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Abstract— Direct methods that transcribe an Optimal Con-
trol Problem (OCP) to a Nonlinear Program (NLP) have proven
effective to solve OCPs. Flexibility in this transcription that can
adapt online to a changing environment by adding or removing
constraints or changing the discretization of the dynamics can
benefit many applications such as motion planning in dynamic
environments. This work presents AdaptiveNLP, a software
framework that efficiently constructs NLP functions based on
pre-computed derivative information and provides functionali-
ties to modify the NLP problem structure with low overhead.
This adaptability enables the user to discard constraints known
to be inactive which reduces computation times. In Model
Predictive Control (MPC), it also allows tailoring a specific
MPC iteration’s NLP to the environment at that time instance.
An MPC example and an adaptive gridding example show the
effective reduction of total computation time and the ability to
refine the time-grid of an NLP to produce a sparse but highly
accurate solution with little overhead, respectively.

I. INTRODUCTION

One approach to compute optimal trajectories while ac-
counting for constraints for example in motion planning for
autonomous vehicles or robotic manipulators is to solve an
Optimal Control Problem (OCP). OCPs are typically hard
to solve because the solution is continuous in time and thus
infinite-dimensional. A popular approach to deal with the
infinite-dimensionality is a direct method where the OCP is
transcribed to a finite-dimensional nonlinear program (NLP).
This transcription requires many choices to be made such as
time-discretization, integration methods and the granularity
of constraint enforcement on the time grid.

In a nonlinear Model Predictive Control (MPC) setting,
a series of NLPs is solved over time rather than a single
NLP. An NLP of identical structure is often solved repeatedly
while only updating the initial state constraint. However, in
motion planning applications, the environment around the
vehicle can change, potentially requiring the type and number
of constraints (and therefore the NLP structure) to change.
Another case in which a series of similar NLPs is solved, is
in adaptive gridding methods such as hp-methods [3, 6, 7, 9,
10, 16, 19]. These methods attempt to find a sparse time-grid
on which the NLP-solution satisfies the system dynamics to
some desired accuracy. This is achieved by first solving an
NLP with a coarse time-grid which is then iteratively refined
based on the obtained accuracy. Even though multiple NLPs
are solved, this approach can still be faster than solving
a single NLP with a fine time-grid because the multiple
NLPs can be warm-started and gradually increase in problem
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size. However, there is a need to be able to change the
NLP structure efficiently to fully exploit the advantage in
computation time. The software GPOPS [1, 11] efficiently
implements adaptive gridding methods. By considering the
specific NLP structure and computing derivative information
of collocation constraints beforehand, the NLP functions can
be assembled easily. However, GPOPS does not support ap-
plying constraints only at specific segments of the trajectory.
In summary, there is a need to add and remove constraints
to tailor the NLP to a specific environment based on the
knowledge of the solution of the previous NLP, to change
the time-grid on which the NLP is solved, and to change
the constraints enforcing the dynamics. All of this should be
possible in an efficient way to reduce the overhead such that
it can be done online.

When solving a general NLP with both equality and in-
equality constraints, often some inner subproblem is solved.
Interior-point methods (IPMs) solve a linear system of equa-
tions representing the KKT-conditions that are relaxed with
a barrier parameter. The relaxation is gradually reduced. A
well-known open-source interior-point solver is Ipopt [18].
An IPM solver exploiting the specific problem structure
arising from transcribing OCPs is FATROP [17]. In [18],
the authors describe the robustness of the interior-point
method even for infeasible initial guesses. On the other hand,
there are Sequential Quadratic Programming (SQP) methods
in which the inner subproblem is an easier optimization
problem. This inner problem can be solved for example
using an IPM or using an active set method that iteratively
finds the set of active constraints and enforces these as
equality constraints. An example of an active set solver is
gpOASES [5]. Even though IPMs can be robust, they suffer
from the presence of many inactive constraints since all
constraints are always considered. This leads to unnecessary
evaluations of the constraints but more importantly also of
their contributions to the constraint Jacobian and Lagrangian
Hessian. Constraints that are known to be inactive should be
removed from the NLP to avoid unnecessary computations
and therefore reduce computation times of the solver.

It is often unclear a priori which constraints will be
inactive and can therefore be removed without affecting the
solution of the NLP. For example, no-collision constraints are
often only active at select segments of the trajectory but these
segments only become clear when the solution is available.
On the other hand, the number of constraints depends on the
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shape and number of obstacles which is unknown and might
change. Some solvers implementing collision avoidance are
CHOMP [12], CIAO [13, 14] and TrajOpt [15]. They deal
with all obstacles at once using a single (signed) distance
function. A signed distance field provides the distance to the
closest obstacle at each point in the environment. When new
obstacles appear, this distance field has to be recomputed.
In [4], the authors propose an approach to combine different
no-collision constraints into a single smooth constraint using
a Logarithmic Sum-of-Exponentials (LSE) formulation. This
approach introduced conservatism and is still computing the
distance to all obstacles to find the maximum. State-of-art
methods using CasADi [2] like OMG-tools [8] deal with
uncertainty in the number of obstacles by defining as many
obstacles as might be needed and placing them far away
if less obstacles are present. These far away obstacles are
referred to as dummy obstacles and allow to keep the NLP
structure fixed if new obstacles appear. However, in all above
approaches, even if no obstacles are around, the constraint
is still enforced on all discrete points along the trajectory
which will often lead to wasteful computations. In MPC, the
knowledge of the solution in a previous MPC iteration can be
exploited to remove constraints known to be inactive in the
next iteration. This further motivates the need to easily and
efficiently change the constraints present in the NLP without
recomputing the parts of the Jacobian and Hessian that have
not changed.

This paper presents a software framework called Adap-
tiveNLP that allows an easy and flexible transcription from
OCPs to NLPs. The framework implements the interface
of Ipopt to solve the resulting NLPs but it is not limited
to a specific solver. The flexibility is threefold. Constraints
can efficiently be added and removed, the time-grid can be
updated and the constraints enforcing the dynamics can be
changed. To efficiently change the NLP structure, derivative
information of elementary contributions is computed offline
using CasADi and used online to assemble the problem,
similar to the GPOPS software. AdaptiveNLP’s novelty lies
in the fact that it enables more flexibility in enforcing
system dynamics and also provides the ability to enforce
constraints only at a limited number of discrete points to
reduce computation times. The provided functionalities allow
to solve a sequence of related NLPs faster by reusing as
much as possible the structure of the previous NLP, but still
making changes with significantly less overhead compared
to using the optimization framework of CasADi. These also
allow to exploit knowledge about the solution of previous
NLPs by providing the NLP with a smaller set of inequality
constraints, making it faster to solve, especially for interior-
point solvers.

The AdaptiveNLP software framework is presented in
Section II. Section III contains an MPC-example and Section
IV shows an adaptive gridding example. Finally, conclusions
are formulated in Section V.

The code to run the examples in this paper is provided on
https://github.com/meco-group/AdaptiveNLP.

II. ADAPTIVENLP FRAMEWORK

This section describes the AdaptiveNLP framework. The
main idea is presented along with a general description of
the problem that is solved using this software framework.
Finally, a note on implementation aspects is provided.

A. Concept
The AdaptiveNLP framework constructs NLPs of the form
min f(x)
peRn 1

st. L<g(z)<U,

where L is a lower bound and U is an upper bound on
the constraint values. The specific structure of f(x) and
g(x) is explained in more detail in Section II-B. An NLP
solver needs to be provided with the objective function f(z),
the objective gradient V f(x), the constraint vector g(z),
the constraint Jacobian 7 := V g(x) and the Lagrangian
Hessian H = V2 (f(z) + ATg(x)). One approach to
compute derivative information is to construct f(x), g(x)
and f(z) + ATg(z) symbolically and use algorithmic dif-
ferentiation (AD) to compute its derivatives. This approach
is used by the optimization framework of CasADi. It allows
the user to formulate an NLP and takes care of all derivative
computations in its back-end. Suppose now one constraint
hr, < h(z) < hy is added to problem (1). This affects g(x)
and therefore also J and H. The new Lagrangian Hessian
is given by H' = V2, (f(z)+ A g(z)+p h(z)). The
addition of the new constraint requires a change to the sym-
bolic expression of the constraint vector and the Lagrangian
and requires to compute J and H again using AD. However,
instead of computing these complete expression graphs again
(which is what CasADi would do), the previously computed
Hessian H could be reused by exploiting the linearity of
the derivative operator resulting in H' = H + u' V2, h(z).
By reusing the earlier Hessian (assuming V2 _h(z) is al-
ready known), the number of symbolic operations, i.e., the
operations needed to update the symbolic expressions, is
greatly reduced. This in turn greatly reduces the overhead
of changing the problem structure because these symbolic
operations are typically expensive.

The AdaptiveNLP framework extends this approach by
computing the first and second derivative of all elemen-
tary contributions to the objective and of all constraints
offline. The Hessian is then assembled numerically as
H=V2 f(x)+ >, \ V2, 9:(x). The objective gradient
and constraint Jacobian J are assembled similarly. This
eliminates the need for any online changes to symbolic ex-
pressions and allows to efficiently change the NLP structure.
The derivative information of the elementary contributions
are computed using CasADi. In this framework, Ipopt is used
to solve the NLPs but note that, in principle, other solvers
could also be used.

B. Problem Formulation

We consider a general OCP of the form
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T

(po(x(O),T, ptﬂo) + <P(95(t)7

min
z(t),u(t),T 0
+ YT (:E(T), T7 p<PT)

u(t), T, p,)dt

(Po-a)
st @(t) = f(a(t),u(t), pa) (Po-b)
Lo < go(x(0),T, po) < Uo (Po-¢)
Ly < gr(x(T),pr) < Ur (Po-d)

Ly < gp(a(t),u(t),pp) <Up VE€0,T).
(Po-e)

which is referred to as problem F,. Problem Py is solved
for the functions z*(t) and w*(¢) which represent the state
and control trajectories respectively. In the objective function
(Py-a), @ represents an initial cost. It takes as inputs the
initial state and the total time 7' in the case of a free-
time problem such that a cost to 7" can also be added if
needed. For fixed-time problems, the input 7' is omitted
everywhere. The symbol p( ) denotes a parameter vector. 1
defines a terminal cost. A stage cost ¢ is defined over the
whole time horizon. Note that in this formulation, there is
no explicit time-dependency in the objective, but this can
be included by augmenting the state vector. The system
dynamics are enforced by adding constraint (Fy-b). The
initial state x(0) and terminal state z(7T") are subject to
the constraints (Fy-c) and (FPy-d), respectively. The initial
constraint is dependent on 7" such that constraints on 7" can
be added here. All constraint functions g,y output column
vectors and the bounds L and U() are independent of
all optimization variables. Finally, path constraints can be
enforced using constraint (Fy-e).

This continuous-time problem Py can be transcribed to an
NLP which will be referred to as problem P; written by

N-1
Inll% @0($07T pvo + Z ¢ xlﬁulﬁAt]ﬁT qu) (Pl'a)
k=0
+<,0T(1’N,T,p<pT)
st g0 (@, iy ooy Ty —1, AL Typa) =0 (Pr-b)
Lo < go(zo,T,po) < Uo (P1-c)
Lr < gr(zn,pr) < Ur (P1-d)
Ly < gf(l’k,’u,k,pf) <U; k=0..N-1 (Pi-e)
LY < (ge)} (wr,un, p) ) <UL (Pi-D)

Instead of solving for functions x*(t) and w*(t), Py is
solved for finite-dimensional vectors x and u, representing
the state and controls at discrete points. The objective (P;-
a) contains a sum which is a discrete approximation of the
integral of ¢. The function ¢ is a discrete approximation
of ¢ in (Py-a). Because the discrete time values ¢, are not
constrained to be equidistant, the function ¢ also takes as
input a value Aty = t41 — tr. The system dynamics in Py
(Py-b) are replaced by the constraint (P;-b). Note that these
equality constraints can still be written in the form of (1) by

setting U equal to L for these constraints. The superscript ny
indicates the number of time-steps that are involved in this
constraint. For example, shooting methods such as a fourth-
order Runge-Kutta, nj is equal to two and in the case of
direct collocation, nj, can attain any integer value. Different
functions g((i"’“) can be defined for different integrators. This
means that over the horizon, different integrators or even
different dynamics can be used. The initial and terminal
constraints in P; are similar to the ones in F,. For the
state constraints (Fy-e), a distinction is made in problem
Py between fixed constraints gy and extra constraints ge.
The fixed constraints gy are applied to all (xy,uy)-pairs
except for the terminal state. The extra constraints g, allow
flexibility in the problem formulation since they can be added
and removed and are applied only sparsely to points (z, u).
The idea is to apply these constraints only when needed. The
framework allows to define multiple extra constraints that
each can be applied to a different set of discrete indices k.
The superscript ¢ in (ge) refers to a specific constraint. The
subscript 7 denotes a spemﬁc instance of this extra constraint.
It can be useful to enforce the same constraint multiple times
to the same index k with different parameter values e.g.,
when multiple obstacles are present.

C. Implementation

The AdaptiveNLP framework is implemented in C++. A
class BuildingBlocks is defined to collect all the con-
straints and objective contributions in the above formulation
along with their contribution to J and . These building
blocks are CasADi functions provided by the user that
are then used to assemble a complete NLP. The derivative
information can be easily computed using CasADi. An
instance of this class is provided to the AdaptiveNLP
class which in turn creates instances of the Bookkeeper
class and of the NLPInterface class, for which details
are given below. The AdaptiveNLP class manages all
changes to the NLP such as adding or removing constraints,
extending (or shortening) the horizon and/or changing the
(discretization of the) dynamics. At construction time, the
AdapativeNLP object is also provided with a maximal
number of time steps Np,,x and a maximal number of extra
constraint instances. With this information, memory is pre-
allocated to avoid dynamic memory allocation and thus an
increase in computation times.

The Bookkeeper class contains attributes to keep track
of all bookkeeping needed to assemble the NLP such as spar-
sities of J and ‘H and ordening of constraints. The sparsities
are each represented with two vectors containing the row and
column indices of the nonzero elements denoted respectively
by r and ¢. When the solver queries the numerical values of
the nonzero elements, a single vector v must be provided
containing the numerical values of the nonzero elements.
More formally, the ¢-th nonzero element of the Hessian is
located on row r[i] and column c[¢] and has a value of
v[i]. Note that multiple constraints and objective terms can
contribute to the value of the same nonzero element.
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Fig. 1: Illustration of the sparsity update when a new
contribution (indicated in blue) is added.

Whenever a constraint g is added or the horizon is ex-
tended, new elementary contributions need to be added to J
and H. A new contribution to 7 is given by V' g and to H is
given by AT V2§ for a constraint and V2 for an extension of
the horizon. Fig. 1 illustrates how the Bookkeeper updates
the matrix sparsities. First, the Bookkeeper queries the
sparsity of the new contribution (illustrated in blue) and
infers where these nonzero elements should be located in the
complete matrix. The first nonzero has to be placed at (3, 3)
which overlaps with an already existing nonzero meaning
the sparsity does not need to be updated. The other two
nonzero elements are new nonzero elements, therefore, the
Bookkeeper extends r and ¢. Other than updating the spar-
sity, the Bookkeeper constructs a vector m. This vector
maps the nonzero elements of the contribution to indices in
r and ¢ and is used by the NLPInterface to correctly
construct the numerical vector v. More precisely, for every
contribution, the NLPInterface evaluates the nonzero
elements and adds the value of the j-th nonzero element
to v[m[j]]. In the example of Fig. 1, the NLPInterface
will evaluate the new contribution and add the numerical
values to elements v[7], v[22] and v[23]. This process allows
the NLPInterface to efficiently construct v in the correct
sequence that matches the sequence of nonzeros in r and c.

A sequence of variables is chosen to easily infer where
new contributions need to be placed. This sequence of
variables determines the sequence of columns in J and H
and also determines the sequence of rows in H. For free-
time problems, the first variable is always the total time
variable T'. Next, the state variables x; follow, alternated
with the corresponding control inputs u. Note that there is
no control value corresponding to the terminal state. It is
important to state that x; and xp; are not assumed to be
chronologically consecutive time-steps. Instead, bookkeeping
is done to keep track of the chronological sequence of indices
k. This assumption is not made because it significantly
reduces the amount of changes needed in the bookkeeping
when the horizon length is changed and therefore allows
to more efficiently change the problem structure. It does
however destroy a banded sparsity structure but this can
be resolved by permuting columns and rows. To illustrate
this further, suppose a time-step is to be inserted in between

T%Q Upg 1 Ul T2 U2 T3 U3 T4

T g ug 1 U1 T Us T3 U3 T4 Ts Us

Fig. 2: Variable sequence before and after inserting a time-
step in z2 and x3.

(22, u2) and (x3, ug). For simplicity, consider the case where
n, and n,, are equal to 1. Fig. 2 shows the variable sequence
for N equal to 4. The arrows indicate the chronological
sequence which is kept track of by the Bookkeeper. If
the new variables would be inserted in between (z2,us)
and (3, us), this would shift the columns corresponding to
3, ug and x4 to the right. Therefore, the nonzeros corre-
sponding to a constraint or objective function contribution
involving x3, ug and x4 have to be shifted which can require
significant updates to the bookkeeping information. By not
imposing a chronological sequence, the new variables can
just be appended, leaving the existing columns and sparsity
structure untouched. The Bookkeeper updates the links
accordingly. The column index in J and H corresponding
to the first element of the state vector xj is given by
1= 5freeftime + (na: + nu) k- Ty * 6termina1(k) where Ny
is the number of states, n, is the number of controls and
Ofree—time 18 equal to 1 for free-time problems and is equal
to 0 otherwise. To compensate for the fact that the terminal
state has no corresponding control value, dterminal (k) is equal
to 1 if k is strictly larger than the index of the terminal
state, otherwise it is equal to 0. In the example of Fig. 2,
the column index corresponding to x5 is indeed given by
14+2-5—-1=10.

Whenever constraints or time-steps are removed from
the problem, they still leave traces in the bookkeeping.
For example the lower and upper bounds of the constraint
vector might contain values for constraints that do not exist
anymore or the sparsity of the Jacobian can be changed by
replacing a constraint by a different one. To update all of the
bookkeeping, a function clearStructuralZeros () is
defined. This function evaluates the constraints vector, J and
‘H, identifies structural zeros and updates all bookkeeping.
The structural zeros are identified by providing these NLP
functions vectors filled with NaN values in which to write the
results. Any NaN left after evaluation indicates a structural
Zero.

ITII. MPC EXAMPLE PROBLEM
The added value of the AdaptiveNLP framework can be
demonstrated in the following MPC example problem. The
ability to add and remove constraints is exploited to reduce
computation times and to deal with a varying environment
of the vehicle.

A. Problem Description

Suppose a vehicle has to move through a warehouse
environment. For some parts of the warehouse, free-space
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corridors (in which no obstacles are present) are known to the
vehicle. In other parts of the warehouse, such information is
not available and the vehicle has to detect obstacles and avoid
them. The vehicle might also encounter people to which it
can only get close if it slows down for safety reasons.

The vehicle itself is modeled using a bicycle model with
astate vector z = [p, py, v 0] " € R* (x and y position
coordinates [m], forward velocity [m/s] and vehicle heading
angle [rad]) and a control vector u = [a ] T ¢ R?
(acceleration [m/s?] and steering angle [rad]). The dynamics
are given by & = [v cosf wsinf a vtané]T. The
objective in this example is to move as far as possible
along the z-axis while large control inputs are penalized.
More formally, there is no cost to the initial state leading to
o (20, Py,) = 0. The cost to the terminal state is given by
Or(TN, Ppr) = —WNPx,n Where wy =1 m~! and py v is
the x-coordinate of the terminal position such that the cost
decreases as this x-coordinate increases. The stage cost is
given by @(zg, ug, Atg, py) = Aty - (w103 + wedi) where
wy = 1s*m~2 and w; = 1 rad—2. The initial state is assumed
to be known and there is no constraint on the terminal state.
The fixed constraint (P;-e) is given by the inequalities

0 v 2
_m e ™
2 2
1| S e S| “
& L] Ls

There are three extra constraints (P;-f) in this problem
corresponding to a corridor constraint, an obstacle-avoidance
constraint and a safety constraint to slow down when ap-
proaching people. The corridor constraint takes four param-
eters (Tmin, Tmax> Ymin» Ymax) and the constraint is defined
as

Pz — Tmin
0< | Pl < oo, )
Py = Ymin
Ymax — Py
The no-collision constraint takes three parameters represent-
ing the coordinate of the center of the obstacle (Zobs, Yobs)
and the radius of the obstacle (R,us). This constraint is
written as

O S (p:v - mobs)Q + (py - yobs)2 - Rc2)bs S Q. (6)

Finally, the safety constraint imposes an additional velocity
constraint. There is a safety radius Rgafety defined around
the position of every person (z,,y,) in which the velocity
limit is enforced by adding the constraint

0<h (\/(pz — )" + (py — yp)2> —v<oo, (D

where h(r) is a third-degree polynomial that takes the
distance to the person as input and satisfies h(0) = 0,
h(Rsatety) = 2 and h'(Rsafety) = I (Rsafety) = 0. Note
that h(r) > 2 Vr > Rgafety meaning this constraint only
influences the velocity for points that satisfy 7 < Rgafety. In
this example Rgafety = 2.7 m.

Fig. 3 shows the motion plan in the environment. There
are two free-space corridors available for the vehicle with

some people present in these corridors. Around every person,
a safety zone with reduced velocity is shown. The second
part of the world is an environment cluttered with obstacles.
Additionally, the vehicle has a limited viewing radius of 10
m indicated with the white circle.

B. Strategy to Apply Extra Constraints

In between every MPC iteration, extra constraints can be
added and removed. All points of the trajectory start of with
a constraint enforcing them to be within the first corridor.
Whenever a point gets close to the end of the corridor, the
constraint parameter is updated to the parameter vector of
the next corridor, if such a corridor exists. Otherwise, the
corridor constraint is removed for that point.

If an obstacle appears in sight, the most recently obtained
solution is used to determine at which discrete points the
obstacle constraint has to be applied. These constraints are
applied to any time-step k for which the corresponding
coordinate (ps,k,py,x) satisfies the condition

(pz,k - xobs)2 + (py,k - yobs)2 Z (Robs + M)2 ) (8)

with M being a margin around the obstacle, in this case M =
4 m. Intuitively, the constraint is only enforced to points
close to the obstacle. In Fig. 3, the obstacle-aware zone
shows the space around the obstacles where the constraints
are enforced. The same approach is used to deal with the
safety constraints around people that are detected.

C. Discussion of Results

Three cases are considered and compared, each using
a different approach to deal with the varying number of
corridors, people and obstacles. Firstly, a single NLP can
be modelled using CasADi Opti that contains all constraints
that will be needed to account for the maximum number of
obstacles, corridors and people. This is achieved by including
dummy obstacles somewhere far away, dummy corridors that
are very large or dummy people far away if less obstacles,
corridors or people are seen similar to what OMG-tools
does. In every iteration, an NLP of identical structure is
solved (with potentially different parameter values). This
case will be referred to as CasADi Opti 1. Secondly, a
new NLP can be defined every iteration adding only the
relevant constraints using the strategy explained in Section
III-B. This case is referred to as CasADi Opti 2. Finally,
the AdaptiveNLP framework is used to add constraints to
and remove constraints from the problem without performing
operations on symbolic expressions. The NLPs solved using
the AdaptiveNLP framework are exactly the same as those
in the second case using CasADi Opti.

Fig. 3 shows the travelled trajectories for the three com-
pared cases. In each case, the same solution is found. Fig.
4 shows the number of constraints in the NLP over the
different MPC iterations for the case CasADi Opti 2 and
the AdaptiveNLP case. It shows how constraints come and
go as the environment changes. In the case CasADi Opti 1,
the maximal number of constraints is always present because
it includes dummy obstacles, corridors and people.
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Fig. 3: Travelled trajectory through the world with corridors, people and obstacles with snapshots of the vehicle (with

viewing radius) at different time instances.
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Fig. 4: Number of constraints throughout the different trajec-
tories. The basic constraints contain the initial and terminal
state constraints, the fixed constraints and the dynamics. The
dotted lines correspond to the time instances shown in Fig. 3.

For every case, the time to solve the NLP is measured
(tsolve) as well as the time needed to compute an initial guess
for the next NLP, update parameter values and make any
necessary changes to the NLP ({ypdate)- A total of 130 MPC
iterations are executed and this process is repeated a hundred
times to compute the medians of these measured times,
which are shown in Fig. 5. For the first case (CasADi Opti
1), in which every iteration solves the same problem with all
constraints, the update time ¢,pdate 1S negligible compared
to the solution time tso)ve. This is expected since only
inexpensive updates are needed such as updating parameters
and shifting the solution by one time-step to provide an
initial guess. In the second case (CasADi Opti 2), the time
needed to solve the problem is significantly lower. This is
due to the fact that there are fewer constraints to be evaluated
while still resulting in the same solution. However, this
improvement is completely undone by the long update time,
arising from having to reconstruct a new NLP every iteration.
In the AdaptiveNLP case, the solution time is similar to
that of the second case, which is to be expected since they
solve exactly the same NLPs. Now however, the updating
time only includes changes to the bookkeeping which is

301

time [ms]

104

0-
CasADi Opti 1 CasADi Opti 2 AdaptiveNLP

Fig. 5: Measured computation times for the three cases in
the MPC example.

much cheaper than constructing a new problem. Because the
AdaptiveNLP framework combines the low solution times of
the second case with the low update times of the first case,
it outperforms both strategies.

This reduced computation time allows choosing higher
MPC frequencies or frees computational resources for other
processes like camera image processing. Moreover, the
AdaptiveNLP framework allows to consider free-space cor-
ridors and different types of obstacles all at once as they
arise in the environment. There is no need to think about a
maximal number of obstacles to consider because the NLP
can efficiently adapt to the environment.

D. Scaling of Computation Times

Fig. 6 shows how the computation times and update times
scale as N increases. Both fgove and typdate (and as a
consequence also the sum ty,1) scale linearly with N.
Considering the solution time tso)ve, it is clear that the first
case (CasADi Opti 1) scales worse. This is caused by the
increasing number of irrelevant constraints as N increases.
The updating times of the first case is close to constant.
For the AdaptiveNLP case, the updating time grows linearly
because more constraints are added and removed as N
increases. However, the updating time of the second case
(CasADi Opti 2) rises significantly. This is explained by the
fact that the overhead of constructing a new problem every
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Fig. 6: Scaling of computation times as N increases.

iteration grows with the size of the problem, and thus with
N.

It can be concluded that the total times in the AdaptiveNLP
scale better as N increases because the AdaptiveNLP is
able to reduce the amount of constraints in the problem
but does this at low cost (even for large N). The benefit
of the flexibility in applied constraints becomes even larger
for larger problems.

IV. ADAPTIVE GRIDDING EXAMPLE PROBLEM

The example problem discussed in this section implements
an adaptive gridding approach for a simple moonlander case.
It is a suitable problem to showcase an adaptive gridding
method because it is known that the solution is a bang-bang
solution which can only be represented on a suitable time-
grid.

A. Problem Description

The goal in this example is to land a moonlander as fast
as possible on the surface of the moon without crashing into
it. The lander is subject to a lunar gravitational pull and has
one thruster to be used to slow down. Formally, the OCP
has two states representing the height (k) [m] and vertical
velocity (v) [m/s] of the lander that adhere to the dynamics
given by f(z,u) = [v —1.62m/s> +u]T where u is the
control input representing the thrust (m/s?). The control is
bounded by the inequalities 0 < w < 8. The initial state
. T . . T
is xg = [1 O] and the terminal state is x; = [0 O] .
There are no extra constraints in this problem.

The AdaptiveNLP framework is used to solve this prob-
lem by providing it a number of different collocation con-
straints. In this specific example, collocation constraints
to enforce dynamics g((;l), ey gég) are provided, meaning
3 up to 7 collocation points can be used. The function
changeIntervalDiscretization () provided by the
AdaptiveNLP-class is used to change the discretization.
The gridding strategy follows the strategy presented by
Patterson et al [10] with a tolerance of 10~6.

B. Discussion of Results

Fig. 7 shows the resulting control inputs. Starting with 3
intervals of 3 collocation points each, 10 refinements in the
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Fig. 7: Control input for moonlander problem.
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Fig. 8: Computation times for the moonlander example.

time-grid have been made to achieve the desired accuracy
in the dynamics. As can be seen, the resulting time-grid is
more fine around 0.8 s to capture the jump in the control
value.

To benchmark computation times of the AdaptiveNLP
framework CasADi Opti is used again. A new Opti instance
has to be constructed every iteration because the problem
structure changes. The time to solve the NLPs, the time to
compute the error estimates and the time to make changes
to the NLP are all measured. The median of 100 runs is
computed and shown in Fig. 8. Because both approaches
solve the same sequence of NLPs, the time to solve the NLPs
is similar (4.16 ms for the CasADi Opti case and 3.80 ms
for the AdaptiveNLP case). The time needed to compute the
error estimates is 0.17 ms for the CasADi Opti case and
0.20ms for the AdaptiveNLP case. The main difference lies
in the update time. For the CasADi Opti case, constructing
new NLPs takes 14.94 ms. This time includes constructing
the objective and constraints symbolically and using AD to
compute J and H. In the AdapativeNLP case, only 0.56
ms is needed to update the bookkeeping information, almost
completely removing the overhead of refining the time-grid
and creating a new NLP.

Fig. 9 shows Jacobian sparsities for a few iterations.
Note that because of the imposed variable sequence as
explained in Section II-C, the Jacobian computed in an
earlier iteration is reused and extended which is visible in
the limited amount of changes from one iteration to another.
The sparsities of the Jacobians using Opti are shown in Fig.
10. It has a different sparsity pattern because of a different
variable sequence. It is clear that inserting time steps in this
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Fig. 10: Jacobian sparsities using Opti.

variable sequence requires shifting many nonzero elements
which is not necessary in the variable sequence used in the
AdaptiveNLP.

V. CONCLUSIONS AND FUTURE WORK

A software framework is presented showing how the
ability to adapt the transcription from OCP to NLP can
be exploited to reduce computation times. More precisely,
because of the low overhead in adding and removing con-
straints, constraints that are known to be inactive can easily
be removed from the problem. This is especially relevant
for interior-point solvers that can suffer from evaluating
irrelevant constraints. As shown, a significant reduction in
computation is observed, especially for large problems. Other
than reducing computation times, the design of the NLP is
made easier because there is no longer a need to construct a
general NLP that can be used in all scenarios.

Other than constraints, the time-grid can also be refined
(or extended) with little overhead as demonstrated in the
adaptive gridding example.

There exist many downstream applications that will
benefit from AdaptiveNLP in addition to adaptive time-
gridding and collision-free motion planning, e.g., using
different vehicle dynamics in different parts of the trajectory
or changing the horizon length online to match an MPC
update rate. Multi-agent applications where the number
of agents is unknown to each agent might also offer an
opportunity to exploit flexibility in the number of constraints.
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