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Abstract— This paper presents a concurrent estimation
method for a polynomial kernel-based nonlinear observer
canonical model with a generic structure for nonlinear systems.
The algorithm alternates the separable least squares parameter
estimation algorithm and extended Kalman filtering. It has the
characteristic of fast convergence to a local optimum which
depends strongly on the initial values of parameters. To improve
its convergence to the global optimum, a genetic algorithm-
based concurrent estimation (GA-CE) method is proposed to
search for the initial parameter set that minimizes the output
estimation error. This optimal concurrent estimation method
converges to the optimum or near-optimum solution without
any trial-and-error steps for initial values. Validations on the
Silverbox and Bouc-Wen hysteresis benchmarks show that the
GA-CE method is able to find excellent solutions yielding
models with superior predictive performance.

I. INTRODUCTION

The black box modeling approach equipped with state s-
pace representation has the flexibility and capacity to capture
different types of nonlinear phenomena, which can be applied
to model a variety of mechanical and control systems [1]–
[3]. Much research has been dedicated to the state space
model identification to provide insights into various nonlinear
dynamics such as the subspace identification [4], [5] and best
linear approximation [6], [7]. Moreover, there has been an
increasing interest in concurrent state and parameter estima-
tion [8], [9] which allows for the efficient update of estimates
using available measurements. During the estimation, the
concurrent estimation method compares values of nearby
points and quickly moves to a local optimal point. However,
the non-convexity of nonlinear optimization problems makes
the estimation results strongly dependent on the initial values
of the parameters. So a long trial-and-error process is needed
for a good local minimum. How to quickly search for a
good initial parameter set is critical for concurrent estimation
methods.

This work tackles the initial value sensitivity of concurrent
estimation method by introducing a genetic algorithm (GA).
As an intelligent bionic algorithm, the GA evolves in a
manner analogous to the natural process of genetic evolution
in living creatures [10]. It has the advantages of working with
a random population and possessing great global optimiza-
tion potential, which is able to help concurrent estimation
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methods find good initial values convergence to the global
optimum. Random mutation also takes place in the GA as
a means to escape entrapment in the local minimum. More-
over, GAs provide great flexibility to hybridize with various
optimization approaches, yielding many efficient implemen-
tations, such as various enhanced genetic algorithms [11]
and the genetic algorithm-based selection and prioritization
for autonomous driving systems [12].

Inspired by these GA-based optimization methods, this
work proposes a GA-based concurrent estimation (GA-CE)
method. The GA randomly generates an initial population
containing initial parameter sets, avoiding the trial process
of finding an appropriate initialization. For each set of
initial values generated by the GA, the concurrent estimation
method alternates separable least squares parameter estima-
tion algorithm and extended Kalman filtering, and calculates
the root mean square output estimation error as the fitness.
Using these initial value sets and their corresponding fitness
values, the more fit initial sets are stochastically selected as
candidates by the tournament selection strategy. Based on
these candidates, simulated binary crossover and polynomial
mutation operators generate other feasible initial sets, yield-
ing a new population for the next iteration. After several
optimization loops, the GA-CE determines the optimum
or an accurate sub-optimal solution. The validity of the
proposed GA-CE is tested using the Silverbox benchmark
data [13] and Bouc-Wen hysteretic benchmark data [14].

This paper is organized as follows: Section II describes a
polynomial kernel-based nonlinear observer canonical model
for nonlinear systems. Section III proposes the GA-CE
algorithm. Section IV provides two simulation examples.
Finally, the conclusions are drawn in Section V.

II. K-NOCF MODEL

The considered polynomial kernel-based nonlinear observ-
er canonical form (K-NOCF) model is a discrete-time state
space model with following form:

xt+1 =Axt + βut +Ef(xt, ut) +wt, (1)
yt =Cxt + vt, (2)

where xt ∈ Rn is the state vector, yt ∈ R is the measured
output, ut ∈ R is the input, wt ∈ Rn and vt ∈ R
are the process noise vector and measurement noise, the
system parameter matrix/vectors A ∈ Rn×n, β ∈ Rn and
c ∈ R1×n have the observer canonical model structure,
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which are defined as follows:

A :=


−α1 1 0 · · · 0
−α2 0 1 · · · 0

...
...

...
. . .

...
−αn−1 0 0 · · · 1
−αn 0 0 · · · 0

 ∈ Rn×n,

β := [β1, β2, · · · , βn]
T ∈ Rn,

c := [1, 0, · · · , 0] ∈ R1×n.

Other parameters to be estimated are the elements of the
matrix E := [ρT

1,ρ
T
2, · · · ,ρT

n]
T ∈ Rn×a, where ρi ∈ Ra. The

nonlinear vector f(xt, ut) contains monomial combinations
in the states and inputs up to a certain degree d, i.e.,
f(xt, ut) := [x2

1,t, x1,tx2,t, x1,tut, · · · , ud
t ]

T ∈ Ra.
The success of the polynomial K-NOCF model comes

from the fact that a large class of practical systems can be
modeled in nonlinear state space form, and the polynomial
kernel possesses universal approximation properties.

Our identification goal is to estimate parameter matrices
A and E, the vector β and the unmeasurable states based on
the measurements without any trial-and-error steps for initial
parameter values.

III. OPTIMAL CONCURRENT ESTIMATION
METHOD

This section describes the genetic algorithm (GA) in
detail, develops the extended Kalman filtering-separable least
squares (EKF-SLS) algorithm for the concurrent estimation
of the polynomial K-NOCF model, and shows how the GA
helps the EKF-SLS search for initial parameter values.

A. GA
A GA has great global optimization potential and applies

the concept of survival of the fittest to find optimal or near-
optimal solutions. The operators of GAs include selection,
crossover and mutation. The basic flow and operators are
introduced below.
1) Initial population: The first step of GAs is to generate

an initial population containing several strings. The number
of strings can be artificially set. The initial population is
generated randomly, but we can set an upper bound and a
lower bound to determine a precise search space and to save
optimization time. After creating an initial population, each
string is then evaluated and assigned a fitness value.
2) Selection: Once we have the current population and

the corresponding fitness values, the tournament selection
strategy [15] is applied to create an intermediate population.
The probability that strings in the current population are
copied and placed in the intermediate generation is related
to their fitness. We randomly select two individuals and run
a tournament among them, only the fittest one is chosen and
is passed on to the next generation. In this way, many such
tournaments take place to get the desired amount of strings,
and we have our final candidates that pass on to the next
step as parent strings.
3) Crossover: Simulated binary crossover (SBX) [16] is

applied to randomly paired strings. It is designed concerning

the one-point crossover properties in binary-coded GA. The
crossover operator starts with two randomly selected parent
strings: p1(p11, p

1
2, · · · , p1ns

) and p2(p21, p
2
2, · · · , p2ns

), where
ns denotes the string length and also the dimension of the
solution. If the uniform distribution random number r1 ∈
[0,1) is less than the crossover probability Pc, the values in
offspring strings o1(o11, o

1
2, · · · , o1ns

) and o2(o21, o
2
2, · · · , o2ns

)
are calculated as:

o1i = 0.5× [(1 + λ)p1i + (1− λ)p2i ],

o2i = 0.5× [(1− λ)p1i + (1 + λ)p2i ],

where λ is the spread factor, it is defined as

λ=

{
(2r2)

1
nc+1 , if r2 6 0.5,

( 1
2−2r2

)
1

nc+1 , if r2 > 0.5,

r2 ∈ [0,1) is a random number. nc denotes the spread factor
distribution index, and a large value of nc gives a high
probability of creating “near-parent” solutions. The SBX
operator performs well in local optimization searches and is
widely used in high-dimensional target evolution algorithms.
4) Mutation: After the recombination, a polynomial mu-

tation operator [17] is used to prevent all possible solutions
from converging to a single local optimum. For each off-
spring value oi updated by the SBX crossover, if the random
number r3 ∈ [0,1) is less than the mutation probability Pm,
the mutated value o′i is calculated as

o′i = oi + µ(bu − bl), i = 1, 2, · · · , n,

where µ is the perturbation factor, bu and bl is the upper
and low bounds set during the initialization. Typically the
mutation rate Pm 6 0.10. Take a uniform distribution
random number r4 from [0,1). If r4 6 0.5, the perturbation
factor µ is taken as

µ= [2r4 + (1− 2r4)(1− µ1)
nm+1]

1
nm+1 − 1,

where µ1 = (oi − bl)/(bu − bl), nm is the user selected
distribution index; if the random number r4 > 0.5,

µ= 1− [2(1− r4) + (2r4 − 1)(1− µ2)
nm+1]

1
nm+1 ,

where µ2 = (bu − oi)/(bu − bl).
Crossover and mutation operators are applied to create

the next population, and new strings should belong to the
bounds set earlier. The process of going from the current
population to the next population constitutes one generation
in the execution of GAs. After several generations, the
algorithm converges to the best initial set, which hopefully
generates the optimum or an accurate sub-optimal solution
to the problem.

B. EKF-SLS algorithm

Here we derive a concurrent parameter and state estimation
scheme for the K-NOCF model by using the separable least
squares and extended Kalman filtering methods.

First, we use the property of the unit backward shift
operator, transform the K-NOCF model in (1)–(2) into a
parameter estimation model: yt = ϱT

tγ+ςT
tβ+ηt+vt, where
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the information vectors ϱt and ςt, the parameter vector γ and
the cumulative process noise η are defined as

ϱt := [−x1,t−1,−x1,t−2, · · · ,−x1,t−n,f
T(xt−1, ut−1),

f T(xt−2, ut−2), · · · ,f T(xt−n, ut−n)]
T ∈ Rm,

m := na+ n,

ςt := [ut−1, ut−2, · · · , ut−n]
T ∈ Rn,

γ := [α1, α2, · · · , αn,ρ1,ρ2, · · · ,ρn]
T ∈ Rm,

ηt :=w1,t−1 + w2,t−2 + · · ·+ wn,t−n ∈ R.

The hierarchical identification principle is introduced to
develop a computationally efficient parameter estimation
method for the K-NOCF model. The principle is to divide the
model into two sub-models y1,t = ϱT

tγ + ηt + vt and y2,t =
ςT
tβ+ηt+vt, each of which contains partial parameters to be

identified, to reduce the scale of the optimization problem.
Let γ̂t and β̂t be the parameter estimates of γ and β at

sampling instant t, and x̂t denotes the state estimate. The
steps of the EKF-SLS algorithm are summarized here.
1) SLS method for parameter estimation:

γ̂t = γ̂t−1 +Lγ,tet, (3)
Lγ,t =Pγ,t−1ϱ̂t[1 + ϱ̂T

tPγ,t−1ϱ̂t]
−1, (4)

Pγ,t = [Im −Lγ,tϱ̂
T
t]Pγ,t−1, (5)

β̂t = β̂t−1 +Lβ,tet, (6)
Lβ,t =Pβ,t−1ςt[1 + ςT

tPβ,t−1ςt]
−1, (7)

Pβ,t = [In −Lβ,tς
T
t ]Pβ,t−1, (8)

et = yt − ςT
t β̂t−1 − ϱ̂T

tγ̂t−1, (9)

where Pγ,t ∈ Rm×m and Pβ,t ∈ Rn×n are covariance
matrices, Lγ,t ∈ Rm and Lβ,t ∈ Rn are gain vectors, et
is the innovation.
2) Prediction steps of the EKF:
Read parameter estimates from the vectors γ̂t and β̂t, and

form the matrices Ât and Êt.

x̂t|t−1 = Âtx̂t−1 + β̂tut−1 + Êtf(x̂t−1, ut−1), (10)

Ψ̂t|t−1 = [Ât + ÊtF (x̂t−1, ut−1)]Ψ̂t−1

×[Ât + ÊtF (x̂t−1, ut−1)] +Q, (11)

where x̂t|t−1 ∈ Rn and Ψ̂t|t−1 ∈ Rn×n denote the predicted
state and covariance estimates at sample instant t given
the previous estimates x̂t−1 and Ψ̂t−1, F (x̂t−1, ut−1) ∈
Ra×n denotes the partial derivative of the nonlinear mapping
f(x̂t−1, ut−1) with respect to x̂t−1, Q is the covariance of
the process noise vector wt.
3) Correction steps of the EKF:

St = cΨ̂t|t−1c
T +R, (12)

Kt = Ψ̂t|t−1c
TS−1

t , (13)
x̂t = x̂t|t−1 +Kt(yt − cx̂t|t−1), (14)

Ψ̂t = (In −Ktct)Ψ̂t|t−1, (15)

where St ∈ R is the innovation covariance, R ∈ R is the
covariance of the measurement noise, Kt ∈ Rn is the gain
vector, Ψ̂t is the updated covariance estimate.

By executing these steps in Equation (3)–(15) iteratively,
the EKF-SLS algorithm performs local search by a con-
vergent stepwise procedure, which has been demonstrated
in previous work [18]. The right of Fig. 1 in red shows
the schematic diagram of the EKF-SLS algorithm. A global
optimum can be found only if the problem possesses certain
convexity properties. Otherwise, we need to find good initial
values for precise estimation by trial and error, which is
tricky for various nonlinear systems.

C. GA-based concurrent estimation method
The optimal concurrent estimation method proposed in this

work benefits from the random initial value sets provided by
GAs and the fast local search capability of the EKF-SLS
method. The schematic diagram of the genetic algorithm-
based concurrent estimation (GA-CE) method is shown in
Fig. 1. Because this work is dedicated to obtaining accurate
estimates, the objective function is defined as the root mean
square error (RMSE) of the estimated output. The proposed
GA-CE aims to finding initial values γ0, β0 which minimize
the RMSE

min
γ0, β0

√√√√ 1

L

L∑
t=1

[ŷt − yt]2,

where L is the length of estimation data, yt denotes the mea-
surements, and ŷt represents the estimated output obtained by
the EKF-SLS. Since the objective function is non-negative,
we directly use the objective function as the fitness function.
The flow of the GA-CE algorithm is that:

1) Randomly generate N strings to form a finite ground
set (a population) within the upper and lower bounds
using the GA.

2) Take N strings as N sets of initial values, introduce
these sets to the EKF-SLS for concurrent estimation,
and then get N RMSEs (fitnesses) of estimated outputs.

3) Select candidates using the tournament selection strate-
gy based on these N fitnesses, then process these can-
didates using SBX crossover and polynomial mutation
operators in turn yielding the next population.

4) Start the next optimization loop with new N feasible
solutions until the number of generation reaches the
maximal generation G.

5) Output the best initial set and the corresponding RMSE.

IV. EXPERIMENTS AND RESULTS
This section evaluates the polynomial K-NOCF model

and GA-CE method on two benchmarks in nonlinear system
identification, which are the Silverbox system [13] and Bouc-
Wen hysteretic system [14].

A. Silverbox system
The nonlinear model for the Silverbox system is following

continuous-time expression:

msÿt + ζẏt + k1yt + k2y
3
t = ut, (16)

where the input ut is the force applied to the mass ms,
the output yt is its displacement, the parameters k1 and k2
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Start: g=1
t = 1

Estimate parameter vectors using 
Equations (3)-(9).

Update state vector using 
Equations (10)-(15).

If t is less than the data 
length L?

Compute the root 
mean square output 

estimation error

No

EKF-SLS 

Select the candidates using the 
tournament selection strategy. 

Execute SBX crossover and polynomial 
mutation operators using Equations (3)-

(5) to create next population.  

Initialize: set the upper and lower bound 
bu and bl, and the population quantity N.

If g is less than the 
maximal generation G?

GA

No

Finish: output the best chromosome 
and the corresponding fitness.

t=t+1

Yes
g=g+1

Yes

A population (N chromosome)

N sets of 
initial values

N fitnesses

Fig. 1. Schematic diagram of the GA-CE method.

describe the behavior of the spring, and ζ is the damping of
the system. The input data for the system is a random phase
multi-sine excitation with maximum frequency approximate-
ly equal to 200 Hz. The data of the benchmark has been
collected at a sampling frequency of 610.35 Hz.

Fig. 2 shows the measured excitation and response data
as presented in [13]. The first part of the signals consists
of 40000 samples which are used for verifying the model
obtained by the estimated process. This part of the excitation
shows a linearly increasing amplitude which exceeds the
amplitude of the second part of the excitation signal, hereby
enabling to test the extrapolation capabilities of the estimated
model. The remaining data is used for the model parameter
estimation, so we have L = 87000.
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0
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Fig. 2. Excitation and measurement signals of the Silverbox system

The second-order polynomial K-NOCF model proposed to
identify the Silverbox model is as follows:

xt+1 =Axt + βut +Ef(xt, ut) +wt,

yt = cxt + vt,

f(xt, ut) = [x1,tx
2
2,t, x

3
1,t]

T.

So there are 8 parameters to be identified in this problem.
The size of a population N is set as 50, and the maximal

generation is taken as G = 100. Upper and lower bounds
for all parameters are set as bu = 2 and bl = −2. The
crossover probability Pc and distribution index nc are taken
as Pc = 0.90 and nc = 20. The mutation rate Pm and
distribution index nm are taken as Pm = 0.10 and nm = 20.
For comparison, we run the proposed GA-CE, GA, GA-SLS
(GA combined with SLS) and GA-EKF (GA combined with
EKF) methods under the same settings.

Fig. 3. Means and Stds of the best fitness obtained by 10 repeated
experiments in each generation

Because the initial population of these four algorithms
are generated stochastically, we repeat these experiments 10
times to verify the effectiveness of the proposed algorithm
on more statistical spaces. For each experiment, the four
algorithms are executed with N = 50 different initial strings.
The result with the lowest RMSE of the estimated output is
selected. Fig. 3 shows the mean (solid line) and the standard
deviation (shadow) of these selected best results over the
10 repeated experiments, as a function of the number of
generations. Table I shows the minimum, mean and maxi-
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mum training and prediction RMSEs for the four algorithms
under 10 repeated experiments in the 100th generation. The
combination of the GA with the SLS and EKF algorithms
reduces the degree of dispersion of results, and results in
more accurate solutions than simple GA. The GA-CE gets
the lowest training and validation RMSEs among these four
algorithms. The good performance of this combination of the
GA and EKF-SLS is due to the fact that the GA-CE finds
the best initial parameter set among these four methods in
the first generation, and outperforms the other combinations
in the whole estimation process.

TABLE I
COMPARISON OF DIFFERENT COMBINATIONS ON THE SILVERBOX

SYSTEM UNDER TEN REPEATED EXPERIMENTS (g = 100)

Approaches Training RMSE [mV] Validation RMSE [mV]

Minimum Mean Maximum Minimum Mean Maximum
GA 10.87 31.29 46.69 15.78 32.27 45.71

GA-SLS 2.60 3.12 4.57 2.94 3.56 4.69
GA-EKF 0.17 0.23 0.39 0.18 0.31 0.67
GA-CE 0.17 0.18 0.20 0.17 0.19 0.25
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Fig. 4. Estimation error obtained using the EKF-SLS and GA-CE on the
estimation set of the silverbox benchmark

Fig. 4 compares the estimation performance of the EKF-
SLS algorithm and the GA-CE (the best result obtained in
10 repeated experiments). Initial values of the EKF-SLS
algorithm are set as γ̂0 = 1m/p0 and β̂0 = 1n/p0, p0 =
106. We compute the root mean square output estimation
error of these two algorithms. RMSEEKF−SLS = 1.43 mV,
RMSEGA−CE = 0.17 mV. The above results indicate that the
GA-CE significantly outperforms the EKF-SLS algorithm.
The estimation error of the EKF-SLS algorithm mainly
comes from the initial estimation part (as shown in Fig. 4).
The GA-CE with the global searching ability improves the
initial error fluctuation problem of the EKF-SLS method, and
gets low error in the whole estimation process.

Fig. 5 shows the GA-CE and EKF-SLS output prediction
errors for the 40000 validation data samples. The root mean
square predicted output errors are RMSEEKF−SLS = 0.37
mV and RMSEGA−CE = 0.18 mV. The proposed method
has excellent prediction performance, and the prediction error
of the GA-CE is smaller than that of the EKF-SLS. The K-
NOCF model performs well during the extrapolation, which
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Fig. 5. Prediction error obtained using the estimated K-NOCF model on
the validation set of the silverbox benchmark

starts at sample t = 30000 approximately. This is due to
the similarity between the K-NOCF model with polynomial
kernel and the internal polynomial structure of the Silverbox
analytic model (16).

B. Bouc-Wen hysteretic system

The second example uses data from the Bouc-Wen bench-
mark system, described in detail in [14]. The Bouc-Wen sys-
tem is a hysteretic system featuring a dynamic nonlinearity,
which is governed by the second-order differential equation:

mbÿt + cbẏt + kbyt + z(yt, ẏt) = ut, (17)

where ut is the external force, yt is the resulting dis-
placement, mb, kb and cb are the mass constant, stiffness
coefficient and viscous damping coefficient, respectively. The
hysteretic force z(yt, ẏt) obeys the first-order differential
equation:

ż(yt, ẏt) = η1ẏt − η2(k3|ẏt||zt|ϵ−1 + k4ẏt|zt|ϵ), (18)

where the parameters η1, η2, k3, k4 and ϵ determine the
shape and smoothness of the system hysteretic loop.

The training data are generated by integrating Equations
(17)–(18) using the Newmark integration at a sampling rate
of 15000 Hz. The data are then low-pass filtered and down-
sampled to 750Hz. We use five periods of the random phase
multi-sine input signal, which has 40960 samples.

The third-order polynomial K-NOCF model proposed to
identify the Bouc-Wen system is as follows:

xt+1 =Axt + βut +Ef(xt, ut) +wt,

yt = cxt + vt,

f(xt, ut) = [x2
1,tx2,t, x1,tx2,t]

T.

Hence there are 12 parameters that need to be estimated.
For comparison, we identify the Bouc-Wen hysteretic system
using the EKF-SLS and GA-CE methods. Initial settings of
these methods are the same as the Silverbox example. For
the GA-CE, we run the GA-CE algorithm 10 times, each
time with a different population of N = 50 initial strings.

Then the estimated models and the multi-sine and swept
sine validation data sets provided with the benchmark [14]
are used for the prediction. For the multi-sine data set, two

926



periods are used to make sure that the model output is in
a steady state, and the RMSE is calculated in the second
period. For the swept sine data, the first 2000 samples are
ignored when calculating the RMSE to allow the transient
to decay.
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Fig. 6. Prediction error obtained using the estimated K-NOCF model on
the multi-sine validation set of the Bouc-Wen benchmark
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Fig. 7. Prediction error obtained using the estimated K-NOCF model on
the swept sine validation set of the Bouc-Wen benchmark

Figs. 6–7 show the GA-CE (the minimum error in 10
repeat experiments) and EKF-SLS output prediction er-
rors for these two validation data sets. For the multi-sine
validation, we have RMSEEKF−SLS = 1.15 × 10−4 and
RMSEGA−CE = 3.60× 10−6. For the swept sine validation,
we have RMSEEKF−SLS = 1.05×10−4 and RMSEGA−CE =
2.90 × 10−6. It is apparent from these results that the
estimated model obtained by the GA-CE gets low errors in
prediction experiments. Compared with the EKF-SLS, the
proposed GA-CE searches for a better solution for the Bouc-
Wen system.

V. CONCLUSIONS

This work proposes a concurrent estimation method for
the polynomial K-NOCF model structure which extends the
EKF-SLS method with a GA driven inital value estimation.
The excellent estimation and prediction performance of the
proposed GA-CE is demonstrated on the Silverbox and
Bouc-Wen benchmarks. Making full use of the advantages
of both algorithms, the proposed method searches for the
optimum or near-optimum solution without using trial and

error for the initial values of parameters. Future work in-
cludes extending the proposed optimization method to the
systems with multiple inputs and multiple outputs.
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