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Abstract— In this work, we consider the problem of designing
tracking controllers for SISO uncertain high relative degree
systems in Brunovsky canonical form in the presence of non-
periodic communication. The proposed control scheme is static,
and requires no hard calculations, analytic or numerical,
to produce the control signal. Event-triggered mechanisms
are considered in both sensor-to-controller and controller-to-
actuator channels, yet the enforcement of prescribed perfor-
mance bounds in terms of steady-state accuracy and con-
vergence rate is ensured. No prior knowledge or estimation
structure regarding system nonlinearities are required and no
high-order derivatives of the desired output trajectories are
incorporated in the controller design. Simulation results clarify
and verify the theoretical findings.

I. INTRODUCTION

Networked control systems (NCSs) are comprised of
spatially distributed components that communicate over a
digital network. Despite their significant advantages that
include modularity, easy of maintenance, reduced cabling
and cost, the presence of the underlying communication
network introduces several technological barriers, mainly
attributed to time delays, packet losses and restrictions on
the available bandwidth [1], [2]. As an effect, issues related
to performance degradation, or even instability, typically ap-
pear. The problems become even more demanding when the
controlled system is nonlinear. In the literature, an effective
way to tackle bandwidth limitations is to incorporate non-
periodic communication, leading to the emergence of event-
triggered control (ETC) [3].

The majority of works in the area of controlling non-
linear systems using ETC consider the presence of event-
triggered communication either in the controller-to-actuator
(CtA) [4]-[7] or in the sensor-to-controller (StC) [8], [9]
channels and study closed-loop system stability. Surprisingly,
the general configuration where event-triggered communi-
cation is present in both channels is rarely considered.
This is mainly attributed to the fact that this intermittent
communication at the StC channel formulates an impulsive
nonlinear system making control design even more difficult,
which escalates further when events satisfaction enables
information exchange in the CtA channel as well. In this
direction, global output regulation is achieved for relative
degree one nonlinear systems in [10], while in [11] an event-
triggered controller equipped with a parameter estimator
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was utilized to address the stabilization problem for a class
of strict-feedback systems. In [12], dynamic filtering was
employed to enable the use of backstepping, developing
a novel control scheme to guarantee the boundedness of
all signals in the closed loop, while introducing adjustable
transient performance, in the mean square error sense, via
appropriate selection of design parameters.

Nevertheless, the problem of enforcing prescribed perfor-
mance characteristics in the sense of maximum overshoot,
minimum convergence rate and maximum steady-state error
when tracking an output reference trajectory, despite the
presence of event-triggered communication, has been typ-
ically overlooked. Works addressing this highly significant
in applications issue consider event-triggered communication
only at the CtA channel and the proposed solutions utilize
the prescribed performance control (PPC) methodology. PPC
was pioneered in [13] and since then has been evolved to
design controllers for more complex system structures [14],
[15], see also [16] and references therein. Event-triggered
PPC designs include [6], where the tracking problem was
considered for a class of SISO strict-feedback systems having
unknown control directions. To reduce further the demanded
bandwidth, the proposed solution was further extended to the
case of binary information transmission in the CtA channel.
An asymmetric barrier Lyapunov function dynamic surface
controller was designed in [17]. For a class of uncertain pure-
feedback systems an adaptive fuzzy ETC was developed in
[18], employing state observers to estimate the unmeasured
state variables. A robust adaptive fuzzy event-triggered PPC
was proposed in [19], for a class of strict-feedback systems.
In [20], an adaptive event-triggered PPC was designed to
handle a class of uncertain strict-feedback systems in the
presence of input saturation.

Motivated by the aforementioned observations, and utiliz-
ing the PPC design methodology, we address, in this work,
the problem of establishing not only the boundedness of all
signals in the closed-loop but additionally of enforcing pre-
scribed transient and steady-state error bounds on the output
tracking error. The class of nonlinear systems we consider
are high relative degree in Brunovsky canonical form. For the
system nonlinearities we assume they are locally Lipschitz.
However, their analytic expressions are considered unknown.
No approximation structures (i.e., neural networks, fuzzy
systems) and no adaptive techniques are incorporated to
acquire such knowledge. No derivatives of the desired output
trajectory are utilized. Information exchange in both CtA and
StC channels is subject to event-triggered communication.
The proposed control scheme is static involving no hard

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1170



calculations, either analytic or numerical, thus resulting in
a low complexity controller.

II. PROBLEM STATEMENT

Consider single-input single-output systems of n-th order
described as follows:

ẋi = xi+1, i = 1, ..., n− 1

ẋn = f(x) + g(x)υ

y = x1

(1)

where xi ∈ R for i = 1, ..., n are the states of the system,
with x = [x1 . . . xn]

T ∈ Rn. Moreover, υ ∈ R is the control
input that results from an event-triggered mechanism applied
on the actual controller output u, y ∈ R is the output of the
system and f : Rn → R, g : Rn → R are locally Lipschitz
nonlinear functions with unknown analytical expressions.

Assumption 1: The function g(·) is either strictly positive
or strictly negative and its sign denoted with sgn(g) is
considered known.

Assumption 2: The desired trajectory yd(t) : R+ → R is
known, continuously differentiable and bounded function of
time with bounded, yet unknown, first derivative.

Remark 1: Assumption 1 imposes a sufficient global con-
trollability condition on (1). Furthermore, from Assumption
2, we only require knowledge of the desired trajectory yd
and none of its high order derivatives. Therefore, we can
also consider applications where the desired trajectory is not
a priori known but it is measured.
In this paper we consider event-triggered system-controller
communication. Specifically, for all i = 1, ..., n and k, l ∈ N
we define the event conditions:

tsk+1,i = inf{t > tsk,i : |xi(t)− xi(tsk,i)| ≥ δx,i}, (2a)
tul+1

= inf{t > tul
: |u(t)− u(tul

)| ≥ δu}, (2b)

where tsk+1,i and tul+1
denote the time instants (2a) and

(2b) are satisfied respectively, and δx,i, δu > 0 are constant
step-sizes. Event-triggered mechanism (2a) is applied on
the system state, while (2b) is applied on the controller
output. The corresponding state signal remains constant for
all t ∈ [tsk,i, tsk+1,i) at the value acquired at t = tsk,i and,
similarly, the controller output signal remains constant for
all t ∈ [tul

, tul+1
) at the value acquired at t = tul

. Owing to
(2) it holds:

|xi(t)− xi(tsk,i)| < δx,i, ∀t ∈ [tsk,i, tsk+1,i), (3a)
|u(t)− u(tul

)| < δu, ∀t ∈ [tul
, tul+1

). (3b)

Hence, there exist λx,i(t) and λu(t) satisfying the properties:

λx,i(tsk,i) = 0, λx,i(tsk+1,i) = ±1, |λx,i(t)| ≤ 1,

∀t ∈ [tsk,i, tsk+1,i), (4a)
λu(tul

) = 0, λu(tul+1
) = ±1, |λu(t)| ≤ 1,

∀t ∈ [tul
, tul+1

), (4b)

such that

xi(t) = xi(tsk,i
) + λx,i(t)δx,i, ∀t ∈ [tsk,i, tsk+1,i), (5a)

u(t) = u(tul
) + λu(t)δu, ∀t ∈ [tul

, tul+1
). (5b)

Remark 2: The presence of event-triggered communica-
tion formulates a discontinuous closed-loop system; thus
raising questions related to the appearance of chattering and
the existence of solution. However, the incorporation of the
proposed event-triggered mechanisms (2) efficiently avoids
both, as they introduce a strictly positive dwell time between
any two consequent transitions.
The problem addressed in this paper reads as follows.
Problem (Event-triggered Prescribed Performance Control,
ETPPC): Consider system (1), satisfying Assumption 1,
with system state and controller output being transmitted
only at discrete time instants issued by the event-triggered
mechanisms (2). Consider also desired output trajectories
yd(t) satisfying Assumption 2 and define the output tracking
error e(t) = y(t)− yd(t). Given any initial condition x(0) ∈
Rn, construct a continuously differentiable, strictly positive,
decreasing and bounded time-function ρ(t), and design a
state-feedback controller such that all signals in the closed-
loop remain bounded and |e(t)| < ρ(t) for all t ≥ 0.

Remark 3: Enforcing |e(t)| < ρ(t) for all t ≥ 0
practically introduces prescribed transient and steady-state
performance attributes on the output tracking error. This can
be straightforwardly verified when considering exponentially
decaying time-functions ρ(t) = (ρ0 − ρ∞)e−µt + ρ∞. As it
was first explained in [13], where PPC was pioneered, the
parameter ρ∞ > 0 determines the maximum allowable error
at steady-state, while µ ≥ 0 introduces the required minimum
convergence rate.

III. CONTROL DESIGN

Define the auxiliary, strictly increasing function T :
(−1, 1) → R satisfying limζ→1− T (ζ) = +∞ and
limζ→−1+ T (ζ) = −∞ of the form T (ζ) = ln

(
(1+ζ)/(1−

ζ)
)
. Given the desired trajectory yd satisfying Assumption

2 and any initial condition x(0) ∈ Rn, we propose the
following recursive control design procedure. For t ⩾ 0:

ξi(t) =
xi(tsk,i)− ai−1(t)

ρi(t)− δx,i
, i = 1, ..., n, (6a)

εi(t) = T (ξi(t)), i = 1, ..., n, (6b)
ai(t) = −kiεi(t), i = 1, ..., n− 1, (6c)
an(t) = u(t) = −sgn(g)knεn(t), υ(t) = u(tul

), (6d)

where a0 ≡ yd. In (6) ki > 0, i = 1, ..., n are control gains
and ρi(t) = (ρ0i − ρ∞i )e−µit + ρ∞i with parameters µi ≥ 0
and ρ0i , ρ

∞
i > 0 satisfying:

ρ0i > |xi(0)− λx,i(0)δx,i − ai−1(0)|+ δx,i, (7a)

ρ∞i ≥
(
(2 +Mi)δx,i + āi−1

)
/Mi. (7b)

Moreover, ā0 = 0, āi−1, i = 2, ..., n, are positive constants
and Mi ∈ (0, 1), i = 1, ..., n,.

Remark 4: As clarified in Remark 3, only ρ1(t) is re-
sponsible for enforcing prescribed performance attributes on
the output tracking error. The rest ρi(t), i = 2..., n, are not
directly connected to the aforementioned task. Therefore,
they can be arbitrarily selected provided their parameters
satisfy (7). The control gains ki, i = 1, ..., n, are also
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freely chosen. However, extensive simulation studies have
revealed that these selections may be influential to the
overall closed-loop system performance. Specifically, large
µi and high-valued control gains can lead to significant or
excessively large control effort in the transient, while exhibit-
ing satisfactory performance at steady-state. On the other
hand, opposite selection usually results in proper transient
behavior and oscillatory steady-state evolution. Therefore,
careful selection of all design parameters may positively
influence the quality of the output tracking error, and the
demanded control effort.

Remark 5: Sparse communication of the system state has
significant impact on the desired steady-state accuracy. As
(7b) indicates, loose communication, i.e., larger step-size
values δx,i, leads to a more relaxed performance bound on
the steady state. In contrast, frequent communication results
in a steady state error that is bounded closer to zero. Notice
that no such issue appears on the controller output side, thus
making the selection of the step-size δu more robust.

Remark 6: As Remark 3 underlines, prescribed perfor-
mance at the output is enforced if we establish |e(t)| < ρ1(t),
for all t ≥ 0, or stated otherwise if |x1(t)− a0(t)| < ρ1(t),
for all t ≥ 0. In that direction, notice that if |ξi(t)| < 1,
for all t ≥ 0 then owing to (6a) it holds −ρi(t) + δx,i <
xi(tsk,i) − ai−1 < ρi(t) − δx,i, for all t ≥ 0, i = 1, ..., n.
However, owing to (4a) we straightforwardly conclude that
ρi(t)− δx,i < ρi(t)− λx,i(t)δx,i and −ρi(t)− λx,i(t)δx,i <
−ρi(t) + δx,i, for all t ≥ 0 and i = 1, ..., n. Hence,
−ρi(t) < xi(tsk,i) + λx,i(t)δx,i − ai−1(t) < ρi(t), which
owing to (5a) yields |xi(t)−ai−1(t)| < ρi(t), for all t ≥ 0,
i = 1, ..., n. Therefore, to establish prescribed performance,
despite the presence of event-triggered communication, it
suffices to guarantee |ξi(t)| < 1, for all t ≥ 0, i = 1, ..., n. A
thorough examination of the T -function reveals that the latter
is achieved if εi are proven bounded. As a consequence, by
(6b), we interpret the problem as minimizing the quadratic
and positive definite functions 1

2ε
2
i with respect to |ξi| < 1

for all t ≥ 0. Hence, the proposed controller operates
similarly to barrier functions in constrained optimization,
admitting high negative or positive values depending on
whether ξi approaches 1 or -1, thus restricting the evolution
of ξi(t) inside its constrained region.

IV. MAIN RESULTS

For all i = 1, ..., n− 1 let us define

ξmin
i (t) =

(
xi(t)− δx,i − amin

i−1 (t)
)
/
(
ρi(t)− δx,i

)
, (8a)

ξmax
i (t) =

(
xi(t) + δx,i − amax

i−1 (t)
)
/
(
ρi(t)− δx,i

)
. (8b)

Moreover,

ξmin
n (t) =


xn(t)−δx,n−amin

n−1(t)

ρn(t)−δx,n
, sgn(g) = 1

xn(t)−δx,n−amax
n−1 (t)

ρn(t)−δx,n
, sgn(g) = −1

(9a)

ξmax
n (t) =


xn(t)+δx,n−amax

n−1 (t)

ρn(t)−δx,n
, sgn(g) = 1

xn(t)+δx,n−amin
n−1(t)

ρn(t)−δx,n
, sgn(g) = −1

(9b)

where amin
0 (t) = amax

0 (t) ≡ yd(t) and

amin
i (t) = −kiε

min
i (t), amax

i (t) = −kiε
max
i (t), (10a)

amin
n (t) = −sgn(g)knε

min
n (t), (10b)

amax
n (t) = −sgn(g)knε

max
n (t), (10c)

εmin
i (t) = T (ξmin

i (t)), i = 1, ..., n, (10d)
εmax
i (t) = T (ξmax

i (t)), i = 1, ..., n. (10e)

A closer look to (5a), (6a), (8) and (9) reveals that:

ξmin
i (t) ≤ ξi(t) ≤ ξmax

i (t), i = 1, ..., n, ∀t ≥ 0. (11)

Differentiating ξmin
i , ξmax

i , i = 1, ..., n− 2, we obtain:

ξ̇min
i := hmin

i =
1

ρi(t)− δx,i
[ξmin

i+1 (ρi+1(t)− δx,i+1)

+ δx,i+1 + amin
i − ȧmin

i−1 − ξmin
i ρ̇i], (12a)

ξ̇max
i := hmax

i =
1

ρi(t)− δx,i
[ξmax

i+1 (ρi+1(t)− δx,i+1)

− δx,i+1 + amax
i − ȧmax

i−1 − ξmax
i ρ̇i]. (12b)

Similarly,

ξ̇min
n−1 := hmin

n−1 =
1

ρn−1(t)− δx,n−1
[ξmin

n (ρn(t)− δx,n)

+ δx,n + aγ1

n−1 − ȧmin
n−2 − ξmin

n−1ρ̇n−1(t)], (13a)

ξ̇max
n−1 := hmax

n−1 =
1

ρn−1(t)− δx,n−1
[ξmax

n (ρn(t)− δx,n)

− δx,n + aγ2

n−1 − ȧmax
n−2 − ξmax

n−1 ρ̇n−1(t)], (13b)

ξ̇min
n := hmin

n =
f(x) + g(x)υ − ȧγ1

n−1 − ξmin
n ρ̇n

ρn(t)− δx,n
, (13c)

ξ̇max
n := hmax

n =
f(x) + g(x)υ − ȧγ2

n−1 − ξmax
n ρ̇n

ρn(t)− δx,n
(13d)

where γ1, γ2 ∈ {min,max} with γ1 = min, γ2 = max for
sgn(g) = 1 and γ1 = max, γ2 = min for sgn(g) = −1.
Define ξ = [ξmin

1 . . . ξmin
n ξmax

1 . . . ξmax
n ]T ∈ R2n. There-

fore, the closed-loop system can be written as:

ξ̇ = h(ξ, t) = [hmin
1 . . . hmin

n hmax
1 . . . hmax

n ] ∈ R2n. (14)

Let Ωξ = (−1, 1)2n ⊂ R2n. The main results of this work
are summarized in the following theorem.

Theorem 1: Consider system (1), a desired trajectory
yd(t) and Assumptions 1,2. Consider also the non-periodic
communication mechanisms (2). The controller (6),(7) guar-
antees the solution of the ETPPC problem.
Proof: The proof of Theorem 1 consists of two parts. In
Part A, the existence and uniqueness of a maximal solution
ξ(t) : [0, τmax) → Ωξ of (14) for some τmax ∈ (0,+∞]
is ensured. Subsequently, in Part B, a recursive procedure is
followed to prove that ξ evolves strictly within a compact
subset of Ωξ for all t ∈ [0, τmax) and, eventually, following
standard arguments, we extend τmax to +∞.
Part A: The set Ωξ is open and nonempty. Owing to
(7a), it is obtained that ξ(0) ∈ Ωξ. The existence of the
piecewise continuous signal υ in the right-side of (13c) and
(13d) results in the discontinuous closed loop system (14).
However, deploying the reasoning of Remark 2, we deduce
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the existence of a unique maximally extended solution of
(14) for any initial condition in a time interval [0, τmax) for
some τmax ∈ (0,+∞]. Therefore, the signals (8)-(10) are
well-defined for all t ∈ [0, τmax).
Part B: The analysis follows n-steps.
Step 1 (i = 1, t ∈ [0, τmax)): Consider the following
positive definite and radially unbounded Lyapunov function
V min
1 = 1

2ε
min2

1 . By (10d) and (12a) the time derivative
of V min

1 yields V̇ min
1 =

2εmin
1

(1−ξmin2
1 )(ρ1(t)−δx,1)

[ξmin
2 (ρ2(t)−

δx,2) + δx,2 + amin
1 − ẏd − ξmin

1 ρ̇1]. Let us define F1(t) =
ξmin
2 (ρ2(t) − δx,2) + δx,2 − ẏd − ξmin

1 ρ̇1. Notice that
ξmin
1 , ξmin

2 ∈ (−1, 1) for all t ∈ [0, τmax) and the signals
ρ2, ρ̇1, ẏd, δx,2 are bounded by construction. Thus, through
the application of the Extreme Value Theorem, there exists a
constant F̄1 > 0 such that |F1(t)| ≤ F̄1, for all t ∈ [0, τmax).
Thus, owing to (10a), we obtain

V̇ min
1 =

2εmin
1

(1− ξmin2

1 )(ρ1(t)− δx,1)
[F1(t)− k1ε

min
1 ]

≤ 2|εmin
1 |

(1− ξmin2

1 )(ρ1(t)− δx,1)
[F̄1 − k1|εmin

1 |],

where owing to (7b) it holds ρ1(t) > δx,1 for all t ∈
[0, τmax). At this point, notice that ρ∞1 can be chosen in
a proper way, such that

ξmax
1 − ξmin

1 ≤ M1, M1 ∈ (0, 1). (16)

Thus, by substituting (8) on (16), we obtain that ρ1(t) should
satisfy (

(2 +M1)δx,1
)
/M1 ≤ ρ∞1 ≤ ρ1(t). (17)

Observe that V̇ min
1 ≤ 0 when |εmin

1 (t)| ≥ F̄1/k1. Hence,
there exists a constant ε̄min

1 > 0 such that:

|εmin
1 (t)| ≤ ε̄min

1 := max{|εmin
1 (0)|, F̄1/k1}, (18)

for all t ∈ [0, τmax). Taking the inverse of the T -function
we deduce

−1 < T−1(−ε̄min
1 ) ≤ ξmin

1 (t) ≤ T−1(ε̄min
1 ) < 1, (19)

for all t ∈ [0, τmax). Owing to (16), we conclude the
existence of a positive constant d1 such that

εmax
1 (t)− εmin

1 (t) ≤ d1. (20)

From (18), (20) and the utilization of the inverse T -function,
it is straightforwardly obtained that there exists a positive
constant ε̄max

1 such that

−1 < T−1(−ε̄max
1 ) ≤ ξmax

1 (t) ≤ T−1(ε̄max
1 ) < 1, (21)

for all t ∈ [0, τmax). From (11), (19) and (21) we obtain

−1 < T−1(−ε̄min
1 ) ≤ ξ1(t) ≤ T−1(ε̄max

1 ) < 1. (22)

By (10a) we conclude the boundedness of amin
1 and amax

1 .
Moreover, owing to the continuity of hmin

1 in (12a) and
the Extreme Value Theorem, we deduce the existence of
a constant h̄1 > 0 such that |hmin

1 | < h̄1. Thus, by
differentiating (10) we deduce the boundedness of ȧmin

1 .

Similarly, we can conclude the boundedness of ȧmax
1 .

Step i (i = 2, ..., n − 2, t ∈ [0, τmax)): Defining V min
i =

1
2ε

min2

i , selecting ρ∞i such that(
(2 +Mi)δx,i − amax

i−1 (t) + amin
i−1 (t)

)
/Mi ≤ ρ∞i , (23)

with Mi ∈ (0, 1) and following the same line of analysis as
in Step 1, we can directly conclude the existence of positive
constants ε̄min

i and ε̄max
i so that, for all t ∈ [0, τmax),

−1 < T−1(−ε̄min
i ) ≤ ξi(t) ≤ T−1(ε̄max

i ) < 1 (24)

holds true, and further that amin
i , amax

i , ȧmin
i and ȧmax

i

are bounded for all t ∈ [0, τmax). Notice that in (23) the
term −amax

i−1 (t)+amin
i−1 (t) is positive owing to (10), (11) and

the strictly increasing property of T -function. Moreover, it
has been proven bounded in Step i-1 and thus there exists a
positive constant āi−1 such that −amax

i−1 (t)+amin
i−1 (t) < āi−1.

Step n-1 (i = n − 1, t ∈ [0, τmax)): We define V min
n−1 =

1
2ε

min2

n−1 and we select ρ∞n−1 such that
(
(2+Mn−1)δx,n−1−

amax
n−2 (t) + amin

n−2(t)
)
/Mn−1 ≤ ρ∞n−1.

Let sgn(g) = 1. Utilizing (13a) and following the same line
of analysis as in previous steps, we deduce the existence of
positive constants ε̄min

n−1, ε̄
max
n−1 such that, for all t ∈ [0, τmax),

−1 < T−1(−ε̄min
n−1) ≤ ξn−1(t) ≤ T−1(ε̄max

n−1 ) < 1. (25)

Now let sgn(g) = −1. The substitution of (13a) and
(10a) leads to V̇ min

n−1 =
2εmin

n−1

(1−ξmin2
n−1 )(ρn−1(t)−δx,n−1)

[Fmin
n−1 (t)−

kn−1ε
max
n−1 ], where Fmin

n−1 (t) = ξmin
n (ρn(t)− δx,n) + δx,n −

ȧmin
n−2− ξmin

n−1ρ̇n−1(t), which can be proven bounded. At this
point, we distinguish the following scenarios: a) − 1 <
ξmin
n−1 < ξmax

n−1 < 0, b) 0 < ξmin
n−1 < ξmax

n−1 < 1 and
c) − 1 < ξmin

n−1 < 0 < ξmax
n−1 < 1.

Scenario a) Notice that in this case, owing to the strictly in-
creasing property of T -function, there exists a time function
c1(t) ∈ [1,+∞) such that εmin

n−1 = c1(t)ε
max
n−1 . Therefore,

following similar analysis as in previous steps, εmax
n−1 is

proven bounded and, due to the selection of ρ∞n−1, it holds
that there exists a positive constant ε̄min

n−1 such that:

−1 < T−1(−ε̄min
n−1) ≤ ξmin

n−1(t), ∀t ∈ [0, τmax). (26)

Scenario b) Similarly, there exists a time function c1(t) ∈
[1,+∞) such that εmax

n−1 = c1(t)ε
min
n−1. Thus, εmin

n−1 is, firstly,
proven bounded and, owing to the selection of ρ∞n−1, we
conclude the existence of a positive constant ε̄max

n−1 such that:

ξmax
n−1 (t) ≤ T−1(ε̄max

n−1 ) < 1, ∀t ∈ [0, τmax). (27)

Scenario c) Owing to the selection of ρ∞n−1 and the utilization
of (11), we directly deduce, for all t ∈ [0, τmax),

−1 < −Mn−1 < ξn−1(t) < Mn−1 < 1. (28)

Therefore, each scenario leads also to the boundedness of
amin
n−1, amax

n−1 , ȧmin
n−1 and ȧmax

n−1 for all t ∈ [0, τmax).
Step n (i = n, t ∈ [0, τmax)): We consider the positive
definite and radially unbounded function V min

n = 1
2ε

min2

n .
Let sgn(g) = 1. Utilizing (5b), (10d) and (13c),
the time derivative of V min

n yields V̇ min
n =
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2εmin
n

(1−ξmin2
n )(ρn(t)−δx,n)

[f(x) + g(x)u − g(x)λu(t)δu −
ȧmin
n−1 − ξmin

n ρ̇n], where, owing to (7b), it holds
ρn(t) > δx,n, for all t ∈ [0, τmax). Define
Fn(t) = f(x) − g(x)λu(t)δu − ȧmin

n−1 − ξmin
n ρ̇n. Notice

that ξmin
n ∈ Ωξ for all t ∈ [0, τmax), δu is constant and

λu(t), ρ̇n are bounded by construction. Therefore, by the
Extreme Value Theorem, we can deduce the existence of
positive constants f∗, g∗, g∗ such that |f(·)| ≤ f∗ and
0 < g∗ < g(·) < g∗. Furthermore, ȧmin

n−1 is bounded from
Step n-1. Thus, there exists a constant F̄n > 0 such that
|Fn(t)| ≤ F̄n, for all t ∈ [0, τmax) and owing to (6d) we
obtain

V̇ min
n =

2εmin
n [Fn(t)− g(x)sgn(g)knεn]

(1− ξmin2

n )(ρn(t)− δx,n)

≤ 2[F̄n|εmin
n | − |g(x)|knεnεmin

n ]

(1− ξmin2

n )(ρn(t)− δx,n)
. (29)

To enforce

ξmax
n − ξmin

n ≤ Mn, Mn ∈ (0, 1), (30)

notice that utilizing (9a) and (9b), we conclude:(
2δx,n − amax

n−1 (t) + amin
n−1(t)

)
/
(
ρn(t)− δx,n

)
≤ Mn.

Thus, ρn(t) should satisfy:(
(2 +Mn)δx,n − amax

n−1 (t) + amin
n−1(t)

)
/Mn ≤ ρn(t). (31)

Hence, (31) is satisfied and therefore (30) is enforced if

ρ∞n ≥
(
(2 +Mn)δx,n + ān−1

)
/Mn. (32)

As in Step i, we deduce that −amax
n−1 (t) + amin

n−1(t) > 0, for
which −amax

n−1 (t) + amin
n−1(t) < ān−1 with ān−1 > 0 also

holds.
To proceed, we distinguish the following scenarios: a) −1 <
ξmin
n < ξn < ξmax

n < 0, b) 0 < ξmin
n < ξn < ξmax

n < 1 and
c) − 1 < ξmin

n < 0 < ξmax
n < 1.

Scenario a) In this case, what needs to be proven is that ξmin
n

does not approach -1. In that direction notice that owing
to the strictly increasing property of T -function and (6b),
(10d), (10e) there exist time-functions c1(t), c2(t) ∈ [1,+∞)
such that εmin

n = c1(t)εn and εn = c2(t)ε
max
n . Thus, (29)

becomes V̇ min
n ≤ 2c1(t)c2(t)|εmax

n |
[
F̄n−|g(x)|knc2(t)|εmax

n |
]

(1−ξmin2
n )(ρn(t)−δx,n)

.

Hence, V̇ min
n ≤ 0 when |εmax

n (t)| ≥ F̄n/(g∗kn). Therefore,
there exists a constant ε̄max

n > 0 such that:

|εmax
n (t)| ≤ ε̄max

n := max{|εmax
n (0)|, F̄n/(g∗kn)}. (33)

Owing to (30), it is straightforwardly obtained that there
exists a positive constant dn such that:

εmax
n (t)− εmin

n (t) ≤ dn, ∀t ∈ [0, τmax). (34)

From (33) and (34), we can deduce the existence of a positive
constant ε̄min

n such that

−∞ < −ε̄min
n ≤ εmin

n (t), ∀t ∈ [0, τmax) (35)

and by applying the inverse T -function we conclude that

−1 < T (−ε̄min
n ) ≤ ξmin

n (t), ∀t ∈ [0, τmax). (36)

By (10b) and (10c), amin
n and amax

n can be proven bounded
as well.
Scenario b) In this case we have to guarantee that ξmax

n

evolves away from 1. Similarly, by utilizing the fact that
in this case εmax

n = c1(t)εn and εn = c2(t)ε
min
n

with c1(t), c2(t) ∈ [1,+∞), we can deduce from (29)

that V̇ min
n ≤ 2|εmin

n |
[
F̄n−|g(x)|knc2(t)|εmin

n |
]

(1−ξmin2
n )(ρn(t)−δx,n)

, which reveals

V̇ min
n ≤ 0 when |εmin

n (t)| ≥ F̄n/(g∗kn). Thus, there exists
a constant ε̄min

n > 0 such that:

|εmin
n (t)| ≤ ε̄min

n := max{|εmin
n (0)|, F̄n/(g∗kn)}.

At this point, owing to (30) and the boundedness of εmin
n ,

we can straightforwardly conclude the existence of a positive
constant ε̄max

n such that

εmax
n (t) ≤ ε̄max

n < +∞, ∀t ∈ [0, τmax) (37)

holds. Taking the inverse T-function we deduce

ξmax
n (t) ≤ T−1(ε̄max

n ) < 1, ∀t ∈ [0, τmax). (38)

By (10b) and (10c), amin
n and amax

n remain bounded as well
in the aforementioned time interval.
Scenario c) Owing to (30), we directly deduce ξmax

n ≤ Mn+
ξmin
n < Mn < 1 and −1 < −Mn < ξmax

n − Mn ≤ ξmin
n .

Hence, deploying (11), we conclude

−1 < −Mn < ξn(t) < Mn < 1. (39)

Similarly for sgn(g) = −1, utilizing (13c), we define
Fn(t) = f(x)−g(x)λu(t)δu− ȧmax

n−1 −ξmin
n ρ̇n. Furthermore,

with the use of (9a) and (9b), we can obtain(
(2 +Mn)δx,n + |amax

n−1 (t)− amin
n−1(t)|

)
/Mn ≤ ρ∞n . (40)

Following the same line of analysis as in case of positive
sgn(g), we can prove that

−1 < −Mn < ξn(t) < Mn < 1, (41)

which reveals that ξn(t) evolves strictly within (−1, 1).
At this point, what remains to be shown is that τmax = +∞.
Owing to (22), (24)-(28), (36), (38), (39) and (41) we con-
clude that all ξi, i = 1, ..., n, evolves strictly within (−1, 1).
Therefore, following standard arguments ([21],Theorem 3.3),
we can extend the solution to +∞. The presented analysis
implies that all signals in the closed-loop remain bounded
and the output tracks the desired trajectory with prescribed
performance, thus completing the proof of Theorem 1.

V. SIMULATION RESULTS

To illustrate the effectiveness of the proposed control, we
perform simulation studies on the nonlinear system given by:

ẋ1 = x2

ẋ2 = x2(x1 + sin(x1)) + (1 + x2
2)υ

y = x1

(42)

System (42) is in Brunovsky canonical form and satisfies
Assumption 1. The system initially begins at x1(0) =
x2(0) = 0. For M1 = 0.05 and given the step-size of the
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event-triggered mechanism applied on x1 as δx,1 = 0.002,
the control target is the system output y to track the desired
trajectory yd(t) =

π
8 sin(0.5πt)+

π
8 sin(0.4πt) for all t ≥ 0,

with steady-state error no more than 0.082 and minimum
convergence rate as dictated by the exponential e−3t. Thus,
we select ρ1(t) = (4 − 0.082)e−3t + 0.082. We choose the
design elements δx,2 = 0.02, δu = 0.5, M2 = 0.5, ā1 = 5
and ρ2(t) = (15 − 10.1)e−2t + 10.1. The control gains are
selected k1 = 2.5 and k2 = 15. The proposed control scheme
(6) is applied on (42). The output tracking error y − yd
as well as the intermediate error x2 − a1 alongside their
corresponding performance bounds are presented in Fig. 1a
and 1b, while the required control effort is illustrated in Fig.
1c. Hence, all signals of the closed-loop remain bounded and
prescribed performance is achieved.

(a)

(b)

(c)

Fig. 1: (a) The tracking error along with its performance
bounds; (b) The intermediate error alongside its correspond-
ing performance bounds; (c) The required control effort.

VI. CONCLUSIONS

In this work we proposed a state-feedback controller to
guarantee predefined bounds on the maximum steady-state
error and minimum convergence rate of the output tracking
error, for the class SISO uncertain systems in Brunovsky
canonical form under non-periodic communication. The pro-
posed control scheme is considered a low-complexity solu-
tion as it is static, it does not incorporate any prior knowledge
of the system’s nonlinearities and it does not utilize any
approximation structures to obtain such information. No hard
calculations, analytic or numerical, are required to produce
the control signal. The theoretical findings are clarified and
verified through simulation studies.
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