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Abstract— We present a framework for learning of modeling
uncertainties in Linear Time Invariant (LTI) systems to improve
the predictive capacity of system models in the input-output
sense. First, we propose a methodology to extend the LTI
model with an uncertainty model. The proposed framework
guarantees stability of the extended model. To achieve this,
two semi-definite programs are provided that allow obtaining
optimal uncertainty model parameters, given state and uncer-
tainty data. Second, to obtain this data from available input-
output trajectory data, we introduce a filter in which an internal
model of the uncertainty is proposed. This filter is also designed
via a semi-definite program with guaranteed robustness with
respect to uncertainty model mismatches, disturbances, and
noise. Numerical simulations are presented to illustrate the
effectiveness and practicality of the proposed methodology in
improving model accuracy, while guaranteeing model stability.

I. INTRODUCTION

Modeling dynamical systems is crucial across various
engineering and scientific fields. It is essential to incorporate
established principles, such as known physics, and leverage
prior knowledge, such as stability, for effective modeling [1],
[2].

For a class of linear uncertain dynamical systems, this
paper focuses on learning models for uncertainties while
guaranteeing stability of extended models (prior models plus
uncertainty characterization), given available input-output
data. This problem contrasts with black box modelling
approaches, e.g., using Neural Networks (NNs) or Gaussian
Processes (GPs), as we incorporate prior relations that come
from first-principles into the modeling and learning scheme.
Moreover, this problem differs from identifying a full model
in a gray box fashion, as a prior model with known param-
eters is given. However, such problems can be a subclass of
the problem we consider here with no prior model. Below,
some related existing literature is provided.

Existing Literature: Our approach, augments a known
physics-based model by a black-box model used as a correc-
tion term. Such generic approach is also taken by Quaghe-
beur et al. in [3], who add an NN model to a known physics-
based model with unknown parameters. This approach allows
maintaining the basic structure of the model that comes from
first principles, which improves interpretability. However, it
requires simulating the hybrid model at each iteration during
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the training process. This approach is clearly more com-
putationally expensive compared to the proposed method,
which alleviates the need for simulating the model in every
iteration. Furthermore, the main drawback of this method is
that it assumes that the initial state of the dynamic system
is known or at least it requires measuring all the states (full-
state measurement) of the true dynamical system.

Furthermore, our approach offers stability guarantees for
the extended LTI model (i.e., the model consisting of the
known physics-based model and the uncertainty model). The
identification of stable LTI models has (mainly) been studied
in the context of discrete systems [4]–[6]. For instance,
in [7], the authors provide convex constraints to ensure
incremental stability for linear non-autonomous discrete-time
models and some nonlinear models such as recurrent neural
networks. Additionally, there exist studies that have explored
model identification with asymptotic stability guarantees for
discrete LTI systems using subspace identification methods
[8], [9]. Subspace identification methods involve obtaining an
estimate of state sequence or extended observability matrix,
followed by solving a least squares problem to estimate the
model parameters. One way to ensure the asymptotic stability
of the model is to add stability constraints to the least squares
optimization [10]. This addition results in a convex linear
program with mixed equality, quadratic, and semi-definite
constraints. Moreover, there exist some studies such as [11],
[12] which provide non-parametric model identification with
stability guarantees for discrete and continuous LTI systems
using kernel-based approaches. It can be observed that stable
LTI model identification has a rich literature, with a focus
on identifying the complete dynamics. In this context, our
focus is on identifying the missing elements (uncertainty) in
known physics-based models.

In this paper, we propose a framework for learning of
modeling uncertainties in physics-based models applicable
to Linear Time Invariant systems (LTIs). We first focus on
fitting uncertainty models, assuming that some realizations of
input, (estimated) uncertainty, and (estimated) state are given,
while guaranteeing asymptotic stability of the extended
model (i.e., known physics-based model plus uncertainty
model). This is achieved by formulating the problem as a
constraint supervised learning problem.

One key challenge in this problem is the introduction of
stability constraints, which is addressed using Lyapunov-
based tools. The stability criteria typically lead to a non-
convex optimization problem. We tackle this challenge by
proposing two different approaches:

1) Cost Modification: The first approach involves a
change of variables, resulting in cost function being
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rewritten in terms of these new variables (Theorem 1).
2) Constraint Modification: The second approach in-

troduces a sufficient condition to fulfill the stability
constraint by solving a convex program (Theorem 2).

Having addressed the non-convexity challenge, the paper
proceeds to discuss the practical implementation of the
framework. Specifically, it outlines a method for estimating
uncertainty and state trajectories using input-output data and
the known physics-based model (Proposition 1).

Notation: The symbol R+ denotes the set of nonnegative
real numbers. The n × n identity matrix is denoted by
In or simply I if n is clear from the context. Similarly,
n × m matrices composed of only zeros are denoted by
0n×m or simply 0 when their dimensions are clear. First
and second time-derivatives of a vector x are expressed as ẋ
and ẍ, respectively. For rth-order time-derivatives of a vector
x, the notation x(r) is adopted. A positive definite matrix
is denoted by X � 0 and positive semi-definite matrices
are denoted by X � 0. Similarly, for a negative definite
X ≺ 0 is used, and X � 0 for negative semi-definite
matrices. The imaginary unit j is defined by j2 = −1.
For a transfer function T (s), with s ∈ C, σmax

(
T (s)

)
denotes the maximum singular value, and TH(s) represents
the Hermitian transpose. The notation col[x1, . . . , xn] stands
for the column vector composed of the elements x1, . . . , xn.
This notation is also used when the components xi are
vectors. For a differentiable function V : Rn → R we denote
by ∂V

∂x the row-vector of partial derivatives and by V̇ (x) the
total derivative of V (x) with respect to time (i.e., ∂V

∂x
dx
dt ).

The notation tr(W ) stands for trace of a matrix W . We
often omit time dependencies for notation simplicity.

II. PROBLEM FORMULATION

Consider the system{
ẋs =Axs +Buu+ Sηη(xs, u) +Bωω,

ys =Cxs +Dνν,
(1)

where t ∈ R+, xs ∈ Rn, ys ∈ Rm, and u ∈ Rl are
time, system state, measured output and known input vectors,
respectively, and function η : Rn × Rl → Rnη is unknown
modeling uncertainty. Signals ω : R+ → Rnω and ν : R+ →
Rmν are unknown bounded disturbances; the former with
unknown frequency range and the latter with high-frequency
content (e.g., related to measurement noise). Known matrices
(A,Bu, Sη, Bω, C,Dν) are of appropriate dimensions, with
n,m, l, nη, nω,mν ∈ N. Matrix Sη is used to indicate in
which equation(s) the uncertainty η appears explicitly.

We aim to fit a data-based model for the uncertainty
(i.e., η(·) in (1)) using a supervised learning method, while
guaranteeing model stability, with the goal of constructing a
more accurate system model (valid at least for trajectories
close to the training data set). The proposed methods in
Section III assume that a data-set (labeled data) of input,
(estimated) uncertainty, and (estimated) state realizations are
given. This assumption can be considered as another problem
for which a solution is provided in Section IV. In what

follows, we formulate the problem of uncertainty model
learning with stability guarantees.

For the system in (1), consider the following LTI model

ẋ = Ax+Buu+ Sηlηl(x, u),

ηl(x, u) := Θlx+Blu,
(2)

where x ∈ Rn is model state and function ηl : Rn × Rl →
Rnηl is the uncertainty model that is parameterized by
Θl, Bl. Matrices (Θl, Bl, Sηl) are of appropriate dimensions,
with nηl ∈ N. Matrix Sηl , similar to Sη in (1) shows explicit
appearance of the uncertainty model ηl in the right-hand side
and could be different from Sη .

Next, we define a cost function for supervised learning
and the stability constraint.

A. Cost Function

Recall that in this section, we presume that (estimated)
uncertainty and state realizations are given. Let us define
the following (given) i-th sample (in time) data vector
di :=

[
x̂>i u>i η̂>i

]>
, where x̂i, ui, and η̂i correspond

to given i-th realizations of state estimation, input, and
uncertainty estimation, respectively. Given N samples of data
realizations, define the data matrix D as follows:

D :=

N∑
i=1

did
>
i . (3)

Further, define the error vector between the uncertainty
model and its (given) estimation as ei := ηl(x̂i, ui) − η̂i =
Tdi with

T :=
[

Θl Bl −I
]
. (4)

Then, we define the following quadratic cost function to be
minimized to identify Θl and Bl:

J :=

N∑
i=1

e>i ei =

N∑
i=1

d>i T
>Tdi. (5)

B. Stability Constraint

We aim to formulate a constraint to satisfy asymptotic
stability of the model in (2) via Lyapunov-based stability
analysis.

Consider the quadratic function V (x) = x>Px for a
positive definite matrix P � 0. If we can find a P such
that V̇ < 0 for u = 0 along trajectories of (2); then, the
model in (2) is asymptotically stable. The condition V̇ < 0,
for u = 0 can be stated as

(A+ SηlΘl)
>P + P (A+ SηlΘl) ≺ 0, (6)

or equivalently, by applying the congruence transformation
of Q := P−1, (6) can be written as

(A+ SηlΘl)Q+Q(A+ SηlΘl)
> ≺ 0. (7)

Note that the asymptotic stability conditions above re-
quires the linear matrix of the dynamics A + SηlΘl to be
Hurwitz. For a nonzero u, this condition implies Input-to-
State Stability (ISS) of the model in (2) [13, Col. 5.2], for
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any Bu and Bl. Now, we can state the problem we seek to
solve.

Problem 1 (Uncertainty Model Learning with Stability
Guarantee) Consider a given data-set of input and (esti-
mated) uncertainty and state realizations. Find the optimal
parameters Θl and Bl of uncertainty model ηl(·) of the form
in (2) that minimizes the cost function J in (5), such that the
system model in (2) is asymptotically stable (i.e., respecting
the constraint in (6) or (7)). In other words, find the optimal
parameters of the following optimization problem:

min
P,Θl, Bl

J

s.t. (A+ SηlΘl)
>P + P (A+ SηlΘl) ≺ 0,

P � 0.

(8)

In what follows, we provide an approximate solution to
Problem 1 guaranteeing the stability of the system model
described in (2).

III. APPROXIMATE SOLUTION TO PROBLEM 1
The challenge is that the stability condition (6) that appears

in the optimization problem (8) is not convex in P and Θl.
Therefore, in what follows we provide two approaches to
convexify the optimization problem.

A. Cost Modification Approach

First, we convexify the stability constraint by a change
of variable and rewrite the cost function in (5) in terms
of this new variable. The following theorem formalizes the
associated convex optimization problem obtained via this
approach (which can be considered an approximation to the
problem in (8)).

Theorem 1 (Stable Model Learning with Modified Cost)
Consider system (1), a given data-set of input and (estimated)
uncertainty and state realizations. In addition, consider the
uncertainty model of the form in (2). Consider the following
convex program:

min
P, S,R,W

tr(W )

s.t. A>P + PA+ S> + S ≺ 0, (9a) 2P T̃ D̃> I
∗ I 0
∗ ∗ W

 � 0, (9b)

P � 0

with given A related to the known part of the system
dynamics in (1), T̃ :=

[
S R −P

]
, and D̃ the Cholesky

decomposition of the data matrix D defined in (3) (i.e.,
D = D̃>D̃). Denote the optimizers of (9) as P ?, S?, R?, and
W ?. Then, the following parameters of the model (2), Sηl =

I,Θl = Θ?
l = P ?

−1

S?, Bl = B?l = P ?
−1

R? guarantee
asymptotic stability of the model in (2). In addition, it
holds that the cost J of (8) satisfies J ≤ tr(W ); as such
(9) represents an approximate convexified problem of the
problem in (8).

Proof: See [14, Thm. 1]. �

Remark 1 (Surrogate Convex Optimization with Modi-
fied Cost) We remark that the semi-definite program in (9) is
not equivalent to the non-convex optimization problem in (8)
(i.e., it is a convex approximation) due to setting Sηl = I and
using a sufficient condition (a lower bound) in the derivation
of the LMI in (9b). Although by letting Sηl = I , we do
not use the known structure of uncertainty, this makes the
problem tractable. Note that here, we do not use knowledge
of uncertainty structure.

Next, we follow a different approach to formulate an alter-
native surrogate (approximate) convex optimization problem
for Problem 1.

B. Constraint Modification Approach

Instead of changing the model-related variable (Θl) in
the stability constraint (7) (or in its equivalent (6)), we
formulate a sufficient condition (an upper bound) for the
stability constraint (7) which is linear in all the optimization
parameters in order to convexify the optimization problem
(8). The following theorem formalizes this approach.

Theorem 2 (Stable Model Learning with Modified Con-
straint) Consider system (1), a given data-set of input
and (estimated) uncertainty and state realizations and the
uncertainty model of the form in (2). Consider the following
convex program:

min
Q,Θl, Bl,W

tr(W )

s.t.

[
AQ+QA> SηΘl + γ̄Q

? −2γ̄I

]
≺ 0, (10a)

tr(TDT>) ≤ tr(W ), (10b)
Q � 0

with given Hurwitz A, Sη related to known parts of the
system in (1), positive scalar γ̄, and D and T as defined
in (3), and (4), respectively. Denote the optimizers of (10)
as Q?, Θ?

l , B?l , and W ?. Then, the following parameters
of the model (2), Sηl = Sη,Θl = Θ?

l , Bl = B?l guarantee
asymptotic stability of the model in (2). In addition, it holds
that the cost J of (8) satisfies J ≤ tr(W ).

Proof: See [14, Thm. 2]. �

Remark 2 (Surrogate Convex Optimization with Mod-
ified Constraint) Similar to Theorem 1, the semi-definite
program in (10) is a convex approximation of the non-convex
optimization problem in (8) since the stability constraint
(10a) is a sufficient condition for asymptotic stability of
the model in (2). Note that, a disadvantage of Theorem 2
compared to Theorem 1 is that to ensure the feasibility of the
semi-definite problem in Theorem 2, the known A matrix of
the system in (1) has to be Hurwitz. On the other hand, unlike
Theorem 1, Theorem 2 uses the knowledge of uncertainty
structure by setting Sηl = Sη , which is potentially beneficial.
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In the above, we assumed that state and uncertainty real-
izations are available, which is, in practice typically not the
case. In what follows, we present a solution for uncertainty
and state estimation based on only input and output data.

IV. UNCERTAINTY AND STATE ESTIMATION

First, we formulate the uncertainty and state estimation
problem before providing a solution for that problem. Con-
sider system in (1) and the required assumptions as below
to ensure that the problem is well-posed.

Assumption 1 (Regularity) The following assumptions are
required to ensure the regularity of the uncertainty and state
estimation problem, which stand throughout this section:
• State and Input Boundedness: The state variable
xs(t) and the input u(t) remain bounded in some
compact region of interest.

• Cr Uncertainty Vector: The uncertainty vector
η(xs(t), u(t)) in (1) is r times differentiable with re-
spect to time, i.e., the time derivatives η(1)(xs(t), u(t)),
η(2)(xs(t), u(t)), ... ,η(r)(xs(t), u(t)) exist and are con-
tinuous, and η(r)(xs(t), u(t)) is uniformly bounded.

• Disturbance Boundedness: The disturbance vector
ω(t) in (1) is bounded uniformly in t.

• C1 Measurement Noise: The measurement noise vector
ν(t) in (1) is bounded uniformly in t and differentiable,
i.e., the total derivative with respect to time ν̇(t) exists,
is continuous, and bounded uniformly in t.

We assume input u and measured output ys vector-valued
signals in (1) are available. The following filter is designed
for uncertainty and state estimation:

ż =h(z, u, ys; θ),

η̂ =φ1(z, ys; θ),

x̂s =φ2(z, ys; θ),

(11)

where z ∈ Rnz is the internal state of the filter with nz ∈ N.
Functions h : Rnz×Rl×Rm → Rnz , φ1 : Rnz×Rm → Rnη ,
and φ2 : Rnz ×Rm → Rn characterize the filter structure, θ
denotes design parameters.

Define x̂d := col[η̂, x̂s] (representing the estimate of both
the uncertainty and the state) and its estimation error as

ed := x̂d − xd, (12)

where xd := col[η, xs]. The error dynamics of the filter is
given later as a linear system and it is shown that ed =
ed(ω, η

(r), ν, ν̇). With this, we can state the uncertainty and
state estimation problem.

Problem 2 (Uncertainty and State Estimation) Consider
the system (1) with known input and output signals, u(t)
and ys(t), and the uncertainty-state estimator filter (11). For
given r, design the filter parameters θ such that the following
properties are guaranteed:
1) Stability: The estimation error dynamics is input-to-state
stable with respect to the perturbation input (ω, η(r), ν, ν̇);
2) Disturbance Attenuation: The H∞-norm of the transfer
function from col[ω, η(r)] to ed in (12) is bounded by some

known λ > 0;
3) Noise Rejection: The H2-norm of the transfer function
from col[ν, ν̇] to ed in (12) is bounded by some known γ > 0.

For a more formal formulation of the aforementioned
problem, refer to [14]. Before presenting the solution for
Problem 2, we discuss the uncertainty-state estimator filter
architecture, in what follows.

A. Ultra Local Uncertainty Representation

Under Assumption 1, it is discussed in [14] that by
considering Taylor series, the actual internal state-space
representation of η in (1) is as follows:

ζ̇j = ζj+1, 0 < j < r,

ζ̇r = η(r),

η = ζ1,

(13)

where ζj ∈ Rnη . In the following, to design the uncertainty-
state estimator we augment the system state, xs(t), with
the states of the actual uncertainty internal state ζj(t), j ∈
{1, . . . , r}, and augment the system dynamics in (1) with
(13). We then design a linear filter (observer) for the aug-
mented system to simultaneously estimate xs and ζj . We
remark that proper selection of the number of the uncertainty
derivatives, r, added to the uncertainty internal representa-
tion (13) is problem-dependent, see [15] for discussion on
selection of r.

B. Augmented Dynamics

Based on the uncertainty internal representation in (13)
introduced above, define the augmented state xa :=
col[xs, ζ1, ζ2, . . . , ζr], and rewrite the augmented dynamics
using (1) and (13) as{

ẋa = Aaxa +Buaua +Bωaωa,

ys = Caxa +Dνν,
(14a)

Aa :=

A Sη 0
0 0 Idn
0 0 0

 , Bua :=
[
B>u 0

]>
, ua := u,

Bωa :=

Bω 0
0 0
0 Inη

 , ωa :=

[
ω
η(r)

]
, Ca :=

[
C 0

]
(14b)

with dn := (r − 1)nη .

C. Uncertainty-State Estimator

In this section, considering the uncertainty-state estima-
tor general structure in (11), inspired from observer-based
approaches, we consider h(·) and φi(·), i = 1, 2, as

h(z, u, ys; θ) =Nz +Gu+ Lys,

φi(z, ys; θ) =C̄i(z − Eys),
(15a)

with x̂a = z − Eys, filter state z ∈ Rnz , nz = n+ rnη ,

C̄1 :=
[

0 Inη 0
]
, C̄2 :=

[
In 0

]
,
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and matrices (N,G,L) defined as

N := MAa −KCa, M := I + ECa,

G := MBa, L := K(I + CaE)−MAaE.
(15b)

Matrices E and K are filter gains to be designed which can
be collected as θ = (E,K). Note that according to (15a), the
part of the augmented state, xa, that we use to reconstruct
uncertainty and state signals is C̄axa with

C̄a :=
[
C̄>1 C̄>2

]>
. (16)

In the following section, we analyze the estimator error
dynamics.

D. Uncertainty-State Estimator Error Dynamics

Consider the augmented state estimate x̂a and let us define
estimation error as e := x̂a − xa = z − xa − Eys. Then,
given the algebraic relations in (15b), the estimation error
dynamics can be written as

ė = Ne−MBωaωa +
[
KDν −EDν

][ ν
ν̇

]
.

Define νa := col[ν, ν̇], ed := C̄ae with C̄a as in (16),
and Bνa :=

[
KDν −EDν

]
. Then, the estimation error

dynamics is given by{
ė = Ne−MBωaωa +Bνaνa,

ed = C̄ae.
(17)

Define the transfer matrices

Tedωa(s) := −C̄a(sI −N)−1MBωa ,

Tedνa(s) := C̄a(sI −N)−1Bνa ,
(18)

where Tedωa(s) and Tedνa(s), with s ∈ C, denote the
corresponding transfer matrices from ωa and νa, both to ed,
respectively. Now, we can restate Problem 2 in a more formal
way.

E. Uncertainty-State Estimator Design

In the following proposition, we provide the solution of
Problem 2 as a semi-definite problem, where we seek to
minimize the H∞-norm of Tedωa(s) for an acceptable upper
bound on the H2-norm of Tedνa(s) (there exist a trade-off
between these two norms, see [16], [17]). Moreover, we add
the Input-to-State Stability (ISS) constraint with respect to
filter error dynamics input col[ωa, νa] to this program to
enforce that stability of the resulting estimation filter.

Proposition 1 (Estimator Design) Consider the system (1),
the augmented dynamics (14), the uncertainty-state esti-
mator (11) with h(·) and φ(·) as defined in (15), the
corresponding estimation error dynamics (17), and the trans-
fer functions (18). Consider the following convex program:

min
Π, F,H,Z, λ, γ

λ

s.t. S̄ + εI � 0,

 S̄ −(Π + FCa)Bωa C̄>a
∗ −λI 0
∗ ∗ −λI

 ≺ 0,

 S̄ HDν −FDν

∗ −γI 0
∗ ∗ −γI

 ≺ 0,

[
Π C̄>a
∗ Z

]
� 0,

Π � 0,

γ − trace(Z), γ, λ > 0,

γ ≤ γmax
with
S̄ := A>a Π+A>a C

>
a F
>−C>a H>+ΠAa+FCaAa−HCa,

given ε, γmax > 0, C̄a in (16), and the
remaining matrices as defined in (14b). Denote
the optimizers as Π?, F ?, H?, Z?, λ?, and
γ?. Then, the optimal parameters in (15)
θ = θ? = {E? = Π?−1

F ?,K? = Π?−1

H?} guarantee the
following properties:

1) The estimation error dynamics in (17) is
ISS and the ISS-gain from input col[ωa, νa]
to the estimation error is upper bounded by
2‖Π?

[
(I + E?Ca)Bωa −K?Dν E?Dν

]
‖ε−1.

2) ‖Tedωa‖∞ := supα∈R+ σmax(Tedωa(iα)) is upper
bounded by λ?.

3) ‖Tedνa‖H2 =
√

1
2π trace

∫∞
−∞ Tedνa(iα)THedνa(iα) dα

is upper bounded by γ?.

Proof: See [18, Thm. 1]. �

V. SIMULATION RESULTS

In this section, we evaluate the proposed method using a
two-mass-spring-damper system. By defining the state vector
xs = [xs1 , xs2 , xs3 , xs4 ]> := [q1, q̇1, q2, q̇2]>, where qi and
q̇i are the displacement and velocity of the i−th mass,
respectively, the system dynamics can be described as:

ẋs = Axs +Buu+ Sηη (xs) ,

η (xs) = Θaxs,

ys = Cxs +Dνν,

(20)

where

A =


0 1 0 0

−k1+k2m1
− c1+c2m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

− k2
m2

− c2
m2

 , D = I,

Bu =


0
1
m1

0
0

 , Θa =


− δk1+δk2m1

δk2
m2

0 0
δk2
m1

− δk2m2

0 0


>

,

Sη =

[
0 1 0 0
0 0 0 1

]>
, C =

[
1 0 0 0
0 0 1 0

]
,

and constants mi, ki, and ci are the mass, stiffness, and
viscous coefficient of the i-th mass, spring and damper,
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Fig. 1. Comparison of second output of system and different models.

TABLE I
RMSES OF DIFFERENT MODELS AND SYSTEM OUTPUTS.

RMSE [m] First mass
position

Second mass
position

No uncertainty model 0.0296 0.1272
Cost modification approach 0.0085 0.0303

Constraint modification approach 0.0077 0.0117

respectively. The uncertainty is due to the uncertainty on
the springs stiffness which are captured by δki for the i-
th spring. Input u is the force which applies to the first
mass. The parameters values are: m1 = 4 kg,m2 = 3
kg, k1 = 2 N/m, k2 = 1.5 N/m, c1 = 3.4 Ns/m, c2 = 3.8
Ns/m, δk1 = 0.25k1, δk2 = −0.2k2. For simulation, we set
initial conditions as xs(0) = [0.01, 0.01, 0.01, 0.01]T .

For the above-mentioned system, Θa is unknown, and
three estimations for it are trained using the proposed
methods without imposing stability constraints. Then, for a
test data-set, we have compared the output of system with
extended models (which consist of the known model plus one
of the uncertainty models) and also with the model without
any uncertainty model. Figure 1 depicts this comparison for
the second mass position. It can be seen that the result
with uncertainty model which is trained without any stability
constraint is unstable, see red dashed line. This shows that
considering stability condition while learning a model for a
stable system is indeed necessary. Figure 1 also shows that
using the learning strategy proposed in this paper, model
quality is significantly improved compared to the model
without learned uncertainty model.

Furthermore, for better comparison, the Root Mean Square
Errors (RMSEs) of error of each (stable) model (difference of
model and system outputs) are given in Table I. As the results
show, the constraint modification approach (Theorem 2)
outperforms for this example. Note that we cannot generalize
better performance of constraint modification approach in
comparison with cost modification approach since we only
show the results for one case study here.

VI. CONCLUSION

This paper proposes a framework for learning of modeling
uncertainties in linear time invariant models. Simulations of
a two-mass-spring-damper system demonstrate the proposed

approach’s effectiveness and potential. Future work could
include extending the method to nonlinear systems.
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