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Event-Triggered Prescribed Performance Control for SISO Uncertain
Nonlinear Systems in Brunovsky Canonical Form

Thomais A. Aforozi, George A. Rovithakis

Abstract— In this work, we consider the problem of designing
tracking controllers for SISO uncertain high relative degree
systems in Brunovsky canonical form in the presence of non-
periodic communication. The proposed control scheme is static,
and requires no hard calculations, analytic or numerical,
to produce the control signal. Event-triggered mechanisms
are considered in both sensor-to-controller and controller-to-
actuator channels, yet the enforcement of prescribed perfor-
mance bounds in terms of steady-state accuracy and con-
vergence rate is ensured. No prior knowledge or estimation
structure regarding system nonlinearities are required and no
high-order derivatives of the desired output trajectories are
incorporated in the controller design. Simulation results clarify
and verify the theoretical findings.

I. INTRODUCTION

Networked control systems (NCSs) are comprised of
spatially distributed components that communicate over a
digital network. Despite their significant advantages that
include modularity, easy of maintenance, reduced cabling
and cost, the presence of the underlying communication
network introduces several technological barriers, mainly
attributed to time delays, packet losses and restrictions on
the available bandwidth [1], [2]. As an effect, issues related
to performance degradation, or even instability, typically ap-
pear. The problems become even more demanding when the
controlled system is nonlinear. In the literature, an effective
way to tackle bandwidth limitations is to incorporate non-
periodic communication, leading to the emergence of event-
triggered control (ETC) [3].

The majority of works in the area of controlling non-
linear systems using ETC consider the presence of event-
triggered communication either in the controller-to-actuator
(CtA) [4]-[7] or in the sensor-to-controller (StC) [8], [9]
channels and study closed-loop system stability. Surprisingly,
the general configuration where event-triggered communi-
cation is present in both channels is rarely considered.
This is mainly attributed to the fact that this intermittent
communication at the StC channel formulates an impulsive
nonlinear system making control design even more difficult,
which escalates further when events satisfaction enables
information exchange in the CtA channel as well. In this
direction, global output regulation is achieved for relative
degree one nonlinear systems in [10], while in [11] an event-
triggered controller equipped with a parameter estimator
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was utilized to address the stabilization problem for a class
of strict-feedback systems. In [12], dynamic filtering was
employed to enable the use of backstepping, developing
a novel control scheme to guarantee the boundedness of
all signals in the closed loop, while introducing adjustable
transient performance, in the mean square error sense, via
appropriate selection of design parameters.

Nevertheless, the problem of enforcing prescribed perfor-
mance characteristics in the sense of maximum overshoot,
minimum convergence rate and maximum steady-state error
when tracking an output reference trajectory, despite the
presence of event-triggered communication, has been typ-
ically overlooked. Works addressing this highly significant
in applications issue consider event-triggered communication
only at the CtA channel and the proposed solutions utilize
the prescribed performance control (PPC) methodology. PPC
was pioneered in [13] and since then has been evolved to
design controllers for more complex system structures [14],
[15], see also [16] and references therein. Event-triggered
PPC designs include [6], where the tracking problem was
considered for a class of SISO strict-feedback systems having
unknown control directions. To reduce further the demanded
bandwidth, the proposed solution was further extended to the
case of binary information transmission in the CtA channel.
An asymmetric barrier Lyapunov function dynamic surface
controller was designed in [17]. For a class of uncertain pure-
feedback systems an adaptive fuzzy ETC was developed in
[18], employing state observers to estimate the unmeasured
state variables. A robust adaptive fuzzy event-triggered PPC
was proposed in [19], for a class of strict-feedback systems.
In [20], an adaptive event-triggered PPC was designed to
handle a class of uncertain strict-feedback systems in the
presence of input saturation.

Motivated by the aforementioned observations, and utiliz-
ing the PPC design methodology, we address, in this work,
the problem of establishing not only the boundedness of all
signals in the closed-loop but additionally of enforcing pre-
scribed transient and steady-state error bounds on the output
tracking error. The class of nonlinear systems we consider
are high relative degree in Brunovsky canonical form. For the
system nonlinearities we assume they are locally Lipschitz.
However, their analytic expressions are considered unknown.
No approximation structures (i.e., neural networks, fuzzy
systems) and no adaptive techniques are incorporated to
acquire such knowledge. No derivatives of the desired output
trajectory are utilized. Information exchange in both CtA and
StC channels is subject to event-triggered communication.
The proposed control scheme is static involving no hard
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calculations, either analytic or numerical, thus resulting in
a low complexity controller.

II. PROBLEM STATEMENT

Consider single-input single-output systems of n-th order

described as follows:

fi = Tij+1, 1= 1, ey — 1

in = f(z) + g(x)v ey

y=2x
where x; € R for ¢ = 1,...,n are the states of the system,
with z = [z7 ... xn]T € R". Moreover, v € R is the control
input that results from an event-triggered mechanism applied
on the actual controller output u, y € R is the output of the
system and f : R™ — R, g : R — R are locally Lipschitz
nonlinear functions with unknown analytical expressions.

Assumption 1: The function g(-) is either strictly positive
or strictly negative and its sign denoted with sgn(g) is
considered known.

Assumption 2: The desired trajectory yg(t) : Rt — R is
known, continuously differentiable and bounded function of
time with bounded, yet unknown, first derivative.

Remark 1: Assumption 1 imposes a sufficient global con-
trollability condition on (1). Furthermore, from Assumption
2, we only require knowledge of the desired trajectory y4
and none of its high order derivatives. Therefore, we can
also consider applications where the desired trajectory is not
a priori known but it is measured.

In this paper we consider event-triggered system-controller
communication. Specifically, forall ¢ =1,...,n and k,l € N
we define the event conditions:

t8k+1,i = an{t > tsk,i : |xz(t) - xi(tsk,i” > 69;,1'}7
tupyy = i f{t >ty : Ju(t) —uty,)] > du},

where g, ,; and ., , denote the time instants (2a) and
(2b) are satisfied respectively, and d ;,d,, > O are constant
step-sizes. Event-triggered mechanism (2a) is applied on
the system state, while (2b) is applied on the controller
output. The corresponding state signal remains constant for
all t € [tg, i, ts,,,.i) at the value acquired at t = t,, ; and,
similarly, the controller output signal remains constant for
all t € [ty,,ty,.,) at the value acquired at ¢ = t,,. Owing to
(2) it holds:

|2:(t) — zi(tsy,i)| < 0wy VEE [ty irtspryi)s
lu(t) — u(tuz)| < Oy, vt € [tul,tqu).

(2a)
(2b)

(3a)
(3b)

Hence, there exist A, ;(t) and A, (¢) satisfying the properties:
)‘w,i(tsmi) =0, )\w)i(tsk+l;i) = =+1, |)‘w,2(t>| <1,

VEE [tsyirtapsri),  (4a)
Aaltu) =0, Au(tu,,) = £1, [Mu(t)] < 1,
Vt € [tu tursy ), (4b)
such that
zi(t) = 2i(ts,, ) + Aai(£)0nyi, Yt E [tsy irte,iri), (52)
u(t) = u(ty,) + Ay (t)0u, Yt € [tuystur,,)- (5b)

Remark 2: The presence of event-triggered communica-
tion formulates a discontinuous closed-loop system; thus
raising questions related to the appearance of chattering and
the existence of solution. However, the incorporation of the
proposed event-triggered mechanisms (2) efficiently avoids
both, as they introduce a strictly positive dwell time between
any two consequent transitions.

The problem addressed in this paper reads as follows.
Problem (Event-triggered Prescribed Performance Control,
ETPPC): Consider system (1), satisfying Assumption 1,
with system state and controller output being transmitted
only at discrete time instants issued by the event-triggered
mechanisms (2). Consider also desired output trajectories
ya(t) satisfying Assumption 2 and define the output tracking
error e(t) = y(t) — yqa(t). Given any initial condition x(0) €
R™, construct a continuously differentiable, strictly positive,
decreasing and bounded time-function p(t), and design a
state-feedback controller such that all signals in the closed-
loop remain bounded and |e(t)| < p(t) for all ¢ > 0.

Remark 3: Enforcing |e(t)] < p(t) for all ¢ > 0
practically introduces prescribed transient and steady-state
performance attributes on the output tracking error. This can
be straightforwardly verified when considering exponentially
decaying time-functions p(t) = (p — p>)e 1t + p>. As it
was first explained in [13], where PPC was pioneered, the
parameter p°° > 0 determines the maximum allowable error
at steady-state, while ;4 > 0 introduces the required minimum
convergence rate.

III. CONTROL DESIGN

Define the auxiliary, strictly increasing function T
(-1,1) — R satisfying lim¢,;- T(() = +oo and
lim¢_, 1+ T(¢) = —o0 of the form T'(¢) = In((1+¢)/(1—
¢ )) Given the desired trajectory y4 satisfying Assumption
2 and any initial condition xz(0) € R", we propose the
following recursive control design procedure. For ¢ > O:

_ xZ(tSk-,,i) — aifl(t)
gl(t) - i (t) . 53;77 ) - ]-7 - Ny (63)
gi(t) =T(&(1), i=1,...n, (6b)
a;i(t) = —kie;(t), i=1,....,n—1, (6¢)
an(t) = u(t) = 7Sgn(g)kn5n(t)» U(t) = u(tul)a (6d)

where ag = y4. In (6) k; > 0, ¢ = 1,...,n are control gains
and p;(t) = (p? — p®)e it + p>° with parameters j; > 0
and p?, pf° > 0 satisfying:
Py > |2:(0) = Xei(0)80,5 — aim1(0)] + bz,
p7° = (24 M;)osi + @i1) /M;.

(72)
(7b)

Moreover, ag = 0, a;—1, ¢ = 2, ...,n, are positive constants
and M; € (0,1),i=1,...,n,.

Remark 4: As clarified in Remark 3, only py(¢) is re-
sponsible for enforcing prescribed performance attributes on
the output tracking error. The rest p;(t), ¢ = 2...,n, are not
directly connected to the aforementioned task. Therefore,
they can be arbitrarily selected provided their parameters
satisfy (7). The control gains k;, ¢ = 1,...,n, are also
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freely chosen. However, extensive simulation studies have
revealed that these selections may be influential to the
overall closed-loop system performance. Specifically, large
w; and high-valued control gains can lead to significant or
excessively large control effort in the transient, while exhibit-
ing satisfactory performance at steady-state. On the other
hand, opposite selection usually results in proper transient
behavior and oscillatory steady-state evolution. Therefore,
careful selection of all design parameters may positively
influence the quality of the output tracking error, and the
demanded control effort.

Remark 5: Sparse communication of the system state has
significant impact on the desired steady-state accuracy. As
(7b) indicates, loose communication, i.e., larger step-size
values 0§, ;, leads to a more relaxed performance bound on
the steady state. In contrast, frequent communication results
in a steady state error that is bounded closer to zero. Notice
that no such issue appears on the controller output side, thus
making the selection of the step-size d,, more robust.

Remark 6: As Remark 3 underlines, prescribed perfor-
mance at the output is enforced if we establish |e(t)| < p1 (1),
for all ¢ > 0, or stated otherwise if |z1(¢) — ao(t)| < p1(t),
for all ¢ > 0. In that direction, notice that if |;(¢)] < 1,
for all t > 0 then owing to (6a) it holds —p;(t) + 0, <
xl(tgkz) — i1 < pl(t) — 5171', forallt > 0, 1 = 1,...771
However, owing to (4a) we straightforwardly conclude that
pi(t) = 0z, < pi(t) = Aai(t)0a,i and —p;(t) — Agi ()0, <
—pi(t) + 6y, for all ¢ > 0 and ¢ = 1,...,n. Hence,
—pi(t) < Jf,‘(tsk’i) + /\L,l(t)éw - ai_l(t) < pi(t), which
owing to (5a) yields |z;(t) —a;—1(t)| < pi(t), forallt >0,
i = 1, ...,n. Therefore, to establish prescribed performance,
despite the presence of event-triggered communication, it
suffices to guarantee |¢;(¢)| < 1,forallt > 0,i=1,...,n. A
thorough examination of the 7T'-function reveals that the latter
is achieved if ¢; are proven bounded. As a consequence, by
(6b), we interpret the problem as minimizing the quadratic
and positive definite functions 75 with respect to |¢;] < 1
for all ¢ > 0. Hence, the proposed controller operates
similarly to barrier functions in constrained optimization,
admitting high negative or positive values depending on
whether &; approaches 1 or -1, thus restricting the evolution
of &;(t) inside its constrained region.

IV. MAIN RESULTS

For all i =1,...,n — 1 let us define
fgnin(t) _ ({L‘Z(t) _ 530 i = amm(t))/(pl( ) _ 51,2’); (8a)
§r(t) = (i(t) + 020 — a5 (1)) / (pi(t) — 02,4). (8b)
Moreover,
T (t)—=04,n azli" t
min _ on(t) =64 i )aSgn(g) =1
gn (t) - wn(t) Oz n_a:’,?af(t) (9a)
on()—0m.m 78gn(g) =-1
Tn () +02,n —ay?7 (1)
s 7 (O ,sgn(g) =1
En " () = 9§ w0 (6480 m—amin (1) (9b)
pn(t)_ér,n 759n(g) - 1

where aZ'"(t) = aJ***(t) = y4(t) and

al™m(t) = fkis?“"(t), al™(t) = —k;e"**(t), (10a)
an™ (1) = —sgn(g)kaep ™™ (t), (10b)
amam(t) — 759”(9)]{:7 ma:z:( ) (IOC)
el (t) = T(EM™ (1), i=1,. (10d)
el (t)y = T(E (1)), i = 1, vy T (10e)
A closer look to (5a), (6a), (8) and (9) reveals that:
EM() S &it) S EM(t), i =1,..,m, VE>0. (11)

Differentiating £, £M9% j = 1,...,n — 2, we obtain:
mln = hml’ll — mzn i t _ 6wl
51 % pz(t) — 5%1_ ifz-&-l (p +1( ) , +1)
+0pir +al"" =AM = € i), (12)
: 1
’_m,aw — hma;r — maw i t _ 511
5 pi(t)_(sxi[ i+1 (P +1( ) ,+1)
— 6 i+ amaac _ a;rialac _ gm(m ] (12b)
Similarly,
. . 1 .
ot = bt = ————— [ (P () —
gn 1 1 pnfl(t)_(sa:n 1[5 (p () , )
+ 00+ apy — s — & pa 1 ()], (13a)
. 1
miz:c = h:lnfl = ;naw n t) — 6z,n
6 1 1 P 1() 5%n 1[5 (p() )
—Oan +ayy — a3y — &7 pu—1(t)], (13b)
L ) + _ ’Yl min n
i i _ J@) 00—~
pn(t) 5£ n
. + _ 'Y2 max "
gmaz . pmaz _ f(z)+g(x)v—a)> | —&r*p (13d)
Pn(t) - 5%"
where 71,72 € {min, mazx} with v, = min,y2 = max for
sgn(g) =1 and 1 = mazx, v2 = min for sgn(g) = —1.

Define & = [¢n ... .gman)T ¢ R27, There-
fore, the closed-loop system can be written as:

£=h(&t) = [Rm ... LRt e R (14)

Let Q¢ = (—1,1)?" C R?". The main results of this work
are summarized in the following theorem.

Theorem 1: Consider system (1), a desired trajectory
ya4(t) and Assumptions 1,2. Consider also the non-periodic
communication mechanisms (2). The controller (6),(7) guar-
antees the solution of the ETPPC problem.

Proof: The proof of Theorem 1 consists of two parts. In
Part A, the existence and uniqueness of a maximal solution
£(t) : [0, Timaz) — Q¢ of (14) for some Tpner € (0, +00]
is ensured. Subsequently, in Part B, a recursive procedure is
followed to prove that £ evolves strictly within a compact
subset of Q¢ for all ¢ € [0, Tynq,) and, eventually, following
standard arguments, we extend T,,q, t0 +00.

Part A: The set )¢ is open and nonempty. Owing to
(7a), it is obtained that £(0) € €. The existence of the
piecewise continuous signal v in the right-side of (13c) and
(13d) results in the discontinuous closed loop system (14).
However, deploying the reasoning of Remark 2, we deduce

gzmn ginax .

min 3max
pin pmaz
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the existence of a unique maximally extended solution of
(14) for any initial condition in a time interval [0, 7,4, ) for
SOMe Timay € (0,+00]. Therefore, the signals (8)-(10) are
well-defined for all ¢ € [0, Tynaz)-

Part B: The analysis follows n-steps.

Step 1 (i = 1,t € [0,7nas)): Consider the following
positive definite and radially unbounded Lyapunov function
me = ; min® . By (10d) and (12a) the time derivative

f min 1 min _ i 25mm min
of Yy yields Vi g mo al () =

0z,2) + 02 + af"™ — g — 5"“",01] Let us define /1 (t) =
gmzn(pz() — 5,372) + 1) z,2 — yd — ginznpl_ Notice that

min ¢min ¢ (—1,1) for all t € [0, Tynax) and the signals
P2, pl,y'd, 05,2 are bounded by construction. Thus, through
the application of the Extreme Value Theorem, there exists a
constant F; > 0 such that |Fy (¢)| < Fy, forall t € [0, Traz)-
Thus, owing to (10a), we obtain

. . 2€min
szn: A21 [F()—k&mln}
A (o) — ) '
2|€mzn| _ .
< . Fy — ky|lemn ,
S TN e

where owing to (7b) it holds p;i(t) > 0,1 for all ¢ €
[0, Trnaz ). At this point, notice that p$° can be chosen in
a proper way, such that

— &M < My, My € (0,1).

’H’MIE

(16)

Thus, by substituting (8) on (16), we obtain that p; () should
satisfy

((2+ Mq)dz1) /My < pP° < pi(2).

Observe that V™" < 0 when | (t)| > F,/k;. Hence,
there exists a constant " > 0 such that:

e ()] < & = maz{[e"(0)], Fi /ka},

a7)

(18)

for all ¢ € [0, Tynas ). Taking the inverse of the T-function
we deduce

~1<T7 (-

mm) 517”“( ) < T (7mm) < 1 (19)

for all ¢t € [0,Tmas). Owing to (16), we conclude the

existence of a positive constant d; such that
emaT(t) — g (t) < dj. (20)

From (18), (20) and the utilization of the inverse T-function,
it is straightforwardly obtained that there exists a positive
constant £7*** such that

1T () < T E) <1, QD)
for all ¢ € [0, Tynaz ). From (11), (19) and (21) we obtain
( —mzn) < 51( ) < T (—maw) < 1 (22)

mam

( *7”&%)

-1<T"

By (10a) we conclude the boundedness of a"”” and af

Moreover, owing to the continuity of h7*" in (12a) and
the Extreme Value Theorem, we deduce the existence of
a constant h; > 0 such that |h7""| < h;. Thus, by
differentiating (10) we deduce the boundedness of amm

Similarly, we can conclude the boundedness of a7"**.

Step i (1 = 2,. —2,t € [0, Trmax)): Defining V" =
2
Lemin”, selecting pf" such that

(24 M) — a5 (1) + a7 () /M, < pi,

with M; € (0,1) and following the same line of analysis as
in Step I, we can directly conclude the existence of positive
constants 5’»"”‘ and €% so that, for all ¢ € [0, Tyaq),

( —’mm) < g ( ) < T (—mal) < 1

(23)

-1<T" (24)

holds true, and further that a;-m", a;*er, d;"m and a;***
are bounded for all ¢t € [0, 7,4, ). Notice that in (23) the
term —a™%" () + a7 (t) is positive owing to (10), (11) and
the strictly increasing property of T-function. Moreover, it
has been proven bounded in Step i-1 and thus there exists a
positive constant a@;_1 such that —a™%% (t)+a™ " (t) < @;_1.
Step n-1 (i = n—1,t € [0,Timaz)): We define VM0 =
%5;””{2 and we select p° | such that ((24 M,,—1)0q,—1 —
Qs () + () M-y < 32y,

Let sgn(g) = 1. Utilizing (13a) and following the same line
of analysis as in previous steps, we deduce the existence of

positive constants &7, €M% such that, for all ¢ € [0, Tqz),
(—fmaz) < 1 (25)

Now let sgn(g) = —1. The substitution of (13a) and
i 2emin ;

(10a) leads to V™ = P — [Fhm(t) —
kyn—1e7'27], where Fi(t) = &7 (pn(t) = 0z,n) + Ozn —
amin — ¢min ;1 (t), which can be proven bounded. At this
point, we distinguish the following scenarios: a) — 1 <
gmin. < gmar < 0, b)) 0 < M < mar < 1 and
c) —1<Emn <0< Emar <.

Scenario a) Notice that in this case, owing to the strictly in-
creasing property of T-function, there exists a time function
c1(t) € [1,400) such that e™% = ¢;(t)e™%. Therefore,
following similar analysis as in previous steps, €7 is
proven bounded and, due to the selection of p;° ;, it holds
that there exists a positive constant £7* such that:

_Z”q) < gmzn( )a vt € [OaTm(mﬁ)-

1< T (=E™) < &ua(t) T

<T (- (26)

Scenario b) Similarly, there exists a time function ¢ (t) €
[1,400) such that €™ = ¢; ()™ Thus, e™" is, firstly,
proven bounded and, owing to the selection of pp° |, we
conclude the existence of a positive constant £°*7 such that:

ner) <7

n—1

L(Emasy < 1, Yt € [0, Trmaz)- 27)

Scenario c) Owing to the selection of p>° ; and the utilization
of (11), we directly deduce, for all ¢t € [0, Timaz),

1< -M, 1< gn—l(t) <M, 1<1. (28)

Therefore, each scenario leads also to the boundedness of
amin . qma® g™ and @™ for all t € [0, Timaz)-

Step n (i = n,t € [0, TmW;)) We consider the positive
definite and radially unbounded function V" = 1emin®,
Let sgn(g) = 1. Utilizing (5b),

(10d) and (13c),
the time derivative of V™" yields V™" =
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2emin _ _
oo @+ g@u = g@)Ar(t)d
ap mmpn] where, owing to (7b), it holds
pn(t) > Opp, for all t € [0, Tm(w) Define
F,(t) = f(x) — g(x)\u(t)d, — a™n — ¢minj - Notice

that 7" € Q¢ for all ¢t € [0,Tymas), O, is constant and
Au(t), ppn are bounded by construction. Therefore, by the
Extreme Value Theorem, we can deduce the existence of
positive constants f* g*, g« such that |f(1)] < f* a
0 < g« < g(-) < g*. Furthermore, ¢ is bounded from
Step n-1. Thus, there exists a constant F,, > 0 such that
|F(t)| < F,, for all t € [0, Tyqez) and owing to (6d) we
obtain
2e7V" [Fu(t) — g(a)sgn(g)knen)
(1- §7Tln2)(pn(t) — Oz,n)
2[Fn|en”™”| — |g(@)|knenen™]
(1- fglmrz)(pn(t) — 0un) .

rmin __
v =

< (29)

To enforce

max

— & < My, My € (0,1), (30)

notice that utilizing (9a) and (9b), we conclude:
(2000 — ar®F (1) + a5 (1)) / (pn(t) = an) < M.
Thus, p,(t) should satisfy:
(2 + Mo)de = ai® () + a1 (1)) /Mn < pu(t). B1)
Hence, (31) is satisfied and therefore (30) is enforced if
P50 > (24 Mp)dgn + @n_1) /M. (32)

As in Step i, we deduce that —a™ (t) + a™"(t) > 0, for
which —a™%% () + a1 (t) < @p—1 with @,—1 > 0 also
holds.

To proceed, we distinguish the following scenarios: a) —1 <
EMin < & < €Mt <, ) 0 < EMin < €, < £mat < 1 and
c) —1<Emin << mar <,

Scenario a) In this case, what needs to be proven is that 5:{””
does not approach -1. In that direction notice that owing
to the strictly increasing property of T'-function and (6b),
(10d), (10e) there exist time-functions c¢;(t), c2(t) € [1, +00)
such that ™" = ¢;(t)e,, and &, = ca(t)e™®. Thus, (29)
becomes Vmn < 21 (t)ea (1) || [ \gu>|knC2(t)\e”“|] .

. - (1—€7m%) (. (£)—62,n)
Hence, V"™ < 0 when [e***(t)| > F,,/(g«kn). Therefore,

there exists a constant £);'*® > 0 such that:

len (@) < & == max{|eg**(0)], Fn /(g+kn) }-

Owing to (30), it is straightforwardly obtained that there
exists a positive constant d,, such that:

£maT () — E?i”(t) < dy, YVt € [0, Trmaz)-

n

(33)

(34)

From (33) and (34), we can deduce the existence of a positive
constant £7*" such that

—00 < —EMIN < M (1) Yt € [0, Trmas) (35)
and by applying the inverse T-function we conclude that

—1 < T(—&m™m) < €M (t), Yt € [0, Trmaz)- (36)

By (10b) and (10c), @™ and a™* can be proven bounded
as well.
Scenario b) In this case we have to guarantee that &'**
evolves away from 1. Similarly, by utilizing the fact that
in this case €™ = ¢i(t)e, and &, = co(t)em™”
with ¢ (¢), cz(t) e[l ,+00), we can dj,duce from (29)
min 2fen ™| | F —Ig(x)lk ce2(t)len |
that Vo™ S T a0,
Vmin < () when |e™(t)| > F),/(g«k»). Thus, there exists

a constant 7" > () such that:

()] < pin = maz{lep (0

, which reveals

At this point, owing to (30) and the boundedness of &
we can straightforwardly conclude the existence of a posmve
constant £'** such that

mzn

emar(t) < eme® < +oo, Vt € [0, Tmax) (37)
holds. Taking the inverse 7T-function we deduce
mar () < TTHEM) < 1, Vt € [0, Trax)- (38)

By (10b) and (10c), ™" and a*** remain bounded as well
in the aforementioned time interval.
Scenario c) Owing to (30), we directly deduce £*** < M,,+

gmin < M, < 1and —1 < —M,, < £maez — M, < £min,
Hence, deploying (11), we conclude
—1< =M, <&(t) <M, <1. (39)

Similarly for sgn(g) = -1, utilizing (13c), we define
Fo(t) = f(2)—g(2) Ao ()0 — @ — €M, Furthermore,
with the use of (9a) and (9b), we can obtain

((2+ M) dun + i ®f () — an (t)]) /M < pF-

Following the same line of analysis as in case of positive
sgn(g), we can prove that

—1< =M, <&(t) < M, <1,

(40)

(41)

which reveals that &, (t) evolves strictly within (—1,1).

At this point, what remains to be shown is that 7,4, = +00.
Owing to (22), (24)-(28), (36), (38), (39) and (41) we con-
clude that all &;, ¢ = 1, ..., n, evolves strictly within (—1,1).
Therefore, following standard arguments ([21],Theorem 3.3),
we can extend the solution to +o0o. The presented analysis
implies that all signals in the closed-loop remain bounded
and the output tracks the desired trajectory with prescribed
performance, thus completing the proof of Theorem 1.

V. SIMULATION RESULTS

To illustrate the effectiveness of the proposed control, we
perform simulation studies on the nonlinear system given by:

S.Cl = X2
By = xo(wy + sin(zy)) + (1 +23)v 42)
y=a

System (42) is in Brunovsky canonical form and satisfies
Assumption 1. The system initially begins at x1(0) =
22(0) = 0. For M; = 0.05 and given the step-size of the
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event-triggered mechanism applied on x; as 6,1 = 0.002,
the control target is the system output y to track the desired
trajectory yq(t) = §sin(0.57t) + 5 sin(0.47t) for all £ > 0,
with steady-state error no more than 0.082 and minimum
convergence rate as dictated by the exponential e3¢, Thus,
we select py(t) = (4 — 0.082)e~3" + 0.082. We choose the
design elements d, o> = 0.02, §, = 0.5, My = 0.5, a3 =5
and po(t) = (15 — 10.1)e~2* 4 10.1. The control gains are
selected k1 = 2.5 and k2 = 15. The proposed control scheme
(6) is applied on (42). The output tracking error y — yq
as well as the intermediate error o — a; alongside their
corresponding performance bounds are presented in Fig. la
and 1b, while the required control effort is illustrated in Fig.
1c. Hence, all signals of the closed-loop remain bounded and
prescribed performance is achieved.

5
xr —91
-3 \\
| — - =Py Py
<0 —==== - -
I i D&
g 02 1

-5 ] 1 2 3 4 L5 6

0 1 2 3 4 5 6
t [sec]
(@)

20 —e,
tfi‘_ "‘~-‘_____ = =P2 P
<0
[T e R
~N L,,—‘

(0]
-20 L L L L
1 2 3 4 5 6
t [sec]
(®)
5

—u
= W
triggering of event mechanism

t [sec]

(©)

Fig. 1: (a) The tracking error along with its performance
bounds; (b) The intermediate error alongside its correspond-
ing performance bounds; (c) The required control effort.

VI. CONCLUSIONS

In this work we proposed a state-feedback controller to
guarantee predefined bounds on the maximum steady-state
error and minimum convergence rate of the output tracking
error, for the class SISO uncertain systems in Brunovsky
canonical form under non-periodic communication. The pro-
posed control scheme is considered a low-complexity solu-
tion as it is static, it does not incorporate any prior knowledge
of the system’s nonlinearities and it does not utilize any
approximation structures to obtain such information. No hard
calculations, analytic or numerical, are required to produce
the control signal. The theoretical findings are clarified and
verified through simulation studies.
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