from numerical perspectives.

III. MOTIVATING THE CASE m(η) ̸= 0

We now motivate the practical relevance of the case
m(η) ̸= 0. It may arise when fusing different apriori infor-
mation items on θ into a single distribution p(θ). Multiple
information items (in addition to measurements) are often
available for physical modeling [25], and can benefit from
being treated as uncertain, as acknowledged by Bayesian
methods. In a sense, the following example is about making
flexible gray-box models, with a Bayesian approach, making
the real examples of application numerous [27]. We though
keep the example generic for clarity and brevity.

Assume that two different sources of prior information
on θ (e.g., by means of efforts translating some expert
knowledge into parametric forms as in [15]) are encoded
in two distributions along some subspace of Rk, i.e., assume
that θ follows

p1
(
Aθ
)
∼ N

(
w,Σ1(η)

)
p2
(
Bθ
)
∼ N

(
0,Σ2(η)

)
(6)

where (Aθ) ∈ Ra, (Bθ) ∈ Rb, A and B are deterministic,
w ∈ Ra, and Σ1(η) & Σ2(η) are positive definite matrices
for any hyperparameter vector η of practical meaning (that
implicitly means that throughout the article we assume that
admissible values for η are only those that render any
covariance matrices positive definite).

Independently on whether w is fully known (fixed) or also
parametrized in η, we show now that fusing the two priors
p1 and p2 into one leads to a novel prior whose mean is
known only partially, i.e. depends on η.

Consider then either one of the two following situations:
1) Aθ and Bθ are jointly Gaussian with a covariance Σ12

either fully known or known through Σ12 = Σ12(η), or 2)
there is no available information on the joint distribution of
Aθ and Bθ.

As for case 1), the assumptions yield that

p

((
A
B

)
θ

)
∼ N

((
w
0

)
,Σ(η)

)
,

Σ(η) :=

(
Σ1 Σ12

ΣT
12 Σ2

)
.

Defining the precision matrix W (η)−1 :=(
AT , BT

)
Σ(η)−1

(
AT , BT

)T
, and assuming that it is

invertible, the distribution above implies that

p(θ) ∝ N (µ(η),W (η)) ,

µ(η) = W (η)
(
AT , BT

)
Σ(η)−1

(
w
0

)
.

As for case 2), a statistically meaningful way to fuse the
information items p1(·) and p2(·) in (6) without explicitly
specifying their dependencies is the one proposed by [15].
Here, given the prior knowledge, we want to construct a prior
p(θ) that best represents the real distribution of the model

parameters, meaning that one aims at obtaining the best
projection of the real distribution within the set of possible
models implicitly defined by choosing a specific model
structure [1]. The results from [15] show that a weighted
product of p1 and p2 minimizes the expected Kullback-
Liebler distance to this best possible prior. Following this
principle and given the prior information p1, p2, the com-
bined prior on θ would follow as

p
(
θ|p1, p2

)
∝ pα1

1 · pα2
2 (7)

for opportune fixed weights1 α1 and α2 that for simplicity of
notation may here be assumed as 1. Note that the parameters
αi here simply scale the second moments of the priors
pi, thus we have in (7) a product of two Gaussians, and
p(θ|p1, p2) is rendered Gaussian. Computing p(θ) in this way
then reduces to case 1) above though with Σ12 = 0, thus

W (η)−1 = ATΣ−1
1 (η)A+BTΣ−1

2 (η)B ,

and assuming that W (η)−1 is full rank, it follows that

p
(
θ|p1, p2

)
∼ N

(
W (η)ATΣ−1

1 w,W (η)
)
.

The mean of this prior distribution on θ clearly depends on
the hyperparameters that define Σ1(η) and Σ2(η).

In other words, in both cases 1) and 2) above, fusing an
information source with nonzero first moment with some
other hyperparametrized priors leads to a fused Gaussian
prior whose mean is nonzero and hyperparametrized too.

A. Improper priors should be extended to proper ones

We illustrate here by a simple example why we sometimes
may encounter improper priors that need to be extended to
proper ones, and how this extension leads to prior means that
depend on the hyperparameters as in the scenario above.

Example: Consider a stable linear time invariant SISO
system that shall be modeled as an FIR system, for which we
want to estimate its parameters (impulse response) θ, and for
which we know approximately its steady state output value
ȳ for a given constant input ū. Such knowledge on a steady
state pair (ū, ȳ) about a system is commonly exemplified
as available prior knowledge [11], [20], [28]. This prior
information connects with the estimand θ via the relationship

ȳ = ū(

k∑
i=1

θi) = ū1 · θ (8)

with 1 the (row)-vector of ones whose length is equal to the
one of the vector θ, shall be treated as uncertain. One may
then for simplicity impose a zero-mean Gaussian uncertainty
on this relation, i.e., assume (ȳ − ū1 · θ) ∼ N(0, c), imply-
ing that there is some unknown additive error to (8), with
some variance denoted c.

1We note that selecting these weights as proposed in [15] corresponds
actually to consider them as hyperparameters, and estimating them via an
empirical Bayes approach, and can even be included in η and tuned as
in Section IV. We send the interested reader back to that paper for more
information, and assume α1 and α2 in the remainder of this section as
known, for simplicity.
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As the previous example illustrates, prior information may
be translated in a distribution on a linear combination of
θ, i.e., of the form p1(Aθ) ∼ N(w, c) (continuing with
the example above, here w = ȳ, A = ū1 ∈ R1×p and
c is the variance of this random variable). The matrix A
may thus be singular, and actually this is always the case
for any nontrivial dynamical model where the information
is provided only on its steady state behavior. A singular A
leads then to a precision matrix W−1 that is not invertible
(to see this one may again take the example above, selecting
p(θ) = p1(Aθ)), and thus to a specification of a prior p(θ)
that is not a proper probability distribution. An improper
prior on θ gives then an improper prior distribution for y, for
which the marginal likelihood does not exist since it can not
be normalized. It is therefore not possible to select a value
for η through maximizing the marginal likelihood. Hence, in
order to use such a method of selecting the hyperparameters,
it is necessary to define some additional prior information p2
that, in addition to p1, makes the overall prior p(θ) proper.
This can be accomplished as indicated above with using
Σ2 equal to, e.g., the TC or DC kernel [7] (if such prior
knowledge exists) or even simply equal to λI (corresponding
to selecting a ridge regression prior covariance, a prior that
carries little information about the parameter correlations
since embedding the belief that the parameters θi are i.i.d.).
Equivalently, one may say that p1 is added to extend p2.

Remark 1 As explained, the maximum marginal likelihood
is not available when the prior is improper, so other means
of selecting the hyperparameters must be followed. Improper
priors may yield proper posteriors, though while performing
inference there are multiple pitfalls and paradoxes one may
encounter with improper priors [9], [16], and should for these
(and other) reasons generally be avoided.

IV. IMPROVING THE COST FOR NUMERICALLY
EVALUATING THE MARGINAL LIKELIHOOD p(y|η)

We here show how it is possible to solve the marginal
likelihood maximization problem starting from proper priors
with nonzero means in a numerically more efficient way
when n ≫ k. In doing this we revisit and adapt some
algebraic manipulations that are used in similar contexts to
make the evaluation of similar cost functions so to have a
leading order of O(k3) instead of O(n3) [24]. The matrix
inversion lemma and Sylvester’s determinant theorem are
applied in ways that are essentially equivalent to those
presented in [3], [4] and [6], and will be included for ease
of readability and reproducibility of the results. We also use
properties of QR decompositions, see [29], analogously to
the application in [6]. We note again that the contribution in
this section is generalizing the algorithm from [6] to allowing
a nonzero Xm in (5), and where the generalized algorithm
retains the order of complexity.

We assume that rank(X, y) = k+1, i.e. that y is not in the
span of X . This assumption is present in all the mentioned
related works in order to improve the efficiency of evaluating
the marginal likelihood. If the rank is not full, it means that

at least one θ from (1) is able to reproduce the output y
perfectly, which is rarely the case, due to noise, unmodeled
effects and a desire to obtain model structures that are ”as
simple as appropriate”. If the assumptions from (1) indeed
hold for X, y then the rank is almost surely full. Note that
whether σ2 is treated as unknown or not does not matter for
the derivation of the objective functions below.

Assume then that the inverse of the prior covariance
matrix is available2 meaning that computing V −1 does not
require matrix inversion, as it happens, e.g., for the DC
and TC kernels, or in the case described in Section III.
We start then from considering that the condition number
of V may be very large for many useful kernels, especially
those that encourage stability, and that this potentially leads
to numerical instabilities. To circumvent this one may then
exploit the knowledge of a closed form expression of V −1,
and its Cholesky decomposition V −1 = DDT .

Our first goal is thus to rewrite (5) in terms of V −1 instead
of V . To do so we may apply the determinant theorem to
the log det term in the right hand side of (5), resulting in

log det
(
σ2In(In +XVXTσ−2)

)
= n log σ2

+ log det(Ip + V XTXσ−2)

= (n− p) log σ2 + log detV + log det(σ2V −1 +XTX).
(9)

We may also apply the matrix inversion lemma to the other
term in (5) involving V , to obtain(

XVXT + σ2I
)−1

=

Inσ
−2 −X

(
σ2V −1 +XTX

)−1
XTσ−2 . (10)

By means of these two rewritings, the cost function (5) is
transformed into something containing the term(

σ2V −1 +XTX
)−1

XT (y −Xm) . (11)

As stated in [6], the computation of this term is prone to
numerical errors if approached naively, and this may corrupt
the accuracy of evaluating the cost function (5), which is
crucial. This in practice follows from the fact that many
popular prior kernels (e.g. TC, DC, SS) have a covariance
matrix V which is numerically ill-conditioned due to very
small matrix entries, or simply because XTX itself is ill-
conditioned. Therefore, solving (11) with the more accurate
QR decomposition is highly useful to improve and stabilize
the algorithm. Our second goal is thus to use the fact that
V −1 = DDT to improve such numerical properties.

Firstly, one should realize that (11) is the solution to

min
x

∥∥∥∥( X
σDT

)
x−

(
y −Xm

0

)∥∥∥∥2 , (12)

appointing us to consider the thin QR decomposition [29] of(
X y −Xm

σDT 0

)
= QR ∈ R2n×(p+1) (13)

2We recall that when V −1 is not easily available one is in a situation
as in [6]. In this case one may rather rely on the Cholesky decomposition
V = LLT . In this case though the condition number of V may limit the
region for which η leads to numerically stable solutions.
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which is defined s.t. Q has dimension 2n × (p + 1) and R
has dimension (p + 1) × (p + 1). By construction Q will
moreover be orthogonal (orthogonal unit vector columns).

Since, by assumption, y is not in the span of X , then
also y − Xm(η) is not in the span of X for any η. Thus,
rank(X, y −Xm(η)) = p+ 1 for any η. Then the left hand
side matrix in (13) has full column rank. Theorem 5.2.2 of
[29] then states that Q,R above is unique and the diagonal
of R has positive entries. Then in the thin QR decomposition
(13) we define R1 ∈ Rp×p, R2 ∈ Rp, r ∈ R s.t.

R =

(
R1 R2

0 r

)
. (14)

Using the fact that QTQ = In+1 we get that

σV −1 +XTX = RT
1 R1 (15a)

XT (y −Xm) = RT
1 R2 (15b)

(y −Xm)T (y −Xm) = RT
2 R2 + r2 (15c)

which combined with (10) simplifies the evaluation of the
first term in (5) to

(y −Xm)T (Inσ
2 +XVXT )−1(y −Xm) =

(RT
2 R2 + r2)/σ2 −RT

2 R1(R
T
1 R1)

−1RT
1 R2/σ

2

= r2/σ2 . (16)

Combining this with (9) yields that the cost function (5) in
total can be rewritten to

r2/σ2 + (n− p) log σ2 + 2 log detR1 . (17)

A. Further improvements exploiting QR factorizations

It turns out that the particular structure of the problem
admits a way to speed up the QR factorization (13), which
can be expensive, reducing it from dimension 2n×(p+1) to
2p×(p+1). This fact and the further improvements contained
here have origin in [6], though generalized to m(η) ̸= 0.

Consider the thin QR factorization

[X, y] = Qd[Rd1, Rd2] . (18)

Furthermore, consider the QR factorization of(
Rd1 Rd2 −Rd1m
σDT 0

)
= QcRc (19)

This is now a QR factorization of size 2p × (p + 1). Then
from combining (13), (18) and (19) we have that(

Qd 0
0 Ip

)(
Rd1 Rd2 −Rd1m
σDT 0

)
=

(
X y −Xm

σDT 0

)
=

(
Qd 0
0 Ip

)
QcRc = QR (20)

By assumptions above giving uniqueness of the thin QR
decomposition we have that R = Rc. Therefore, it suffices
to solve (19) to obtain R. Therefore, computing Rd1, Rd2

beforehand lets us solve a smaller problem (when k < n).
To evaluate the cost function one should (given Rd1, Rd2);

first calculate m(η), V (η)−1, before calculating D, then
calculate R = Rc from (19). Evaluation of the marginal

likelihood is obtained as in (17). This approach with m
being nonzero has only marginally higher computational
complexity compared to m = 0, and same leading order
of complexity. The generalization of the previous algorithms
is seen in step (19), where the entry Rd2 − Rd1m has
replaced Rd2. Therefore, only this step of the procedure has
a computational load that is only linearly larger than the case
when m = 0. The order of complexity is thus the same.

B. Computing the posterior

The insights about the QR factorization above yields an
efficient way of computing the posterior parameter variance
V ∗ and mean m∗. For some fixed η, using (3) and (15), we
get that the posterior variance is

V ∗ = σ2(RT
1 R1)

−1 ,

and that the posterior mean is

m∗ = V ∗ (XT y/σ2 + V −1m
)

=
(
RT

1 R1

)−1 (
XT y ±XTXm+ σ2V −1m

)
=
(
RT

1 R1

)−1
XT (y −Xm)

+
(
RT

1 R1

)−1
(XTX + σ2V −1)m

= (R1)
−1R2 +m ,

For prior mean m = 0 all the above equations reduce
to the procedures from Algorithm 1 [3] and (with minor
modifications) Algorithm 2 [6].

Remark 2 The cost of evaluating the marginal likelihood
can also be further improved by using the specific structure
that many prior covariance matrices will have, also the ones
here, though this is out of the scope of this article. See [3]
for examples (there specifically for the DC kernel).

V. SIMULATION EXAMPLES

We illustrate now how the above algorithm and ideas can
be used to incorporate knowledge about the steady state for
system identification purposes. The purpose of the simula-
tions below is to show that, when the specific assumptions
we posed above holds, it follows that • the new, extended
empirical Bayes method proposed in this manuscript is a
stable and efficient tool for selecting hyperparameters, •
the proposed way to include steady state information is
meaningful for the purpose of modeling dynamical systems,
and • one can expect some improvement in fitting impulse
responses for systems like those simulated here w.r.t. the
algorithms cited in the introduction. As these works, we use
the impulse response fit as a common metric for assessing
the precision of the posterior mean m∗ as an estimate of the
true impulse response θ∗. Below we thus use the index

fit = 100 ·

(
1−

√∑
i(m

∗
i − θ∗i )

2√∑
i(θ

∗
i )

2

)
. (21)

The simulations below assume then that we want to
estimate an FIR model by means of data collected from
a stable dynamical LTI system, and that some steady state
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estimate (ū, ȳ) is available. The example of Section III-A
shows how to define a p1 type of prior information, while
some p2 (see Section III) is needed since the steady state
information is not enough for forming a proper prior.

For p1 we let c denote the scalar variance and treat it
as a hyperparameter to be tuned. For the distribution p2 we
choose the TC kernel, i.e.

p2 ∼ N(0,K) (22)

Ki,j = λ · αmax(i,j)

where λ ∈ R+, α ∈ (0, 1) are hyperparameters to be tuned,
in addition to c. Together this gives a proper prior of the
form (7), specifically

p(θ|p1, p2) ∼ N(Σ1T c−1ūȳ , Σ) (23)

Σ :=
(
ū2c−11T1+K

)−1

Note that 1T1 is simply a square matrix with all entries
1. We then refer to modeling the system (23) with the
proposed empirical Bayes procedure as Method 1, with
hyperparameters λ, α, c.

Method 1 shall then be compared against Method 2, i.e. a
similar approach that excludes the information p1 from the
prior, i.e. only using the TC kernel p2. Method 2 corresponds
thus to the case where the variance c is c → ∞. It thus only
has two hyperparameters, λ, α.

Remark 3 As a disclaimer, note that the degree of improve-
ment from Method 2 to Method 1 depends on the application;
the actual system, number of inputs and outputs, model
structure and data quality, will all influence the potential the
extended prior has to improve (or disturb) the model. The
goal is not to determine a specific degree of improvement,
but rather see that the generalized algorithm works and that
this way of including prior knowledge is meaningful. For
some identification scenarios the steady state information
will not be too valuable to improve the impulse response
fit. Moreover, in other specific scenarios, applying other
modeling approaches may also be more effective. We focus
here on assessing the effect of excluding p1 from the prior.

A. Implementation and evaluation aspects

We do 1000 iterations of the following simulation: Step 1)
randomly construct a stable, discrete-time, minimum phase,
linear system of order 14 with damping ratio in the range
(0.2, 1). Step 2) excite the system with a discrete white noise
input of length 200. Step 3) add Gaussian white noise to the
simulated output so to reach a SNR of 7. Step 4) compute
the DC gain of the sampled system ȳ, corresponding to
the constant input ū = 1. Step 5) maximize the marginal
likelihood as described in the previous section, computing
η∗ that optimizes (5). Step 6) estimate the system with an
FIR model of length k = 70 with η∗ and (3).

The marginal likelihood maximization is done using stan-
dard, derivative-free optimization packages from the scipy
1.11.3 Python package, and involves evaluating the marginal
likelihood many times for each maximization. With k = 70

and n = 200 the here proposed way of evaluating the
marginal likelihood is over 20 times faster than the more
direct approach of (4). In many applications this factor will
be much larger, and for MIMO systems the difference in
computing time will be even more pronounced.

We compare Method 1 and Method 2 with the data as
simulated above, with the following three tests:

Test 1:perform the steps above using the correct DC values
of ū, ȳ,

Test 2:perform the same steps using though, instead of the
correct DC value for ȳ, its value amplified by 10%,

Test 3:insert in step 5 an oracle that determines that op-
timal hyperparameters for maximizing the impulse
response fit of the posterior mean, i.e. using (3) to
maximize (21) (not implementable in practice).

The different methods will lead to different α, λ to define
the TC kernel that shall be used. These differences in these
values are then indicative of the different robustness prop-
erties of the two methods. For comparing the two methods
we also compute the mean difference between the impulse
response fits of Method 1 and Method 2, along with the
standard deviation of this difference, denoted by M1 - M2.

B. Numerical results

The results of the three tests are summarized in Table I,
presenting the mean fit and standard deviation of this mean
over the 1000 simulated systems and signals, for Method 1,
Method 2 and the difference M1 - M2.

Mean fit (Std. dev. of fit)
Test 1

Method 1 85.44 (0.218)
Method 2 84.53 (0.315)
M1 - M2 0.92 (0.216)

Test 2
Method 1 84.64 (0.334)
Method 2 84.25 (0.343)
M1 - M2 0.39 (0.241)

Test 3
Method 1 88.51 (0.410)
Method 2 88.22 (0.421)
M1 - M2 0.29 (0.134)

TABLE I
COMPARISON OF THE FIT LEVELS OBTAINABLE USING METHOD 1 (THE

PROPOSED ONE) AND METHOD 2 (FOR WHICH p1 IS EXCLUDED FROM

THE PRIOR) ON THE DIFFERENT TESTS, I.E. TEST 1 (USING THE

CORRECT DC VALUES), TEST 2 (USING PERTURBED VALUES FOR THE

DC GAIN) AND TEST 3 (USING AN ORACLE).

We note that there exist simulations where Method 2
performs seemingly better than Method 1 (also for Test 3).
E.g., for oscillatory impulse responses the DC gain is less
descriptive of the system properties, and so in practice the
information from p1 can then disturb the optimization. A
more thorough analytical explanation of this will be pursued
in future works. On average though Method 1 obtains a small
improvement over Method 2, that is statistically significant
for various tests, and that certify the usefulness of using
p1 as a source of information in the prior. Furthermore, we
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can note that the advantage of Method 1 generally increases
with poorer data quality (changing the quantity, noise and
excitation), something that is expected since Method 1 has
broader regularization possibilities.

From inspecting the numerical properties of the optimiza-
tion schemes it is clear that the Method 1 comes with a cost
function that requires more iterations to arrive at a similar
optimization level than for Method 2, which can be due to
the extra hyperparameter c and/or the fact that it becomes
more nonlinear from the introduction of the extra penalty,
and is therefore expected. These extra evaluations are also
observed in the tests. Using Jacobians and/or Hessians in the
optimization may thus turn out to be especially important
when embedding multiple sources of prior information like
done here, and investigating this is left for future works. This
though seems like an insignificant price to pay in order to
include more prior knowledge and improve the model.

The tests confirm the intuition for which including ac-
curate steady state information ū, ȳ maximizes the increase
of performance of Method 1. Indeed as seen in test 2),
perturbing ȳ makes the difference between the methods less
pronounced. We also observe (not included here) that when
perturbing ȳ by as much as 20% the difference M1 - M2 is
still positive but with a standard deviation that can not imply
any statistical significance. We note again that the results
are specific to the examples simulated here. Test 3) indicates
that optimally the advantage of Method 1 over Method 2
is indeed moderate but significant, meaning that including
the information in p1 indeed improves the modeling. Test 3)
indicates moreover that the relative improvements seen from
Test 1) and Test 2) are reasonable.

VI. CONCLUSION

Tuning of hyperparameters in regularization-based models
is crucial and can be a major crux, either in terms of
numerical complexity or instability due to ill-conditioned
matrices. We have presented an extended algorithm that
allows for efficient marginal likelihood maximization wrt.
hyperparameters in priors where the prior mean depends on
the hyperparameters themselves. The new method allows to
extend existing regularization based methods to the non-null
mean case while retaining the computational complexity and
stability of the whole algorithmic structure. The capabilities
of the new method were illustrated on simulation examples,
showing that including prior information on the steady state
in this way can be beneficial. The algorithm finds meaningful
values for the hyperparameters, and the resulting models
generally obtain an improved impulse response fit.

As future works we wish to test out the algorithm on real-
life examples to see if other system models with nonzero
prior mean can yield good posterior estimates. This empirical
Bayes optimization will likely benefit particularly from using
the Jacobian and Hessian of the cost function. Lastly, we
wish to incorporate more extensive prior information, using
the empirical Bayes approach presented here.
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[1] L. Berec and M. Kárný. Identification of reality in bayesian context.
In Computer Intensive Methods in Control and Signal Processing: The
Curse of Dimensionality. Birkhäuser Boston, 1997.
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