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Abstract— In this paper, we consider a discrete-time imple-
mentation of prescribed performance control (PPC), focusing
on its robustness and operability. Specifically, given a prescribed
performance controller that guarantees prescribed performance
attributes, in terms of maximum overshoot, minimum conver-
gence rate and maximum steady-state error, when operating in
continuous-time, the task is to derive sufficient conditions on
the maximum allowable transmission interval to enable PPC
to preserve its performance characteristics. Interestingly, the
maximum allowable transmission interval is directly related
with the performance achieved at steady-state. Simulations
clarify and verify the theoretical findings.

I. INTRODUCTION

In recent years, the continuous development of communi-
cation networks together with the expansion of the applica-
tion fields of control systems, have led to the emergence of
networked control systems (NCSs) [1]-[3], which are met
in many areas such as industrial control, remote control,
and distributed systems among others. In NCSs, a digital
communication channel is intervened between the remote
parts of the closed-loop system to transmit the informa-
tion. Along with the advantages that this setting offers to
the overall operation, such as reliability, flexibility, easy
installation/maintenance, and low cost, at the same time
manifests many challenges that led to important research
questions, as the network inevitably introduces limitations
to the transmitted information, such as signal quantization,
time delays, and loss of information during transmission.

In addition to the aforementioned problems, another dom-
inant constraint in NCSs, is the transmission of feedback
information in discrete-time, meaning that both the state
measurements and the control input are available to the con-
troller and to the system, respectively, only at some discrete
time instants, which are typically determined by the sampling
period. Early research on NCSs reveals that the limitation re-
sulting from the sampling of feedback information may lead
to serious performance degradation or even to instability of
the closed-loop system [4]-[6]. Significant progress has been
made on the derivation of the maximum allowable transmis-
sion interval [7]-[10], such that continuous-time controllers
preserve the stability of the closed-loop system regardless
of operating in discrete-time. Recently, notable efforts have
been reported towards extending the maximum allowable
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transmission interval [11]-[13], as typically its derivation is
carried out via a worst case analysis, rendering the obtained
conditions sufficient though not necessary, and therefore,
quite restrictive. Another approach of control design within
the sampled-data framework is to incorporate event-triggered
mechanisms [14]-[17], according to which, the sampling
time instants are generated only when certain state-dependent
conditions are satisfied. In this case, however, it is infeasible
to implement the proposed solutions whenever the sampling
period is pre-fixed and therefore it is not considered as a
control element to be designed. A common characteristic
of all aforementioned works is that they establish only
stability conditions and they are incapable of imposing a
priori performance characteristics on the output tracking
error, such as maximum overshoot, minimum convergence
rate, and maximum steady-state error.

In the literature, prescribed performance control (PPC) has
been developed to guarantee, when operating in continuous-
time, predetermined transient and steady-state performance
bounds, thus enforcing maximum overshoot, minimum con-
vergence rate and maximum steady-state error performance
characteristics on the output tracking error of the closed-loop
system. It was originally proposed in [18] and consequently
utilized for various nonlinear system classes (see [19]-
[21] and references therein). The PPC methodology was
utilized in NCSs environments to address signal quantiza-
tion in [22], [23]. Recently, in [24]-[26], event-triggered
mechanisms were introduced within the PPC framework;
relying, however, on the assumption that the states of the
system are continuously measured by the controller and
only the produced control input is subject to discrete-time
transmission.

In this paper, we aim at extending the continuous-time
framework of PPC, to address its robustness and operabil-
ity under discrete-time transmission of information in the
closed-loop. Specifically, given a nominal PPC controller that
guarantees the prescribed performance attributes when con-
sidering continuous-time operation, the objective is to derive
sufficient conditions on the maximum allowable transmission
interval, such that the controller preserves its functionality
and guarantees the required performance despite being sub-
ject to discrete-time implementation. A key characteristic
of PPC controllers is that the control procedure employs
barrier-like functions, which are well-defined only when
the error evolves strictly within a constructed performance
envelope. Therefore, it is crucial to enforce a sufficiently
small transmission interval to maintain the evolution of the
error strictly inside the envelope. We further show that the
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maximum allowable transmission interval is directly related
with the guaranteed performance level at steady-state.

The rest of the paper is organized as follows. In Section
II the problem addressed is formulated and in Section III the
main results are presented. In Section IV, simulation results
are provided. Finally, we conclude in Section V.

II. PROBLEM FORMULATION

Consider nonlinear systems in strict-feedback form

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, . . . , n− 1, (1a)
ẋn = fn(x̄n) + gn(x̄n)u, (1b)

where x̄i = [x1 . . . xi]
T ∈ Ri, and x̄n = [x1 . . . xn]

T ∈ Rn

is the system state. Moreover, x1 ∈ R is the system output,
u ∈ R is the control input, and fi(x̄i), gi(x̄i) : Ri → R,
i = 1, . . . , n, are nonlinear functions locally Lipschitz in
x̄i. Consider further a reference output tracking trajectory
denoted by yd(t) ∈ R, and define the output tracking error

e1(t) = x1(t)− yd(t), ∀ t ≥ 0. (2)

Assumption 1. The functions gi(x̄i), i = 1, . . . , n, are
either strictly positive or strictly negative for all x̄i, and their
signs are known and are denoted by sgn(gi), i = 1, . . . , n.

Assumption 2. The reference trajectory satisfies |yd(t)| ≤
ȳd and |ẏd(t)| ≤ ¯̇yd, with ȳd > 0, ¯̇yd > 0 some known
constants.

In this paper we consider the scenario where the controller
is receiving state information only at some discrete time
instants determined by a sampling period. Furthermore, the
control input is transmitted to the system at these sampling
time instants. Therefore, between two consequent trans-
missions, the controller has no longer access to the state
measurements and the system is forced to operate with the
control input produced at the latest sampling time instant.
The aforementioned mode of operation is formulated in the
following assumption.

Assumption 3. There exist some time instants tk, k ∈ N,
with t0 = 0 and tk+1 > tk, for all k ∈ N, representing
the sampling time instants. Therefore, u(t) = u(tk), for all
t ∈ [tk, tk+1), k ∈ N.

The control objective is to establish pre-defined bounds
on e1(t) with respect to transient and steady-state behavior,
in the presence of sampled-data control implementation as
specified in Assumption 3. More specifically, we aim to
derive sufficient conditions on the maximum allowable trans-
mission interval, such that a nominal controller, capable of
guaranteeing the aforementioned performance characteristics
when operating in continuous-time, preserves its functional-
ity and the performance guarantees, despite being subject to
sampled-data operation.

Remark 1. To enforce the performance requirements on
the output tracking error the prescribed performance control
(PPC) methodology is utilized. According to PPC [18],
when considering continuous-time operation, the error is
guaranteed to evolve strictly within a constructed perfor-
mance envelope, whose selection directly introduces the pre-
specified performance characteristics on the output error in

terms of transient and steady-state behavior. A key property
of this type of controllers is that the control solution adopts
barrier-like functions, which are well-defined only as the
error evolves strictly within the aforementioned performance
envelope. Therefore, in the presence of discrete-time control
implementation, it is crucial to guarantee that the transmis-
sion intervals are small enough such that, at each sampling
time instant, the evolution of the error strictly within the
envelope is preserved.

III. MAIN RESULTS

In the following theorem, the main results of this paper
are summarized.

Theorem 1. Consider system (1), any initial condition
xi(0), i = 1, . . . , n, any reference trajectory yd(t), and
Assumptions 1-3. Consider further the controller, for all
i = 1, . . . , n,

a0(t) = yd(t), (3a)

ξi(t) =
xi(t)− ai−1(t)

ρi(t)
, (3b)

ϵi(t) = T (ξi(t)), (3c)
ai(t) = −sgn(gi)ciϵi(t), (3d)
u(t) = an(t), (3e)

where ρi(t) =
(
ρ0i − ρ∞i

)
e−λit+ρ∞i , with ρ∞i > 0, λi ≥ 0,

ρ0i > |xi(0)− ai−1(0)|, T (ξ) = ln
(

1+ξ
1−ξ

)
, and ci > 0 some

freely selected control gains. If the sampling time instants tk
satisfy for all k ∈ N,

tk+1 − tk ≤ τmati ≜ min
i=1,...,n

ρ∞i

(
ξ̄i − T−1

(
F̄i

¯
gici

))
F̄i + ḡiciT

(
ξ̄i
)

 ,

(4)
where the constants ξ̄i > 0, i = 1, . . . , n, satisfy:

max

{
|ξi(0)|, T−1

(
F̄i

¯
gici

)}
< ξ̄i < 1, (5)

and

F̄i = f̄i + ḡiρ
0
i+1 + ¯̇ρi + ¯̇ai−1, i = 1, . . . , n− 1, (6a)

F̄n = f̄n + ¯̇ρn + ¯̇an−1, (6b)
f̄i = sup

|xj |<ρ0
j+āj−1, j=1,...,i.

|fi(x̄i)|, i = 1, . . . , n, (6c)

ḡi = sup
|xj |<ρ0

j+āj−1, j=1,...,i.

|gi(x̄i)|, i = 1, . . . , n, (6d)

¯
gi = inf

|xj |<ρ0
j+āj−1, j=1,...,i.

|gi(x̄i)|, i = 1, . . . , n, (6e)

¯̇a0 = ¯̇yd, ¯̇ai =
2ci
(
F̄i + ḡiāi

)
(1− ξ̄2i )ρ

∞
i

, i = 1, . . . , n− 1, (6f)

ā0 = ȳd, āi = ciT
(
ξ̄i
)
, i = 1, . . . , n, (6g)

¯̇ρi = λiρ
0
i , i = 1, . . . , n, (6h)

then controller (3) with u(t) = u(tk), i = 1, . . . , n, for all
t ∈ [tk, tk+1), guarantees that

• all signals in the closed-loop are bounded,
• |e1(t)| < ρ1(t), for all t ≥ 0.
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Remark 2. Introducing sampling within the PPC method-
ology is a key attribute of this work, as it violates the standard
assumption of having continuous accessibility of the sate
measurements as well as continuous implementation of the
control input; a crucial assumption when aiming to impose
continuous performance bounds on the output tracking error.
In Theorem 1, τmati > 0 represents the maximum allowable
transmission interval, providing a sufficient condition on the
sampling time instants such that all signals in the closed-
loop remain bounded and the output tracking error satisfies
the required performance, i.e., |e1(t)| < ρ1(t).

Remark 3. Establishing |e1(t)| < ρ1(t) implies that e1(t)
converges strictly within (−ρ∞1 , ρ∞1 ), with convergence rate
no less than e−λ1t. Hence, the selection of ρ∞1 and λ1

directly introduce performance attributes on e1(t) in terms of
maximum steady-state error and minimum convergence rate,
respectively. In this work, we omitted performance speci-
fications on the maximum overshoot to simplify notation,
without, however, loss of generality. Further, the performance
functions ρi(t), i = 2, . . . , n, are not related directly with any
performance index, and therefore, they can be freely chosen.
However, their careful selection may positively influence
the evolution of the errors xi(t) − ai−1(t), i = 2, . . . , n,
within the corresponding performance envelopes. The same
observation holds also for the control gains ci, i = 1, . . . , n.

Remark 4. Careful inspection of (4) reveals a trade-
off between the maximum allowable transmission interval
τmati > 0 and the guaranteed output tracking accuracy at
steady-state given by ρ∞1 > 0. In that respect, for any fixed
sampling period τs > 0, one can preserve that τmati ≥
τs, by appropriately enlarging ρ∞i , for all i = 1, . . . , n;
degrading, however, the derived performance with respect
to the maximum output tracking error at steady-state.

Proof of Theorem 1: Define the non-empty and open set
Ωξ = (−1, 1) ⊂ R. Owing to ρ0i > |xi(0) − ai−1(0)|, i =
1, . . . , n, it holds that ξi(0) ∈ Ωξ, i = 1, . . . , n, which further
concludes that ϵi(0), i = 1, . . . , n, are well-defined. Further,
notice that owing to (5) it holds that ξi(0) ∈

(
−ξ̄i, ξ̄i

)
⊂ Ωξ.

Let t1 > 0, be the next sampling time instant. Owing to
(3b) we deduce the continuity of ξi(t), i = 1, . . . , n, and
therefore, the existence of a maximal time interval [0, t1max)
such that ξi(t) ∈ Ωξ for all t ∈ [0, t1max). Moreover, as[
−ξ̄i, ξ̄i

]
⊂ Ωξ it holds t1max > t1. Taking the derivative of

(3b) for all t ∈ [0, t1), we deduce that for i = 1, . . . , n− 1,

ξ̇i =
1

ρi
(fi + giξi+1ρi+1 − ȧi−1 − ξiρ̇i + giai) , (7a)

ξ̇n =
1

ρn
(fn − ȧn−1 − ξnρ̇n + gnan(0)) . (7b)

To proceed, the analysis follows a recursive procedure.
Step 1. (i = 1): Let us define the positive-definite and

radially unbounded Lyapunov function V1 = 1
2ϵ

2
1 for all t ∈

[0, t1). Differentiating V1 with respect to time in view of (7a)
we deduce for all t ∈ [0, t1),

V̇1 =
2ϵ1

(1− ξ21) ρ1

(
f1+g1ξ2ρ2− ẏd−ξ1ρ̇1−|g1|c1ϵ1

)
. (8)

To continue, notice that as ξ1(t) ∈ Ωξ for all t ∈ [0, t1), and
owing to (3b) and Assumption 2, we derive |x1(t)| < ρ01+ȳd
for all t ∈ [0, t1). Hence, by the latter and the Extreme
Value Theorem, we conclude the existence of strictly positive
constants f̄1,

¯
g1 and ḡ1, such that |f1(x1)| ≤ f̄1, and

¯
g1 ≤ |g1(x1)| ≤ ḡ1. Further, ξ2(t) ∈ Ωξ for all t ∈
[0, t1), |ẏd(t)| ≤ ¯̇yd by Assumption 2, ρ2(t) ≤ ρ02, and
|ρ̇1(t)| ≤ λ1

∣∣ρ01 − ρ∞1
∣∣ < λ1ρ

0
1. Moreover, 1 − ξ21(t) > 0

for all t ∈ [0, t1). Owing to the aforementioned analysis,
and by recalling (6a), (6c)-(6e), (6h), we conclude that for
all t ∈ [0, t1), V̇1 becomes

V̇1 ≤ 2 |ϵ1| |g1| c1
(1− ξ21)ρ1

(
F̄1

¯
g1c1

− |ϵ1|

)
. (9)

Thus, by employing (9) and the inverse of the logarithmic
function in (3c), we conclude that for all t ∈ [0, t1),

V̇1 < 0, if |ξ1(t)| > T−1

(
F̄1

¯
g1c1

)
. (10)

Further, by employing (6a), (7a), and for ξ1(t) ∈
[
−ξ̄1, ξ̄1

]
⊂

Ωξ, we derive that for all t ∈ [0, t1),

|ξ̇1(t)| ≤
1

ρ∞1

(
f̄1 + ḡ1ρ

0
2 + ¯̇yd + ¯̇ρ1 + ḡ1|a1|

)
≤

F̄1 + ḡ1c1T
(
ξ̄1
)

ρ∞1
≜ ¯̇

ξ1.

(11)

We proceed by investigating separately the following cases:
i) |ξ1(t)| > T−1

(
F̄1

¯
g1c1

)
, ii) |ξ1(t)| ≤ T−1

(
F̄1

¯
g1c1

)
.

Case i): Owing to the continuity of ξ1(t), we conclude
the existence of a time instant t∗1 > 0 such that |ξ1(t)| ≥
T−1

(
F̄1

¯
g1c1

)
for all t ∈ [0, t∗1). Further, by (10) |ξ1(t)| will

be strictly decreasing for all t ∈ [0, t∗1), implying also that
|ξ1(t)| < |ξ1(0)| < ξ̄1 for all t ∈ [0, t∗1). Therefore, as
we aim to derive the maximum time instant t1 such that
ξ1(t) ∈ [−ξ̄1, ξ̄1] for all t ∈ [0, t1), we conclude that
t1 > t∗1. Furthermore, the time instant t∗1 satisfies t∗1 ≥
|ξ1(0)|−T−1

(
F̄1

¯
g1c1

)
¯̇
ξ1

and ξ1(t
∗
1) = T−1

(
F̄1

¯
g1c1

)
. Moreover, by

(10), we conclude that for all t ∈ [t∗1, t1) it holds that

|ξ1(t)| < |ξ1(t∗1)|+ (t1 − t∗1)
¯̇
ξ1. (12)

Therefore, owing to the aforementioned analysis and (12),
we deduce that if the following inequality holds true

t1
¯̇
ξ1 − |ξ1(0)|+ 2T−1

(
F̄1

¯
g1c1

)
≤ ξ̄1, (13)

then ξ1(t) ∈
(
−ξ̄1, ξ̄1

)
for all t ∈ [0, t1). Hence, by

substituting (11), and owing to the continuity of ξ1(t) we
conclude that ξ1(t) ∈

[
−ξ̄1, ξ̄1

]
for all t ∈ [0, t1] if

t1 ≤
ρ∞1

(
ξ̄1 + |ξ1(0)| − 2T−1

(
F̄1

¯
g1c1

))
F̄1 + ḡ1c1T

(
ξ̄1
) . (14)
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Case ii): In this case, we directly conclude that for all
t ∈ [0, t1) it holds that

|ξ1(t)| < |ξ1(0)|+ t1
¯̇
ξ1. (15)

Hence, by employing (15), we obtain that if it holds

|ξ1(0)|+ t1
¯̇
ξ1 ≤ ξ̄1, (16)

then ξ1(t) ∈
(
−ξ̄1, ξ̄1

)
⊂ Ωξ, for all t ∈ [0, t1). Con-

sequently, owing to the fact that |ξ1(0)| ≤ T−1
(

F̄1

¯
g1c1

)
,

to (11), and to the continuity of ξ1(t), we conclude that
ξ1(t) ∈

[
−ξ̄1, ξ̄1

]
for all t ∈ [0, t1] if

t1 ≤
ρ∞1

(
ξ̄1 − T−1

(
F̄1

¯
g1c1

))
F̄1 + ḡ1c1T

(
ξ̄1
) . (17)

Aggregating (14) and (17), and owing to the fact that ξ̄1 +
|ξ1(0)| − 2T−1

(
F̄1

¯
g1c1

)
≥ ξ̄1 − T−1

(
F̄1

¯
g1c1

)
when |ξ1(t)| >

T−1
(

F̄1

¯
g1c1

)
, we conclude that if the time instant t1 > 0

satisfies

t1 ≤
ρ∞1

(
ξ̄1 − T−1

(
F̄1

¯
g1c1

))
F̄1 + ḡ1c1T

(
ξ̄1
) , (18)

then ξ1(t) ∈
[
−ξ̄1, ξ̄1

]
⊂ Ωξ, for all t ∈ [0, t1]. Moreover,

owing to (3a) and (3b), we conclude that |e1(t)| < ρ1(t) for
all t ∈ [0, t1]. Further, we establish that for all t ∈ [0, t1],

|a1(t)| ≤ ā1 = c1T
(
ξ̄1
)
, (19a)

|ȧ1(t)| ≤ ¯̇a1 =
2c1
(
F̄1 + ḡ1ā1

)(
1− ξ̄21

)
ρ∞1

. (19b)

Step i. (i = 2, . . . , n − 1): Let us define the positive-
definite and radially unbounded Lyapunov function Vi =

1
2ϵ

2
i

for all t ∈ [0, t1). Differentiating Vi with respect to time in
view of (7a), we deduce that for all t ∈ [0, t1),

V̇i =
2ϵi

(1− ξ2i ) ρi

(
fi + giξi+1ρi+1 − ȧi−1 − ξiρ̇i − |gi|ciϵi

)
,

(20)
To continue, notice that as ξi(t) ∈ Ωξ for all t ∈ [0, t1], and
owing to (3b) and (19a), we derive |xi(t)| < ρ0i +āi−1 for all
t ∈ [0, t1). Hence, by employing the latter and the Extreme
Value Theorem, we conclude the existence of strictly positive
constants f̄i,

¯
gi and ḡi, such that |fi(x̄i)| ≤ f̄i, and ḡi ≤

|gi(x̄i)| ≤ ḡi. Therefore, by repeating the line of analysis of
Step 1, we conclude that if the time instant t1 > 0 satisfies

t1 ≤
ρ∞i

(
ξ̄i − T−1

(
F̄i

¯
gici

))
F̄i + ḡiciT

(
ξ̄i
) , (21)

then ξi(t) ∈
[
−ξ̄i, ξ̄i

]
⊂ Ωξ for all t ∈ [0, t1]. Moreover, by

(3a) and (3b), we establish that |xi(t)− ai−1(t)| < ρi(t) for
all t ∈ [0, t1], and |ai(t)| ≤ āi = ciT

(
ξ̄i
)
, |ȧi(t)| ≤ ¯̇ai =

2ci(F̄i+ḡiāi)

(1−ξ̄2i )ρ∞
i

, for all t ∈ [0, t1].

Step n. (i = n): Let us define the positive-definite and
radially unbounded Lyapunov function Vn = 1

2ϵ
2
n for all

t ∈ [0, t1). Differentiating Vn with respect to time in view
of (7b), we deduce that for all t ∈ [0, t1),

V̇n =
2ϵn

(1− ξ2n) ρn

(
fn − ȧn−1 − ξnρ̇n − |gn|cnϵn(0)

)
,

(22)

By repeating the line of analysis of Step n−1, we conclude
that for all t ∈ [0, t1), if sgn(ϵn(t)) = sgn(ϵn(0)), then (22)
becomes

V̇n ≤ 2 |ϵn| |gn| cn
(1− ξ2n)ρn

(
F̄n

¯
gncn

− |ϵn(0)|

)
. (23)

Hence, by taking the inverse of the logarithmic function in
(3c), and employing the fact that sgn(ξn(t)) = sgn(ϵn(t))
for all t ≥ 0, we conclude that for all t ∈ [0, t1),

V̇n < 0, if


sgn(ξn(t)) = sgn(ξn(0)),

and

|ξn(0)| > T−1
(

F̄n

¯
gncn

)
.

(24)

Furthermore, as in Steps 1, . . . , n− 1, we derive for all t ∈
[0, t1),

|ξ̇n(t)| ≤
F̄n + ḡncnT

(
ξ̄n
)

ρ∞n
≜ ¯̇

ξn. (25)

Hence, similarly to Steps 1, . . . , n − 1, We proceed by
investigating separately the following cases: i) |ξn(0)| >

T−1
(

F̄n

¯
gncn

)
, ii) |ξn(0)| ≤ T−1

(
F̄n

¯
gncn

)
.

Case i): Owing to the continuity of ξn(t), we conclude the
existence of a time instant t∗1 > 0 such that sgn(ξn(t)) =
sgn(ξn(0)) for all t ∈ [0, t∗1). Further, by (24) |ξn(t)| will
be strictly decreasing for all t ∈ [0, t∗1), implying also that
|ξn(t)| < |ξn(0)| < ξ̄n for all t ∈ [0, t∗1). Therefore, as
we aim to derive the maximum time instant t1 such that
ξn(t) ∈ [−ξ̄n, ξ̄n] for all t ∈ [0, t1), we conclude that t1 >

t∗1. Furthermore, the time instant t∗1 satisfies t∗1 ≥ |ξn(0)|
¯̇
ξn

and
ξn(t

∗
1) = 0, which also results in sgn(ξn(t∗1)) ̸= sgn(ξn(0)).

Consequently, owing to the latter and to (10), we conclude
that for all t ∈ [t∗1, t1) it holds that |ξn(t)| < |ξn(t∗1)| +
(t1−t∗1)

¯̇
ξn. Therefore, owing to the latter analysis we deduce

that if t1
¯̇
ξn − |ξn(0)| ≤ ξ̄n then ξn(t) ∈

(
−ξ̄n, ξ̄n

)
for all

t ∈ [0, t1). Hence, by substituting (11), and owing to the
continuity of ξn(t) we conclude that ξn(t) ∈

[
−ξ̄n, ξ̄n

]
for

all t ∈ [0, t1] if

t1 ≤
ρ∞n
(
ξ̄n + |ξn(0)|

)
F̄n + ḡncnT

(
ξ̄n
) . (26)

Case ii): In this case, similarly with the previous Steps,
we conclude that ξn(t) ∈

[
−ξ̄n, ξ̄n

]
for all t ∈ [0, t1] if

t1 ≤
ρ∞n

(
ξ̄n − T−1

(
F̄n

¯
gncn

))
F̄n + ḡncnT

(
ξ̄n
) . (27)

Aggregating (26) and (27), and owing to the fact that ξ̄n +

|ξn(0)| ≥ ξ̄n − T−1
(

F̄n

¯
gncn

)
, we conclude that if the time
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instant t1 > 0 satisfies

t1 ≤
ρ∞n

(
ξ̄n − T−1

(
F̄n

¯
gncn

))
F̄n + ḡncnT

(
ξ̄n
) , (28)

then ξn(t) ∈
[
−ξ̄n, ξ̄n

]
⊂ Ωξ, for all t ∈ [0, t1]. Moreover,

by (3a) and (3b), we establish that |xn(t)−an−1(t)| < ρn(t)
for all t ∈ [0, t1].

Consequently, by combining (28) and (21), and the anal-
ysis presented in Steps 1, . . . , n, we derive that if the time
instant t1 > 0 satisfies

t1 ≤ min
i=1,...,n

ρ∞n

(
ξ̄n − T−1

(
F̄n

¯
gncn

))
F̄n + ḡncnT

(
ξ̄n
)

 , (29)

then ξi(t) ∈
[
−ξ̄i, ξ̄i

]
⊂ Ωξ, i = 1, . . . , n, for all t ∈ [0, t1).

Identically, the line of analysis is straightforwardly ex-
tended to all time intervals [tk, tk+1), k ∈ N, with tk+1

satisfying tk < tk+1 < tk + tkmax, k ∈ N, with tkmax being the
corresponding maximal time. Therefore, if

tk+1 − tk ≤ τmati = min
i=1,...,n

ρ∞i

(
ξ̄i − T−1

(
F̄i

¯
gici

))
F̄i + ḡiciT

(
ξ̄i
)

 ,

(30)
then for all i = 1, . . . , n,

ξi(t) ∈
[
−ξ̄i, ξ̄i

]
⊂ Ωξ,∀ t ∈ [tk, tk+1), k ∈ N. (31)

The latter implies that the solution of ξi(t), i = 1, . . . , n,
evolves strictly inside Ωξ for all t ∈ [tk, tk+1), k ∈ N; con-
sequently extending the solution to +∞. Hence, all signals in
the closed-loop are bounded and in addition |e1(t)| < ρ1(t)
for all t ≥ 0; thus preserving the prescribed performance
characteristics of the output tracking error, and concluding
the proof.

IV. SIMULATION RESULTS

To verify the theoretical results we conducted simulation
studies on a single-link robotic manipulator, the dynamics of
which are given by

ẋ1 = x2, (32a)

ẋ2 = − g

m
sin (x1)−

c

m
x2 +

1

m
u, (32b)

with x1 [rad], x2 [rad/s], representing the angular posi-
tion and velocity, respectively, and system parameters g =
10 [N m], c = 1 [N m s/rad] and m = 2 [N m s2/rad]. The
desired trajectory is chosen as yd(t) = π

10 sin (0.2πt). Hence,
we have ȳd = π

10 and ¯̇yd = 0.02π2. Further, we consider
initial conditions x1(0) =

π
10 [rad] and x2(0) = 0 [rad/s].

In the first simulation scenario, the control objective was
to achieve tracking performance with output error at steady-
state no greater than 0.01 [rad] and convergence rate no less
than e−t. Hence, we selected ρ∞1 = 0.01 and λ1 = 1.
Further, we chose ρ01 = 0.6283, c1 = 1, ρ∞2 = 0.5,
λ2 = 0.5, ρ02 = 4.3944, c2 = 5, ξ̄1 = 0.9943 and
ξ̄2 = 0.9920. Moreover, for system (32) we obtain f̄1 = 0,
ḡ1 =

¯
g1 = 1, and f̄2 = 10.1302, ḡ2 =

¯
g2 = 0.5. Therefore,
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Fig. 1. Tracking performance and control input with ρ∞1 = 0.01 and
sampling period τs = τmati = 4.8858× 10−6 [sec].

employing (4), we obtain τmati = 4.8858 × 10−6 [sec]. In
Fig. 1 we illustrate simulation results with sampling period
τs = 4.8858×10−6 [sec]. As it is clearly shown, the desired
performance is achieved as all errors evolve strictly within
the corresponding performance envelopes, while all signals
in the closed-loop remained bounded.

Consequently we increased ρ∞1 to 0.1 and kept intact
all remaining controller parameters to highlight the relation
between the output tracking error accuracy that can be
guaranteed at steady-state with respect to the maximum
allowable transmission interval. Given this enlarged selection
for ρ∞1 we obtain τmati = 5.4310 × 10−5 [sec]. Hence we
selected τs = 5.4310 × 10−5 [sec]. As shown in Fig. 2, in
this scenario where the control is implemented with larger
sampling period, the derived performance was degraded,
as the guaranteed performance envelope was enlarged. The
evolution of the output tracking error, however, attained fairly
small values, evolving significantly below the performance
bounds.

Finally, we kept intact all control parameters of the
previous scenario and we increased the sampling period to
τs = 8.1464×10−2 [sec]. By the latter scenario we highlight
that the derived condition (4) on the transmission intervals
is sufficient though not necessary, as it is derived via a
worst case analysis. Therefore, the control objectives may
be preserved even if the sampling period is significantly
larger than τmati. The results are shown in Fig. 3. Notice
that the enlarged sampling period clearly has a negative
impact on the overall performance as the errors exhibit
increased oscillations within the performance envelope and
the produced control input has been degraded with respect
to magnitude and slew-rate.

V. CONCLUSION

In an attempt to robustly discretize prescribed performance
controllers, we derived the maximum allowable transmission
interval to preserve the prescribed performance attributes
guaranteed in continuous-time operation. We showed that
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Fig. 2. Tracking performance and control input with ρ∞1 = 0.1 and
sampling period τs = τmati = 5.4310× 10−5 [sec].
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Fig. 3. Tracking performance and control input with ρ∞1 = 0.1 and
sampling period τs = 8.1464× 10−2 [sec].

the maximum allowable interval is directly related with
the performance guaranteed at steady-state. The theoretical
results were verified and clarified via simulation studies.
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